
Cache-Oblivious Algorithms 
EXTENDED ABSTRACT 

Matteo Frigo Charles E. Leiserson Harald Prokop Sridhar Ramachandran 
MIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139 

Abstract This paper presents asymptotically optimal algo­
rithms for rectangular matrix transpose, FFT, and sorting on 
computers with multiple levels of caching. Unlike previous 
optimal algorithms, these algorithms are cache oblivious: no  
variables dependent on hardware parameters, such as cache 
size and cache-line length, need to be tuned to achieve opti­
mality. Nevertheless, these algorithms use an optimal amount 
of work and move data optimally among multiple levels of 
cache. For a cache with size Z and cache-line length L where 
Z � Ω(L2) the number of cache misses for an m � n ma­
trix transpose is Θ(1 + mn�L). The number of cache misses 
for either an n-point FFT or the sorting of n numbers is 
Θ(1 +( n�L)(1 + logZ n)). We also give an Θ(mnp)-work al­
gorithm to multiply an m � n matrix by an n � p matrix that 
incurs Θ(1 +( mn + np  + mp)�L+ mnp�L

p
Z) cache faults. 

We introduce an “ideal-cache” model to analyze our algo­
rithms. We prove that an optimal cache-oblivious algorithm 
designed for two levels of memory is also optimal for multi­
ple levels and that the assumption of optimal replacement in 
the ideal-cache model can be simulated efficiently by LRU re­
placement. We also provide preliminary empirical results on 
the effectiveness of cache-oblivious algorithms in practice. 

1. Introduction 
Resource-oblivious algorithms that nevertheless use re­
sources efficiently offer advantages of simplicity and 
portability over resource-aware algorithms whose re­
source usage must be programmed explicitly. In this 
paper, we study cache resources, specifically, the hier­
archy of memories in modern computers. We exhibit 
several “cache-oblivious” algorithms that use cache as 
effectively as “cache-aware” algorithms. 

Before discussing the notion of cache obliviousness, 
we first introduce the (Z� L) ideal-cache model to study 
the cache complexity of algorithms. This model, which 
is illustrated in Figure 1, consists of a computer with a 
two-level memory hierarchy consisting of an ideal (data) 
cache of Z words and an arbitrarily large main mem­
ory. Because the actual size of words in a computer is 
typically a small, fixed size (4 bytes, 8 bytes, etc.), we 
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Figure 1: The ideal-cache model 

shall assume that word size is constant; the particular 
constant does not affect our asymptotic analyses. The 
cache is partitioned into cache lines, each consisting of 
L consecutive words which are always moved together 
between cache and main memory. Cache designers typ­
ically use L � 1, banking on spatial locality to amortize 
the overhead of moving the cache line. We shall gener­
ally assume in this paper that the cache is tall: 

Z � Ω(L2) � (1) 

which is usually true in practice. 
The processor can only reference words that reside 

in the cache. If the referenced word belongs to a line 
already in cache, a cache hit occurs, and the word is 
delivered to the processor. Otherwise, a cache miss oc­
curs, and the line is fetched into the cache. The ideal 
cache is fully associative [20, Ch. 5]: cache lines can be 
stored anywhere in the cache. If the cache is full, a cache 
line must be evicted. The ideal cache uses the optimal 
off-line strategy of replacing the cache line whose next 
access is furthest in the future [7], and thus it exploits 
temporal locality perfectly. 

Unlike various other hierarchical-memory models 
[1, 2, 5, 8] in which algorithms are analyzed in terms of 
a single measure, the ideal-cache model uses two mea­
sures. An algorithm with an input of size n is measured 
by its work complexity W (n)—its conventional running 
time in a RAM model [4]—and its cache complexity 
Q(n; Z� L)—the number of cache misses it incurs as a 



function of the size Z and line length L of the ideal cache. 
When Z and L are clear from context, we denote the 
cache complexity simply as Q(n) to ease notation. 

We define an algorithm to be cache aware if it con­
tains parameters (set at either compile-time or runtime) 
that can be tuned to optimize the cache complexity for 
the particular cache size and line length. Otherwise, the 
algorithm is cache oblivious. Historically, good perfor­
mance has been obtained using cache-aware algorithms, 
but we shall exhibit several optimal1 cache-oblivious al­
gorithms. 

To illustrate the notion of cache awareness, consider 
the problem of multiplying two n � n matrices A and 
B to produce their n � n product C. We assume that 
the three matrices are stored in row-major order, as 
shown in Figure 2(a). We further assume that n is 
“big,” i.e., n � L, in order to simplify the analysis. The 
conventional way to multiply matrices on a computer 
with caches is to use a blocked algorithm [19, p. 45]. 
The idea is to view each matrix M as consisting of 
(n�s) � (n�s) submatrices Mi j  (the blocks), each of 
which has size s � s, where s is a tuning parame­
ter. The following algorithm implements this strategy: 

BLOCK-MULT(A� B�C� n) 

1 for i� 1 to n�s 
2 do for j� 1 to n�s 
3 do for k � 1 to n�s 
4 do ORD-MULT(Aik� Bk j�Ci j� s) 

The ORD-MULT(A� B� C� s) subroutine computes 
C � C+ AB on s� s matrices using the ordinary O(s3) 

algorithm. (This algorithm assumes for simplicity that 
s evenly divides n, but in practice s and n need have no 
special relationship, yielding more complicated code in 
the same spirit.) 

Depending on the cache size of the machine on which 
BLOCK-MULT is run, the parameter s can be tuned to 
make the algorithm run fast, and thus BLOCK-MULT is 
a cache-aware algorithm. To minimize the cache com­
plexity, we choose s to be the largest value such that 
the three s � s submatrices simultaneously fit in cache. 
An s� s submatrix is stored on Θ(s+ s2�L) cache lines. 
From the tall-cache assumption (1), we can see that 
s � Θ(

p
Z). Thus, each of the calls to ORD-MULT runs 

with at most Z�L � Θ(s2�L) cache misses needed to 
bring the three matrices into the cache. Consequently, 
the cache complexity of the entire algorithm is Θ(1 + 

n2�L+( n�
p

Z)3(Z�L)) � Θ(1 + n2�L+ n3�L
p

Z), since 
the algorithm has to read n2 elements, which reside on � � 

n2�L cache lines. 
The same bound can be achieved using a simple 

1For simplicity in this paper, we use the term “optimal” as a syn­
onym for “asymptotically optimal,” since all our analyses are asymp­
totic. 

cache-oblivious algorithm that requires no tuning pa­
rameters such as the s in BLOCK-MULT. We present 
such an algorithm, which works on general rectangular 
matrices, in Section 2. The problems of computing a 
matrix transpose and of performing an FFT also suc­
cumb to remarkably simple algorithms, which are de­
scribed in Section 3. Cache-oblivious sorting poses a 
more formidable challenge. In Sections 4 and 5, we 
present two sorting algorithms, one based on mergesort 
and the other on distribution sort, both of which are op­
timal in both work and cache misses. 

The ideal-cache model makes the perhaps-
questionable assumptions that there are only two 
levels in the memory hierarchy, that memory is man­
aged automatically by an optimal cache-replacement 
strategy, and that the cache is fully associative. We 
address these assumptions in Section 6, showing that 
to a certain extent, these assumptions entail no loss 
of generality. Section 7 discusses related work, and 
Section 8 offers some concluding remarks, including 
some preliminary empirical results. 

2. Matrix multiplication 
This section describes and analyzes a cache-oblivious al­
gorithm for multiplying an m� n matrix by an n� p ma­
trix cache-obliviously using Θ(mnp) work and incurring 
Θ(m + n + p+( mn + np + mp)�L+ mnp�L

p
Z) cache 

misses. These results require the tall-cache assumption 
(1) for matrices stored in row-major layout format, but 
the assumption can be relaxed for certain other layouts. 
We also show that Strassen’s algorithm [31] for multi­
plying n� n matrices, which uses Θ(nlg 7) work2, incurs 
Θ(1 + n2�L+ nlg7�L

p
Z) cache misses. 

In [9] with others, two of the present authors analyzed 
an optimal divide-and-conquer algorithm for n � n ma­
trix multiplication that contained no tuning parameters, 
but we did not study cache-obliviousness per se. That 
algorithm can be extended to multiply rectangular matri­
ces. To multiply a m� n matrix A and a n� p matrix B, 
the REC-MULT algorithm halves the largest of the three 
dimensions and recurs according to one of the following 
three cases: � � � � 

A1 B � 

A1B 
� (2)

A2 A2B � � ; � B1A1 A2 B2 
� A1B1 + A2B2 � (3) ; � ; � 

A B1 B2 � 

AB1 AB2 : (4) 

In case (2), we have m � max fn� pg. Matrix A is split 
horizontally, and both halves are multiplied by matrix B. 
In case (3), we have n � max fm� pg. Both matrices are 

2We use the notation lg to denote log2. 
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split, and the two halves are multiplied. In case (4), we 
have p � max fm� ng. Matrix B is split vertically, and 
each half is multiplied by A. For square matrices, these 
three cases together are equivalent to the recursive mul­
tiplication algorithm described in [9]. The base case oc­
curs when m � n � p � 1, in which case the two ele­
ments are multiplied and added into the result matrix. 

Although this straightforward divide-and-conquer al­
gorithm contains no tuning parameters, it uses cache op­
timally. To analyze the REC-MULT algorithm, we as­
sume that the three matrices are stored in row-major or­
der, as shown in Figure 2(a). Intuitively, REC-MULT 

uses the cache effectively, because once a subproblem 
fits into the cache, its smaller subproblems can be solved 
in cache with no further cache misses. 

Theorem 1 The REC-MULT algorithm uses Θ(mnp) 

work and incurs Θ(m + n + p + ( mn + np + mp)�L + 

mnp�L
p

Z) cache misses when multiplying an m� n ma­
trix by an n� p matrix. 

Proof. It can be shown by induction that the work of 
REC-MULT is Θ(mnp). To analyze the cache misses, let 
α � 0 be the largest constant sufficiently small that three 

�submatrices of sizes m� � n , n� � p� , and m� � p� , where 
�max fm�� n�� p g � α

p
Z, all fit completely in the cache.


We distinguish four cases depending on the initial size

of the matrices.

Case I: m� n� p � α

p
Z. This case is the most intuitive.


The matrices do not fit in cache, since all dimensions are

“big enough.” The cache complexity can be described

by the recurrence


Q(m� n� p) � (5) 

� 

Θ((mn + np  + mp)�L) if m� n� p � [α
p

Z�2� α
p

Z] � � � 2Q(m�2� n� p)+ O(1) ow. if m � n and m � p � 

� 
2Q(m� n�2� p)+ O(1) ow. if n � m and n � p � � : 

2Q(m� n� p�2)+ O(1) otherwise : 

The base case arises as soon as all three submatrices fit 
in cache. The total number of lines used by the three 
submatrices is Θ((mn + np + mp)�L). The only cache 
misses that occur during the remainder of the recursion 
are the Θ((mn + np + mp)�L) cache misses required to 
bring the matrices into cache. In the recursive cases, 
when the matrices do not fit in cache, we pay for the 
cache misses of the recursive calls, which depend on the 
dimensions of the matrices, plus O(1) cache misses for 
the overhead of manipulating submatrices. The solution 
to this recurrence is Q(m� n� p) � Θ(mnp�L

p
Z). 

Case II: (m � α
p

Z and n� p � α
p

Z) or  (n � α
p

Z and 
m� p� α

p
Z) or  (p� α

p
Z and m� n � α

p
Z). Here, we 

shall present the case where m � α
p

Z and n� p � α
p

Z. 
The proofs for the other cases are only small variations 
of this proof. The REC-MULT algorithm always divides 
n or p by 2 according to cases (3) and (4). At some point 
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Figure 2: Layout of a 16 � 16 matrix in (a) row ma­
jor, (b) column major, (c) 4 � 4-blocked, and (d) bit-
interleaved layouts. 

in the recursion, both are small enough that the whole 
problem fits into cache. The number of cache misses 
can be described by the recurrence 

Q(m� n� p) � (6) 8 � 

Θ(1 + n+ np�L+ m) if n� p � [α
p

Z�2� α
p

Z] � 

2Q(m� n�2� p)+ O(1) otherwise if n � p � : 

2Q(m� n� p�2)+ O(1) otherwise ; 

whose solution is Q(m� n� p) � Θ(np�L+ mnp�L
p

Z). 

Case III: (n� p � α
p

Z and m � α
p

Z) or (m� p � α
p

Z 
and n � α

p
Z) or  (m� n � α

p
Z and p� α

p
Z). In each 

of these cases, one of the matrices fits into cache, and 
the others do not. Here, we shall present the case where 
n� p � α

p
Z and m � α

p
Z. The other cases can be 

proven similarly. The REC-MULT algorithm always di­
vides m by 2 according to case (2). At some point in the 
recursion, m falls into the range α

p
Z�2 � m � α

p
Z, 

and the whole problem fits in cache. The number cache 
misses can be described by the recurrence 

Q(m� n) � (7) � 

Θ(1 + m) if m � [α
p

Z�2� α
p

Z] � 

2Q(m�2� n� p)+ O(1) otherwise ; 

whose solution is Q(m� n� p) � Θ(m+ mnp�L
p

Z). 

Case IV: m� n� p � α
p

Z. From the choice of α, all 
three matrices fit into cache. The matrices are stored 
on Θ(1 + mn�L+ np�L+ mp�L) cache lines. Therefore, 
we have Q(m� n� p) � Θ(1 +( mn + np + mp)�L). 

We require the tall-cache assumption (1) in these 
analyses, because the matrices are stored in row-major 
order. Tall caches are also needed if matrices are stored 



in column-major order (Figure 2(b)), but the assumption 
that Z � Ω(L2) can be relaxed for certain other matrix 
layouts. The s� s-blocked layout (Figure 2(c)), for some 
tuning parameter s, can be used to achieve the same 
bounds with the weaker assumption that the cache holds 
at least some sufficiently large constant number of lines. 
The cache-oblivious bit-interleaved layout (Figure 2(d)) 
has the same advantage as the blocked layout, but no 
tuning parameter need be set, since submatrices of size 
O(
p

L) � O(
p

L) are cache-obliviously stored on O(1) 

cache lines. The advantages of bit-interleaved and re­
lated layouts have been studied in [11, 12, 16]. One of 
the practical disadvantages of bit-interleaved layouts is 
that index calculations on conventional microprocessors 
can be costly, a deficiency we hope that processor archi­
tects will remedy. 

For square matrices, the cache complexity Q(n) � 

Θ(n+ n2�L+ n3�L
p

Z) of the REC-MULT algorithm is 
the same as the cache complexity of the cache-aware 
BLOCK-MULT algorithm and also matches the lower 
bound by Hong and Kung [21]. This lower bound 
holds for all algorithms that execute the Θ(n3) opera­
tions given by the definition of matrix multiplication 

n 

ci j  � ∑ aikbk j  : 

k�1 

No tight lower bounds for the general problem of matrix 
multiplication are known. 

By using an asymptotically faster algorithm, such as 
Strassen’s algorithm [31] or one of its variants [37], both 
the work and cache complexity can be reduced. When 
multiplying n� n matrices, Strassen’s algorithm, which 
is cache oblivious, requires only 7 recursive multiplica­
tions of n�2 � n�2 matrices and a constant number of 
matrix additions, yielding the recurrence � 

Θ(1 + n+ n2�L) if n2 � αZ � 

(8)Q(n) � 

7Q(n�2)+ O(n2�L) otherwise ; 

where α is a sufficiently small constant. The solution to 
this recurrence is Θ(n+ n2�L+ nlg7�L

p
Z). 

3. Matrix transposition and FFT 
This section describes a recursive cache-oblivious al­
gorithm for transposing an m � n matrix which uses 
O(mn) work and incurs O(1 + mn�L) cache misses, 
which is optimal. Using matrix transposition as a sub­
routine, we convert a variant [36] of the “six-step” fast 
Fourier transform (FFT) algorithm [6] into an optimal 
cache-oblivious algorithm. This FFT algorithm uses 
O(n lg n) work and incurs O(1 +( n�L)( 1 + logZ n)) 

cache misses. 
The problem of matrix transposition is defined as fol­

lows. Given an m� n matrix stored in a row-major lay­
out, compute and store AT into an n � m matrix B also 

stored in a row-major layout. The straightforward algo­
rithm for transposition that employs doubly nested loops 
incurs Θ(mn) cache misses on one of the matrices when 
m � Z�L and n � Z�L, which is suboptimal. 

Optimal work and cache complexities can be ob­
tained with a divide-and-conquer strategy, however. If 
n � m, the REC-TRANSPOSE algorithm partitions � � 

B1A � ( A1 A2) � B � B2 

and recursively executes REC-TRANSPOSE(A1� B1) and 
REC-TRANSPOSE(A2� B2). Otherwise, it divides matrix 
A horizontally and matrix B vertically and likewise per­
forms two transpositions recursively. The next two lem­
mas provide upper and lower bounds on the performance 
of this algorithm. 

Lemma 2 The REC-TRANSPOSE algorithm involves 
O(mn) work and incurs O(1 + mn�L) cache misses for 
an m� n matrix. 

Proof. That the algorithm does O(mn) work is straight­
forward. For the cache analysis, let Q(m� n) be the cache 
complexity of transposing an m � n matrix. We as­
sume that the matrices are stored in row-major order, the 
column-major layout having a similar analysis. 

Let α be a constant sufficiently small such that two 
submatrices of size m� n and n� m, where max fm� ng� 

αL, fit completely in the cache even if each row is stored 
in a different cache line. We distinguish the three cases. 

Case I: max fm� ng � αL. Both the matrices fit in 
O(1)+ 2mn�L lines. From the choice of α, the number 
of lines required is at most Z�L. Therefore Q(m� n) � 

O(1 + mn�L). 

Case II: m � αL� n or n � αL � m. Suppose first that 
m � αL � n. The REC-TRANSPOSE algorithm divides 
the greater dimension n by 2 and performs divide and 
conquer. At some point in the recursion, n falls into the 
range αL�2 � n � αL, and the whole problem fits in 
cache. Because the layout is row-major, at this point the 
input array has n rows and m columns, and it is laid out 
in contiguous locations, requiring at most O(1 + nm�L) 

cache misses to be read. The output array consists of nm 
elements in m rows, where in the worst case every row 
lies on a different cache line. Consequently, we incur at 
most O(m + nm�L) for writing the output array. Since 
n � αL�2, the total cache complexity for this base case 
is O(1 + m). These observations yield the recurrence � 

O(1 + m) if n � [αL�2� αL] �
Q(m� n) � 2Q(m� n�2)+ O(1) otherwise ; 

whose solution is Q(m� n) � O(1 + mn�L). 
The case n � αL � m is analogous. 



Case III: m� n � αL. As in Case II, at some point in the 
recursion both n and m fall into the range [αL�2� αL]. 
The whole problem fits into cache and can be solved 
with at most O(m+ n+ mn�L) cache misses. The cache 
complexity thus satisfies the recurrence 

Q(m� n) � 8 �	
O(m+ n+ mn�L) if m� n � [αL�2� αL] � 

2Q(m�2� n)+ O(1) if m � n � : 2Q(m� n�2)+ O(1) otherwise; 

whose solution is Q(m� n) � O(1 + mn�L). 

Theorem 3 The REC-TRANSPOSE algorithm has opti­
mal cache complexity. 

Proof. For an m� n matrix, the algorithm must write to 
mn distinct elements, which occupy at least dmn�Le � 

Ω(1 + mn�L) cache lines. 

As an example of an application of this cache-
oblivious transposition algorithm, in the rest of this sec­
tion we describe and analyze a cache-oblivious algo­
rithm for computing the discrete Fourier transform of a 
complex array of n elements, where n is an exact power 
of 2. The basic algorithm is the well-known “six-step” 
variant [6, 36] of the Cooley-Tukey FFT algorithm [13]. 
Using the cache-oblivious transposition algorithm, how­
ever, the FFT becomes cache-oblivious, and its perfor­
mance matches the lower bound by Hong and Kung [21]. 

Recall that the discrete Fourier transform (DFT) of 
an array X of n complex numbers is the array Y given by 

n�1 

]ω�i jY [i] � ∑ X [ j � (9)n 
j�0 

where ωn � e2π
p�1�n is a primitive nth root of unity, 

and 0 � i� n. Many algorithms evaluate Equation (9) in 
O(n lg n) time for all integers n [15]. In this paper, how­
ever, we assume that n is an exact power of 2, and we 
compute Equation (9) according to the Cooley-Tukey al­
gorithm, which works recursively as follows. In the base 
case where n � O(1), we compute Equation (9) directly. 
Otherwise, for any factorization n � n1n2 of n, we have  

Y [i1 + i2n1] �	 (10) "�	 ! # 

n2�1 n1�1 

∑ X [ j1n2 + j2]ω�i1 j1 ω�i1 j2 ω�i2 j2 :∑ n1 n n2

j2 �0 j1�0


Observe that both the inner and outer summations in 
Equation (10) are DFT’s. Operationally, the computa­
tion specified by Equation (10) can be performed by 
computing n2 transforms of size n1 (the inner sum), mul­
tiplying the result by the factors ω�i1 j2 (called the twid­n 
dle factors [15]), and finally computing n1 transforms of 
size n2 (the outer sum). 

We choose n1 to be 2dlg n�2e and n2 to be 2blg n�2c. The 
recursive step then operates as follows: 

1. Pretend that input is a row-major n1 � n2 matrix A. 
Transpose A in place, i.e., use the cache-oblivious 
REC-TRANSPOSE algorithm to transpose A onto an 
auxiliary array B, and copy B back onto A. Notice 
that if n1 � 2n2, we can consider the matrix to be 
made up of records containing two elements. 

2. At this stage, the inner sum corresponds to a DFT 
of the n2 rows of the transposed matrix. Compute 
these n2 DFT’s of size n1 recursively. Observe that, 
because of the previous transposition, we are trans­
forming a contiguous array of elements. 

3. Multiply A by the twiddle factors, which can be 
computed on the fly with no extra cache misses. 

4. Transpose A in place, so that the inputs to the next 
stage are arranged in contiguous locations. 

5. Compute n1 DFT’s of the rows of the matrix recur­
sively. 

6. Transpose A in place so as to produce the correct 
output order. 

It can be proven by induction that the work com­
plexity of this FFT algorithm is O(n lg n). We now an­
alyze its cache complexity. The algorithm always op­
erates on contiguous data, by construction. Thus, by 
the tall-cache assumption (1), the transposition oper­
ations and the twiddle-factor multiplication require at 
most O(1 + n�L) cache misses. Thus, the cache com­
plexity satisfies the recurrence 8 � 

O(1 + n�L)� if n � αZ � 

Q(n) � 

n1Q(n2) + n2Q(n1) otherwise ; (11) : +O(1 + n�L) 

where α � 0 is a constant sufficiently small that a sub­
problem of size αZ fits in cache. This recurrence has 
solution 

Q(n) � O(1 +( n�L)( 1 + logZ n)) � 

which is optimal for a Cooley-Tukey algorithm, match­
ing the lower bound by Hong and Kung [21] when n is 
an exact power of 2. As with matrix multiplication, no 
tight lower bounds for cache complexity are known for 
the general DFT problem. 

4. Funnelsort 
Cache-oblivious algorithms, like the familiar two-way 
merge sort, are not optimal with respect to cache misses. 
The Z-way mergesort suggested by Aggarwal and Vit­
ter [3] has optimal cache complexity, but although it ap­
parently works well in practice [23], it is cache aware. 
This section describes a cache-oblivious sorting algo­
rithm called “funnelsort.” This algorithm has optimal 
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Figure 3: Illustration of a k-merger. A k-merger is built 
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p
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p
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O(n lg n) work complexity, and optimal O(1 +( n�L)(1 + 

logZ n)) cache complexity. 
Funnelsort is similar to mergesort. In order to sort 

a (contiguous) array of n elements, funnelsort performs 
the following two steps: 

1. Split the input into n1�3 contiguous arrays of size 
n2�3, and sort these arrays recursively. 

2. Merge the	 n1�3 sorted sequences using a n1�3-
merger, which is described below. 

Funnelsort differs from mergesort in the way the 
merge operation works. Merging is performed by a de­
vice called a k-merger, which inputs k sorted sequences 
and merges them. A k-merger operates by recursively 
merging sorted sequences which become progressively 
longer as the algorithm proceeds. Unlike mergesort, 
however, a k-merger suspends work on a merging sub­
problem when the merged output sequence becomes 
“long enough” and resumes work on another merging 
subproblem. 

This complicated flow of control makes a k-merger 
a bit tricky to describe. Figure 3 shows a representa­
tion of a k-merger, which has k sorted sequences as in­
puts. Throughout its execution, the k-merger maintains 
the following invariant. 

Invariant Each invocation of a k-merger outputs the 
next k3 elements of the sorted sequence obtained by 
merging the k input sequences. 

A k-merger is built recursively out of 
p

k-mergers in 
the following way. The k inputs are partitioned into 

p
k 

sets of 
p

k elements, which form the input to the 
p

kp
k-mergers L1� L2� : : : � Lp

k in the left part of the figure. 
The outputs of these mergers are connected to the inputs 

of 
p

k buffers. Each buffer is a FIFO queue that can 
hold 2k3�2 elements. Finally, the outputs of the buffers 
are connected to the 

p
k inputs of the 

p
k-merger R in 

the right part of the figure. The output of this final 
p

k-
merger becomes the output of the whole k-merger. The 
intermediate buffers are overdimensioned, since each 
can hold 2k3�2 elements, which is twice the number k3�2 

of elements output by a 
p

k-merger. This additional 
buffer space is necessary for the correct behavior of the 
algorithm, as will be explained below. The base case of 
the recursion is a k-merger with k � 2, which produces 
k3 � 8 elements whenever invoked. 

A k-merger operates recursively in the following way. 
In order to output k3 elements, the k-merger invokes 
R k3�2 times. Before each invocation, however, the k-
merger fills all buffers that are less than half full, i.e., 
all buffers that contain less than k3�2 elements. In order 
to fill buffer i, the algorithm invokes the corresponding 
left merger Li once. Since Li outputs k3�2 elements, the 
buffer contains at least k3�2 elements after Li finishes. 

It can be proven by induction that the work com­
plexity of funnelsort is O(n lg n). We will now analyze 
the cache complexity. The goal of the analysis is to 
show that funnelsort on n elements requires at most Q(n) 

cache misses, where 

Q(n) � O(1 +( n�L)(1 + logZ n)) : 

In order to prove this result, we need three auxiliary lem­
mas. The first lemma bounds the space required by a 
k-merger. 

Lemma 4 A k-merger can be laid out in O(k2) contigu­
ous memory locations. 

Proof. A k-merger requires O(k2) memory locations 
for the buffers, plus the space required by the 

p
k-

mergers. The space S(k) thus satisfies the recurrence 

S(k) � (
p

k+ 1)S(
p

k)+ O(k2) � 

whose solution is S(k) � O(k2). 
In order to achieve the bound on Q(n), the buffers 

in a k-merger must be maintained as circular queues of 
size k. This requirement guarantees that we can man­
age the queue cache-efficiently, in the sense stated by 
the next lemma. 

Lemma 5 Performing r insert and remove operations 
on a circular queue causes in O(1 + r�L) cache misses 
as long as two cache lines are available for the buffer. 

Proof. Associate the two cache lines with the head and 
tail of the circular queue. If a new cache line is read 
during a insert (delete) operation, the next L� 1 insert 
(delete) operations do not cause a cache miss. 

The next lemma bounds the cache complexity of a 
k-merger. 



Lemma 6 If Z � Ω(L2), then a k-merger operates with 
at most 

QM(k) � O(1 + k+ k3�L+ k3 logZ k�L) 

cache misses. 

Proof. There are two cases: either k � α
p

Z or k � 

α
p

Z, where α is a sufficiently small constant. 

Case I: k � α
p

Z. By Lemma 4, the data structure 
associated with the k-merger requires at most O(k2) � 

O(Z) contiguous memory locations, and therefore it fits 
into cache. The k-merger has k input queues from 
which it loads O(k3) elements. Let ri be the number 
of elements extracted from the ith input queue. Since 
k � α

p
Z and the tall-cache assumption (1) implies that 

L � O(
p

Z), there are at least Z�L � Ω(k) cache lines 
available for the input buffers. Lemma 5 applies, whence 
the total number of cache misses for accessing the input 
queues is 

k 

∑ O(1 + ri�L) � O(k+ k3�L) : 

i�1 

Similarly, Lemma 4 implies that the cache complexity 
of writing the output queue is O(1 + k3�L). Finally, the 
algorithm incurs O(1 + k2�L) cache misses for touching 
its internal data structures. The total cache complexity is 
therefore QM(k) � O(1 + k+ k3�L). 

Case I: k � α
p

Z. We prove by induction on k that 
whenever k � α

p
Z, we  have  

QM(k) � ck3 logZ k�L� A(k) � (12) 

where A(k) � k(1 + 2c logZ k�L) � o(k3). This particular 
value of A(k) will be justified at the end of the analysis. 

The base case of the induction consists of values of 
k such that αZ1�4 � k � α

p
Z. (It is not sufficient only 

to consider k � Θ(
p

Z), since k can become as small as 
Θ(Z1�4) in the recursive calls.) The analysis of the first 
case applies, yielding QM(k) � O(1 + k + k3�L). Be­
cause k2 � α

p
Z � Ω(L) and k � Ω(1), the last term 

dominates, which implies QM(k) � O(k3�L). Conse­
quently, a big enough value of c can be found that satis­
fies Inequality (12). 

For the inductive case, suppose that k � α
p

Z. The 
k-merger invokes the 

p
k-mergers recursively. Since 

αZ1�4 � 

p
k � k, the inductive hypothesis can be used to 

bound the number QM(
p

k) of cache misses incurred by 
the submergers. The “right” merger R is invoked exactly 
k3�2 times. The total number l of invocations of “left” 
mergers is bounded by l � k3�2 + 2

p
k. To see why, con­

sider that every invocation of a left merger puts k3�2 el­
ements into some buffer. Since k3 elements are output 
and the buffer space is 2k2, the bound l � k3�2 + 2

p
k 

follows. 

Before invoking R, the algorithm must check every 
buffer to see whether it is empty. One such check re­
quires at most 

p
k cache misses, since there are 

p
k 

buffers. This check is repeated exactly k3�2 times, lead­
ing to at most k2 cache misses for all checks. These 
considerations lead to the recurrence � � 

QM(k) � 2k3�2 + 2
p

k QM(
p

k)+ k2 : 

Application of the inductive hypothesis and the choice 
A(k) � k(1 + 2c logZ k�L) yields Inequality (12) as fol­
lows: � � 

QM(k) � 2k3�2 + 2
p

k QM(
p

k)+ k2 

" # � � ck3�2 logZ k � A(
p

k) + k2� 2 k3�2 + 

p
k 

2L 

� ck3 logZ k�L+ k2 (1 + c logZ k�L) � � 

� 2k3�2 + 2
p

k A(
p

k) 

� ck3 logZ k�L� A(k) : 

Theorem 7 To sort n elements, funnelsort incurs O(1 + 

(n�L)(1 + logZ n)) cache misses. 

Proof. If n � αZ for a small enough constant α, then 
the algorithm fits into cache. To see why, observe that 
only one k-merger is active at any time. The biggest 
k-merger is the top-level n1�3-merger, which requires 
O(n2�3) � O(n) space. The algorithm thus can operate 
in O(1 + n�L) cache misses. 

If N � αZ, we have the recurrence 
2�3 QM(n1�3Q(n) � n1�3Q(n )+ ) : 

By Lemma 6, we have QM(n1�3) � O(1 + n1�3 + n�L+ 

n logZ n�L). 
By the tall-cache assumption (1), we have n�L � 

Ω(n1�3). Moreover, we also have n1�3 � Ω(1) and lg n � 

Ω(lg Z). Consequently, QM(n1�3) � O(n logZ n�L) 

holds, and the recurrence simplifies to 

Q(n) � n1�3Q(n2�3)+ O(n logZ n�L) : 

The result follows by induction on n. 
This upper bound matches the lower bound stated 

by the next theorem, proving that funnelsort is cache-
optimal. 

Theorem 8 The cache complexity of any sorting algo­
rithm is Q(n) � Ω(1 +( n�L)(1 + logZ n)). 

Proof. Aggarwal and Vitter [3] show that there is an 
Ω((n�L) logZ�L(n�Z)) bound on the number of cache 
misses made by any sorting algorithm on their “out-of-
core” memory model, a bound that extends to the ideal-
cache model. The theorem can be proved by apply­
ing the tall-cache assumption Z � Ω(L2) and the trivial 
lower bounds of Q(n) � Ω(1) and Q(n) � Ω(n�L). 



5. Distribution sort 

In this section, we describe another cache-oblivious op­
timal sorting algorithm based on distribution sort. Like 
the funnelsort algorithm from Section 4, the distribution-
sorting algorithm uses O(n lg n) work to sort n elements, 
and it incurs O(1 +( n�L)( 1 + logZ n)) cache misses. 
Unlike previous cache-efficient distribution-sorting al­
gorithms [1, 3, 25, 34, 36], which use sampling or other 
techniques to find the partitioning elements before the 
distribution step, our algorithm uses a “bucket splitting” 
technique to select pivots incrementally during the dis­
tribution step. 

Given an array A (stored in contiguous locations) of 
length n, the cache-oblivious distribution sort operates 
as follows: 

1. Partition A into 
p

n contiguous subarrays of size p
n. Recursively sort each subarray. 

2. Distribute	 the sorted subarrays into q buckets 
B1� : : : � Bq of size n1� : : : � nq, respectively, such that 

1. max fx j x � Big � min fx j x � Bi+1g for i � 

1� 2� : : : � q� 1. 
2.	 ni � 2

p
n for i � 1� 2� : : : � q. 

(See below for details.) 

3. Recursively sort each bucket. 

4. Copy the sorted buckets to array A. 

A stack-based memory allocator is used to exploit spatial 
locality. 

The goal of Step 2 is to distribute the sorted subarrays 
of A into q buckets B1� B2� : : : � Bq. The algorithm main­
tains two invariants. First, at any time each bucket holds 
at most 2

p
n elements, and any element in bucket Bi is 

smaller than any element in bucket Bi+1. Second, every 
bucket has an associated pivot. Initially, only one empty 
bucket exists with pivot ∞. 

The idea is to copy all elements from the subarrays 
into the buckets while maintaining the invariants. We 
keep state information for each subarray and bucket. The 
state of a subarray consists of the index next of the next 
element to be read from the subarray and the bucket 
number bnum where this element should be copied. By 
convention, bnum � ∞ if all elements in a subarray have 
been copied. The state of a bucket consists of the pivot 
and the number of elements currently in the bucket. 

We would like to copy the element at position next of 
a subarray to bucket bnum. If this element is greater than 
the pivot of bucket bnum, we would increment bnum un­
til we find a bucket for which the element is smaller than 
the pivot. Unfortunately, this basic strategy has poor 
caching behavior, which calls for a more complicated 
procedure. 

The distribution step is accomplished by the recur­
sive procedure DISTRIBUTE(i� j� m) which distributes 
elements from the ith through (i + m � 1)th subarrays 
into buckets starting from B j. Given the precondition 
that each subarray i� i+ 1� : : : � i+ m� 1 has its bnum � j, 
the execution of DISTRIBUTE(i� j� m) enforces the post-
condition that subarrays i� i+ 1� : : : � i+ m� 1 have their 
bnum � j + m. Step 2 of the distribution sort invokes 
DISTRIBUTE(1� 1� 

p
n). The following is a recursive im­

plementation of DISTRIBUTE: 

DISTRIBUTE(i� j� m) 

1	 if m � 1 
2 then COPYELEMS(i� j) 

3 else DISTRIBUTE(i� j� m�2) 

4 DISTRIBUTE(i+ m�2� j� m�2) 

5 DISTRIBUTE(i� j+ m�2� m�2) 

6 DISTRIBUTE(i+ m�2� j+ m�2� m�2) 

In the base case, the procedure COPYELEMS(i� j) 

copies all elements from subarray i that belong to 
bucket j. If bucket j has more than 2

p
n elements af­

ter the insertion, it can be split into two buckets of size 
at least 

p
n. For the splitting operation, we use the deter­

ministic median-finding algorithm [14, p. 189] followed 
by a partition. 

Lemma 9 The median of n elements can be found 
cache-obliviously using O(n) work and incurring O(1 + 

n�L) cache misses. 

Proof. See [14, p. 189] for the linear-time median find­
ing algorithm and the work analysis. The cache com­
plexity is given by the same recurrence as the work com­
plexity with a different base case. 8 � 

O(1 + m�L) if m � αZ � 

Q(m) � 

Q(dm�5e)+ Q(7m�10 + 6) otherwise ; : + O(1 + m�L) 

where α is a sufficiently small constant. The result fol­
lows. 

In our case, we have buckets of size 2
p

n+ 1. In ad­
dition, when a bucket splits, all subarrays whose bnum 
is greater than the bnum of the split bucket must have 
their bnum’s incremented. The analysis of DISTRIBUTE 

is given by the following lemma. 

Lemma 10 The distribution step involves O(n) work, 
incurs O(1 + n�L) cache misses, and uses O(n) stack 
space to distribute n elements. 

Proof. In order to simplify the analysis of the work 
used by DISTRIBUTE, assume that COPYELEMS uses 
O(1) work for procedural overhead. We will account for 
the work due to copying elements and splitting of buck­
ets separately. The work of DISTRIBUTE is described by 



the recurrence 

T (c) � 4T (c�2)+ O(1) : 

It follows that T (c) � O(c2), where c � 

p
n initially. The 

work due to copying elements is also O(n). 
The total number of bucket splits is at most 

p
n. To  

see why, observe that there are at most 
p

n buckets at the 
end of the distribution step, since each bucket contains at 
least 

p
n elements. Each split operation involves O(

p
n) 

work and so the net contribution to the work is O(n). 
Thus, the total work used by DISTRIBUTE is W (n) � 

O(T (
p

n)) + O(n)+ O(n) � O(n). 
For the cache analysis, we distinguish two cases. Let 

α be a sufficiently small constant such that the stack 
space used fits into cache. 
Case I, n � αZ: The input and the auxiliary space of 
size O(n) fit into cache using O(1 + n�L) cache lines. 
Consequently, the cache complexity is O(1 + n�L). 
Case II, n � αZ: Let R(c� m) denote the cache misses 
incurred by an invocation of DISTRIBUTE(a� b� c) that 
copies m elements from subarrays to buckets. We first 
prove that R(c� m) � O(L+ c2�L+ m�L), ignoring the 
cost splitting of buckets, which we shall account for sep­
arately. We argue that R(c� m) satisfies the recurrence 8 

O(L+ m�L) if c � αL � � 

R(c� m) � 

4 :	 ∑ R(c�2� mi) otherwise ; 
(13) 

i�1 

where ∑i
4 
�1 mi � m, whose solution is R(c� m) � O(L+ 

c2�L+ m�L). The recursive case c � αL follows im­
mediately from the algorithm. The base case c � 

αL can be justified as follows. An invocation of 
DISTRIBUTE(a� b� c) operates with c subarrays and c 
buckets. Since there are Ω(L) cache lines, the cache can 
hold all the auxiliary storage involved and the currently 
accessed element in each subarray and bucket. In this 
case there are O(L+ m�L) cache misses. The initial ac­
cess to each subarray and bucket causes O(c) � O(L) 

cache misses. Copying the m elements to and from con­
tiguous locations causes O(1 + m�L) cache misses. 

We still need to account for the cache misses caused 
by the splitting of buckets. Each split causes O(1 + p

n�L) cache misses due to median finding (Lemma 9) 
and partitioning of 

p
n contiguous elements. An addi­

tional O(1 + 

p
n�L) misses are incurred by restoring the 

cache. As proven in the work analysis, there are at most p
n split operations. By adding R(

p
n� n) to the split 

complexity, we conclude that the total cache complexity 
of the distribution step is O(L+ n�L+ 

p
n(1 + 

p
n�L)) � 

O(n�L). 

The analysis of distribution sort is given in the next 
theorem. The work and cache complexity match lower 
bounds specified in Theorem 8. 

Theorem 11 Distribution sort uses O(n lg n) work and 
incurs O(1 +( n�L)( 1 + logZ n)) cache misses to sort n 
elements. 

Proof. The work done by the algorithm is given by 
q 

W (n) � 

p
nW (

p
n)+ ∑W (ni)+ O(n) � 

i�1 

where each ni � 2
p

n and ∑ni � n. The solution to this 
recurrence is W (n) � O(n lg n). 

The space complexity of the algorithm is given by 

S(n) � S(2
p

n)+ O(n) � 

where the O(n) term comes from Step 2. The solution to 
this recurrence is S(n) � O(n). 

The cache complexity of distribution sort is described 
by the recurrence 8 � 

O(1 + n�L) if n � αZ � 

Q(n) � p
nQ(

p
n)+ ∑q

i�1 Q(ni) otherwise ; : +O(1 + n�L) 

where α is a sufficiently small constant such that the 
stack space used by a sorting problem of size αZ, in­
cluding the input array, fits completely in cache. The 
base case n � αZ arises when both the input array A 
and the contiguous stack space of size S(n) � O(n) fit 
in O(1 + n�L) cache lines of the cache. In this case, 
the algorithm incurs O(1 + n�L) cache misses to touch 
all involved memory locations once. In the case where 
n � αZ, the recursive calls in Steps 1 and 3 cause 
Q(
p

n) + ∑i
q 
�1 Q(ni) cache misses and O(1 + n�L) is 

the cache complexity of Steps 2 and 4, as shown by 
Lemma 10. The theorem follows by solving the recur­
rence. 

6.	 Theoretical justifications for the ideal-
cache model 

How reasonable is the ideal-cache model for algorithm 
design? The model incorporates four major assumptions 
that deserve scrutiny: 
� optimal replacement, 
� exactly two levels of memory, 
� automatic replacement, 
� full associativity. 

Designing algorithms in the ideal-cache model is easier 
than in models lacking these properties, but are these 
assumptions too strong? In this section we show that 
cache-oblivious algorithms designed in the ideal-cache 
model can be efficiently simulated by weaker models. 

The first assumption that we shall eliminate is that 
of optimal replacement. Our strategy for the simula­
tion is to use an LRU (least-recently used) replacement 
strategy [20, p. 378] in place of the optimal and om­
niscient replacement strategy. We start by proving a 



lemma that bounds the effectiveness of the LRU simu­
lation. We then show that algorithms whose complex­
ity bounds satisfy a simple regularity condition (includ­
ing all algorithms heretofore presented) can be ported to 
caches incorporating an LRU replacement policy. 

Lemma 12 Consider an algorithm that causes 
Q�(n; Z� L) cache misses on a problem of size n using 
a (Z� L) ideal cache. Then, the same algorithm incurs 
Q(n; Z� L) � 2Q�(n; Z�2� L) cache misses on a (Z� L) 

cache that uses LRU replacement. 

Proof. Sleator and Tarjan [30] have shown that the 
cache misses on a (Z� L) cache using LRU replacement 
are (Z�L)�((Z � Z�)�L + 1)-competitive with optimal 
replacement on a (Z�� L) ideal cache if both caches start 
empty. It follows that the number of misses on a (Z� L) 

LRU-cache is at most twice the number of misses on a 
(Z�2� L) ideal-cache. 

Corollary 13 For any algorithm whose cache-
complexity bound Q(n; Z� L) in the ideal-cache model 
satisfies the regularity condition 

Q(n; Z� L) � O(Q(n;2Z� L)) � (14) 

the number of cache misses with LRU replacement is 
Θ(Q(n; Z� L)). 

Proof. Follows directly from (14) and Lemma 12. 

The second assumption we shall eliminate is the as­
sumption of only two levels of memory. Although mod­
els incorporating multiple levels of caches may be nec­
essary to analyze some algorithms, for cache-oblivious 
algorithms, analysis in the two-level ideal-cache model 
suffices. Specifically, optimal cache-oblivious algo­
rithms also perform optimally in computers with mul­
tiple levels of LRU caches. We assume that the caches 
satisfy the inclusion property [20, p. 723], which says 
that the values stored in cache i are also stored in cache 
i+ 1 (where cache 1 is the cache closest to the proces­
sor). We also assume that if two elements belong to 
the same cache line at level i, then they belong to the 
same line at level i+ 1. Moreover, we assume that cache 
i+ 1 has strictly more cache lines than cache i. These as­
sumptions ensure that cache i+ 1 includes the contents 
of cache i plus at least one more cache line. 

The multilevel LRU cache operates as follows. A hit 
on an element in cache i is served by cache i and is not 
seen by higher-level caches. We consider a line in cache 
i+ 1 to be  marked if any element stored on the line be­
longs to cache i. When cache i misses on an access, it 
recursively fetches the needed line from cache i+ 1, re­
placing the least-recently accessed unmarked cache line. 
The replaced cache line is then brought to the front of 
cache (i+ 1)’s LRU list. Because marked cache lines are 

never replaced, the multilevel cache maintains the inclu­
sion property. The next lemma, whose proof is omitted, 
asserts that even though a cache in a multilevel model 
does not see accesses that hit at lower levels, it neverthe­
less behaves like the first-level cache of a simple two-
level model, which sees all the memory accesses. 

Lemma 14 A (Zi� Li)-cache at a given level i of a mul­
tilevel LRU model always contains the same cache lines 
as a simple (Zi� Li)-cache managed by LRU that serves 
the same sequence of memory accesses. 

Lemma 15 An optimal cache-oblivious algorithm 
whose cache complexity satisifies the regularity condi­
tion (14) incurs an optimal number of cache misses on 
each level3 of a multilevel cache with LRU replacement. 

Proof. Let cache i in the multilevel LRU model be a 
(Zi� Li) cache. Lemma 14 says that the cache holds ex­
actly the same elements as a (Zi� Li) cache in a two-level 
LRU model. From Corollary 13, the cache complex­
ity of a cache-oblivious algorithm working on a (Zi� Li) 

LRU cache lower-bounds that of any cache-aware algo­
rithm for a (Zi� Li) ideal cache. A (Zi� Li) level in a mul­
tilevel cache incurs at least as many cache misses as a 
(Zi� Li) ideal cache when the same algorithm is executed. 

Finally, we remove the two assumptions of automatic 
replacement and full associativity. Specifically, we shall 
show that a fully associative LRU cache can be main­
tained in ordinary memory with no asymptotic loss in 
expected performance. 

Lemma 16 A (Z� L) LRU-cache can be maintained us­
ing O(Z) memory locations such that every access to a 
cache line in memory takes O(1) expected time. 

Proof. Given the address of the memory location to 
be accessed, we use a 2-universal hash function [24, 
p. 216] to maintain a hash table of cache lines present 
in the memory. The Z�L entries in the hash table 
point to linked lists in a heap of memory that contains 
Z�L records corresponding to the cache lines. The 2­
universal hash function guarantees that the expected size 
of a chain is O(1). All records in the heap are organized 
as a doubly linked list in the LRU order. Thus, the LRU 
policy can be implemented in O(1) expected time using 
O(Z�L) records of O(L) words each. 

3Alpern, Carter and Feig [5] show that optimality on each level of 
memory in the UMH model does not necessarily imply global optimal­
ity. The UMH model incorporates a single cost measure that combines 
the costs of work and cache faults at each of the levels of memory. By 
analyzing the levels independently, our multilevel ideal-cache model 
remains agnostic about the various schemes by which work and cache 
faults might be combined. 
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Theorem 17 An optimal cache-oblivious algorithm 
whose cache-complexity bound satisfies the regularity 
condition (14) can be implemented optimally in expec­
tation in multilevel models with explicit memory man­
agement. 

Proof. Combine Lemma 15 and Lemma 16. 

Corollary 18 The recursive cache-oblivious algorithms 
for matrix multiplication, matrix transpose, FFT, and 
sorting are optimal in multilevel models with explicit 
memory management. 

Proof. Their complexity bounds satisfy the regularity 
condition (14). 

It can also be shown [26] that cache-oblivous algo­
rithms satisfying (14) are also optimal (in expectation) 
in the previously studied SUMH [5, 34] and HMM [1] 
models. Thus, all the algorithmic results in this paper 
apply to these models, matching the best bounds previ­
ously achieved. 

Other simulation results can be shown. For example, 
by using the copying technique of [22], cache-oblivious 
algorithms for matrix multiplication and other problems 
can be designed that are provably optimal on direct-
mapped caches. 

7. Related work 
In this section, we discuss the origin of the notion of 
cache-obliviousness. We also give an overview of other 
hierarchical memory models. 

Our research group at MIT noticed as far back as 
1994 that divide-and-conquer matrix multiplication was 
a cache-optimal algorithm that required no tuning, but 
we did not adopt the term “cache-oblivious” until 1997. 
This matrix-multiplication algorithm, as well as a cache-
oblivious algorithm for LU-decomposition without piv­
oting, eventually appeared in [9]. Shortly after leaving 
our research group, Toledo [32] independently proposed 
a cache-oblivious algorithm for LU-decomposition with 
pivoting. For n � n matrices, Toledo’s algorithm uses 
Θ(n ) work and incurs Θ(1 + n2�L + n3�L

p
Z) cache 

misses. More recently, our group has produced an FFT 
library called FFTW [18], which in its most recent incar­
nation [17], employs a register-allocation and schedul­
ing algorithm inspired by our cache-oblivious FFT al­
gorithm. The general idea that divide-and-conquer en­
hances memory locality has been known for a long 
time [29]. 

Previous theoretical work on understanding hierar­
chical memories and the I/O-complexity of algorithms 
has been studied in cache-aware models lacking an auto­
matic replacement strategy, although [10, 28] are recent 
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Figure 4: Average time to transpose an N � N matrix, 
divided by N2. 

exceptions. Hong and Kung [21] use the red-blue peb­
ble game to prove lower bounds on the I/O-complexity 
of matrix multiplication, FFT, and other problems. The 
red-blue pebble game models temporal locality using 
two levels of memory. The model was extended by 
Savage [27] for deeper memory hierarchies. Aggarwal 
and Vitter [3] introduced spatial locality and investigated 
a two-level memory in which a block of P contiguous 
items can be transferred in one step. They obtained tight 
bounds for matrix multiplication, FFT, sorting, and other 
problems. The hierarchical memory model (HMM) by 
Aggarwal et al. [1] treats memory as a linear array, 
where the cost of an access to element at location x is 
given by a cost function f (x). The BT model [2] extends 
HMM to support block transfers. The UMH model by 
Alpern et al. [5] is a multilevel model that allows I/O at 
different levels to proceed in parallel. Vitter and Shriver 
introduce parallelism, and they give algorithms for ma­
trix multiplication, FFT, sorting, and other problems in 
both a two-level model [35] and several parallel hierar­
chical memory models [36]. Vitter [33] provides a com­
prehensive survey of external-memory algorithms. 

8. Conclusion 
The theoretical work presented in this paper opens two 
important avenues for future research. The first is to 
determine the range of practicality of cache-oblivious 
algorithms, or indeed, of any algorithms developed in 
the ideal-cache model. The second is to resolve, from a 
complexity-theoretic point of view, the relative strengths 
of cache-oblivious and cache-aware algorithms. To con­
clude, we discuss each of these avenues in turn. 

Figure 4 compares per-element time to transpose a 
matrix using the naive iterative algorithm employing a 
doubly nested loop with the recursive cache-oblivious 
REC-TRANSPOSE algorithm from Section 3. The two 
algorithms were evaluated on a 450 megahertz AMD 
K6III processor with a 32-kilobyte 2-way set-associative 
L1 cache, a 64-kilobyte 4-way set-associative L2 cache, 
and a 1-megabyte L3 cache of unknown associativ­
ity, all with 32-byte cache lines. The code for REC­
TRANSPOSE was the same as presented in Section 3, ex­
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Figure 5: Average time taken to multiply two N � N 
matrices, divided by N3. 

cept that the divide-and-conquer structure was modified 
to produce exact powers of 2 as submatrix sizes wher­
ever possible. In addition, the base cases were “coars­
ened” by inlining the recursion near the leaves to in­
crease their size and overcome the overhead of proce­
dure calls. (A good research problem is to determine 
an effective compiler strategy for coarsening base cases 
automatically.) 

Although these results must be considered prelimi­
nary, Figure 4 strongly indicates that the recursive al­
gorithm outperforms the iterative algorithm throughout 
the range of matrix sizes. Moreover, the iterative al­
gorithm behaves erratically, apparently due to so-called 
“conflict” misses [20, p. 390], where limited cache asso­
ciativity interacts with the regular addressing of the ma­
trix to cause systematic interference. Blocking the itera­
tive algorithm should help with conflict misses [22], but 
it would make the algorithm cache aware. For large ma­
trices, the recursive algorithm executes in less than 70% 
of the time used by the iterative algorithm, even though 
the transpose problem exhibits no temporal locality. 

Figure 5 makes a similar comparison between the 
naive iterative matrix-multiplication algorithm, which 
uses three nested loops, with the O(n3)-work recur­
sive REC-MULT algorithm described in Section 2. This 
problem exhibits a high degree of temporal locality, 
which REC-MULT exploits effectively. As the figure 
shows, the average time used per integer multiplication 
in the recursive algorithm is almost constant, which for 
large matrices, is less than 50% of the time used by the 
iterative variant. A similar study for Jacobi multipass 
filters can be found in [26]. 

Several researchers [12, 16] have also observed that 
recursive algorithms exhibit performance advantages 
over iterative algorithms for computers with caches. A 
comprehensive empirical study has yet to be done, how­
ever. Do cache-oblivious algorithms perform nearly as 
well as cache-aware algorithms in practice, where con­
stant factors matter? Does the ideal-cache model cap­
ture the substantial caching concerns for an algorithms 
designer? 

An anecdotal affirmative answer to these questions is 
exhibited by the popular FFTW library [17, 18], which 

uses a recursive strategy to exploit caches in Fourier 
transform calculations. FFTW’s code generator pro­
duces straight-line “codelets,” which are coarsened base 
cases for the FFT algorithm. Because these codelets are 
cache oblivious, a C compiler can perform its register 
allocation efficiently, and yet the codelets can be gen­
erated without knowing the number of registers on the 
target architecture. 

To close, we mention two theoretical avenues 
that should be explored to determine the complexity-
theoretic relationship between cache-oblivious algo­
rithms and cache-aware algorithms. 

Separation: Is there a gap in asymptotic complexity 
between cache-aware and cache-oblivious algorithms? 
It appears that cache-aware algorithms should be able to 
use caches better than cache-oblivious algorithms, since 
they have more knowledge about the system on which 
they are running. Do there exist problems for which this 
advantage is asymptotically significant, for example an 
Ω(lg Z) advantage? Bilardi and Peserico [8] have re­
cently taken some steps in proving a separation. 

Simulation: Is there a limit as to how much better a 
cache-aware algorithm can be than a cache-oblivious 
algorithm for the same problem? That is, given a class 
of optimal cache-aware algorithms to solve a single 
problem, can we construct a good cache-oblivious al­
gorithm that solves the same problem with only, for 
example, O(lg Z) loss of efficiency? Perhaps simula­
tion techniques can be used to convert a class of effi­
cient cache-aware algorithms into a comparably efficient 
cache-oblivious algorithm. 
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