
Cache-Oblivious Algorithms
EXTENDED ABSTRACT

Matteo Frigo Charles E. Leiserson Harald Prokop Sridhar Ramachandran
MIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139

Abstract This paper presents asymptotically optimal algo­
rithms for rectangular matrix transpose, FFT, and sorting on
computers with multiple levels of caching. Unlike previous
optimal algorithms, these algorithms are cache oblivious: no
variables dependent on hardware parameters, such as cache
size and cache-line length, need to be tuned to achieve opti­
mality. Nevertheless, these algorithms use an optimal amount
of work and move data optimally among multiple levels of
cache. For a cache with size Z and cache-line length L where
Z � Ω(L2) the number of cache misses for an m � n ma­
trix transpose is Θ(1 + mn�L). The number of cache misses
for either an n-point FFT or the sorting of n numbers is
Θ(1 +(n�L)(1 + logZ n)). We also give an Θ(mnp)-work al­
gorithm to multiply an m � n matrix by an n � p matrix that
incurs Θ(1 +(mn + np + mp)�L+ mnp�L

p
Z) cache faults.

We introduce an “ideal-cache” model to analyze our algo­
rithms. We prove that an optimal cache-oblivious algorithm
designed for two levels of memory is also optimal for multi­
ple levels and that the assumption of optimal replacement in
the ideal-cache model can be simulated efficiently by LRU re­
placement. We also provide preliminary empirical results on
the effectiveness of cache-oblivious algorithms in practice.

1. Introduction
Resource-oblivious algorithms that nevertheless use re­
sources efficiently offer advantages of simplicity and
portability over resource-aware algorithms whose re­
source usage must be programmed explicitly. In this
paper, we study cache resources, specifically, the hier­
archy of memories in modern computers. We exhibit
several “cache-oblivious” algorithms that use cache as
effectively as “cache-aware” algorithms.

Before discussing the notion of cache obliviousness,
we first introduce the (Z� L) ideal-cache model to study
the cache complexity of algorithms. This model, which
is illustrated in Figure 1, consists of a computer with a
two-level memory hierarchy consisting of an ideal (data)
cache of Z words and an arbitrarily large main mem­
ory. Because the actual size of words in a computer is
typically a small, fixed size (4 bytes, 8 bytes, etc.), we

This research was supported in part by the Defense Advanced
Research Projects Agency (DARPA) under Grant F30602-97-1-0270.
Matteo Frigo was supported in part by a Digital Equipment Corpora­
tion fellowship.

Main
organized by Memory

Q
cache
misses

Cache

Z�L

Lines
L

CPU

W

optimal replacement
strategy

Cache lines

of length

work

Figure 1: The ideal-cache model

shall assume that word size is constant; the particular
constant does not affect our asymptotic analyses. The
cache is partitioned into cache lines, each consisting of
L consecutive words which are always moved together
between cache and main memory. Cache designers typ­
ically use L � 1, banking on spatial locality to amortize
the overhead of moving the cache line. We shall gener­
ally assume in this paper that the cache is tall:

Z � Ω(L2) � (1)

which is usually true in practice.
The processor can only reference words that reside

in the cache. If the referenced word belongs to a line
already in cache, a cache hit occurs, and the word is
delivered to the processor. Otherwise, a cache miss oc­
curs, and the line is fetched into the cache. The ideal
cache is fully associative [20, Ch. 5]: cache lines can be
stored anywhere in the cache. If the cache is full, a cache
line must be evicted. The ideal cache uses the optimal
off-line strategy of replacing the cache line whose next
access is furthest in the future [7], and thus it exploits
temporal locality perfectly.

Unlike various other hierarchical-memory models
[1, 2, 5, 8] in which algorithms are analyzed in terms of
a single measure, the ideal-cache model uses two mea­
sures. An algorithm with an input of size n is measured
by its work complexity W (n)—its conventional running
time in a RAM model [4]—and its cache complexity
Q(n; Z� L)—the number of cache misses it incurs as a

function of the size Z and line length L of the ideal cache.
When Z and L are clear from context, we denote the
cache complexity simply as Q(n) to ease notation.

We define an algorithm to be cache aware if it con­
tains parameters (set at either compile-time or runtime)
that can be tuned to optimize the cache complexity for
the particular cache size and line length. Otherwise, the
algorithm is cache oblivious. Historically, good perfor­
mance has been obtained using cache-aware algorithms,
but we shall exhibit several optimal1 cache-oblivious al­
gorithms.

To illustrate the notion of cache awareness, consider
the problem of multiplying two n � n matrices A and
B to produce their n � n product C. We assume that
the three matrices are stored in row-major order, as
shown in Figure 2(a). We further assume that n is
“big,” i.e., n � L, in order to simplify the analysis. The
conventional way to multiply matrices on a computer
with caches is to use a blocked algorithm [19, p. 45].
The idea is to view each matrix M as consisting of
(n�s) � (n�s) submatrices Mi j (the blocks), each of
which has size s � s, where s is a tuning parame­
ter. The following algorithm implements this strategy:

BLOCK-MULT(A� B�C� n)

1 for i� 1 to n�s
2 do for j� 1 to n�s
3 do for k � 1 to n�s
4 do ORD-MULT(Aik� Bk j�Ci j� s)

The ORD-MULT(A� B� C� s) subroutine computes
C � C+ AB on s� s matrices using the ordinary O(s3)

algorithm. (This algorithm assumes for simplicity that
s evenly divides n, but in practice s and n need have no
special relationship, yielding more complicated code in
the same spirit.)

Depending on the cache size of the machine on which
BLOCK-MULT is run, the parameter s can be tuned to
make the algorithm run fast, and thus BLOCK-MULT is
a cache-aware algorithm. To minimize the cache com­
plexity, we choose s to be the largest value such that
the three s � s submatrices simultaneously fit in cache.
An s� s submatrix is stored on Θ(s+ s2�L) cache lines.
From the tall-cache assumption (1), we can see that
s � Θ(

p
Z). Thus, each of the calls to ORD-MULT runs

with at most Z�L � Θ(s2�L) cache misses needed to
bring the three matrices into the cache. Consequently,
the cache complexity of the entire algorithm is Θ(1 +

n2�L+(n�
p

Z)3(Z�L)) � Θ(1 + n2�L+ n3�L
p

Z), since
the algorithm has to read n2 elements, which reside on � �

n2�L cache lines.
The same bound can be achieved using a simple

1For simplicity in this paper, we use the term “optimal” as a syn­
onym for “asymptotically optimal,” since all our analyses are asymp­
totic.

cache-oblivious algorithm that requires no tuning pa­
rameters such as the s in BLOCK-MULT. We present
such an algorithm, which works on general rectangular
matrices, in Section 2. The problems of computing a
matrix transpose and of performing an FFT also suc­
cumb to remarkably simple algorithms, which are de­
scribed in Section 3. Cache-oblivious sorting poses a
more formidable challenge. In Sections 4 and 5, we
present two sorting algorithms, one based on mergesort
and the other on distribution sort, both of which are op­
timal in both work and cache misses.

The ideal-cache model makes the perhaps-
questionable assumptions that there are only two
levels in the memory hierarchy, that memory is man­
aged automatically by an optimal cache-replacement
strategy, and that the cache is fully associative. We
address these assumptions in Section 6, showing that
to a certain extent, these assumptions entail no loss
of generality. Section 7 discusses related work, and
Section 8 offers some concluding remarks, including
some preliminary empirical results.

2. Matrix multiplication
This section describes and analyzes a cache-oblivious al­
gorithm for multiplying an m� n matrix by an n� p ma­
trix cache-obliviously using Θ(mnp) work and incurring
Θ(m + n + p+(mn + np + mp)�L+ mnp�L

p
Z) cache

misses. These results require the tall-cache assumption
(1) for matrices stored in row-major layout format, but
the assumption can be relaxed for certain other layouts.
We also show that Strassen’s algorithm [31] for multi­
plying n� n matrices, which uses Θ(nlg 7) work2, incurs
Θ(1 + n2�L+ nlg7�L

p
Z) cache misses.

In [9] with others, two of the present authors analyzed
an optimal divide-and-conquer algorithm for n � n ma­
trix multiplication that contained no tuning parameters,
but we did not study cache-obliviousness per se. That
algorithm can be extended to multiply rectangular matri­
ces. To multiply a m� n matrix A and a n� p matrix B,
the REC-MULT algorithm halves the largest of the three
dimensions and recurs according to one of the following
three cases: � � � �

A1 B �

A1B
� (2)

A2 A2B � � ; � B1A1 A2 B2
� A1B1 + A2B2 � (3) ; � ; �

A B1 B2 �

AB1 AB2 : (4)

In case (2), we have m � max fn� pg. Matrix A is split
horizontally, and both halves are multiplied by matrix B.
In case (3), we have n � max fm� pg. Both matrices are

2We use the notation lg to denote log2.

8

split, and the two halves are multiplied. In case (4), we
have p � max fm� ng. Matrix B is split vertically, and
each half is multiplied by A. For square matrices, these
three cases together are equivalent to the recursive mul­
tiplication algorithm described in [9]. The base case oc­
curs when m � n � p � 1, in which case the two ele­
ments are multiplied and added into the result matrix.

Although this straightforward divide-and-conquer al­
gorithm contains no tuning parameters, it uses cache op­
timally. To analyze the REC-MULT algorithm, we as­
sume that the three matrices are stored in row-major or­
der, as shown in Figure 2(a). Intuitively, REC-MULT

uses the cache effectively, because once a subproblem
fits into the cache, its smaller subproblems can be solved
in cache with no further cache misses.

Theorem 1 The REC-MULT algorithm uses Θ(mnp)

work and incurs Θ(m + n + p + (mn + np + mp)�L +

mnp�L
p

Z) cache misses when multiplying an m� n ma­
trix by an n� p matrix.

Proof. It can be shown by induction that the work of
REC-MULT is Θ(mnp). To analyze the cache misses, let
α � 0 be the largest constant sufficiently small that three

�submatrices of sizes m� � n , n� � p� , and m� � p� , where
�max fm�� n�� p g � α

p
Z, all fit completely in the cache.

We distinguish four cases depending on the initial size

of the matrices.

Case I: m� n� p � α

p
Z. This case is the most intuitive.

The matrices do not fit in cache, since all dimensions are

“big enough.” The cache complexity can be described

by the recurrence

Q(m� n� p) � (5)

�

Θ((mn + np + mp)�L) if m� n� p � [α
p

Z�2� α
p

Z] � � � 2Q(m�2� n� p)+ O(1) ow. if m � n and m � p �

�
2Q(m� n�2� p)+ O(1) ow. if n � m and n � p � � :

2Q(m� n� p�2)+ O(1) otherwise :

The base case arises as soon as all three submatrices fit
in cache. The total number of lines used by the three
submatrices is Θ((mn + np + mp)�L). The only cache
misses that occur during the remainder of the recursion
are the Θ((mn + np + mp)�L) cache misses required to
bring the matrices into cache. In the recursive cases,
when the matrices do not fit in cache, we pay for the
cache misses of the recursive calls, which depend on the
dimensions of the matrices, plus O(1) cache misses for
the overhead of manipulating submatrices. The solution
to this recurrence is Q(m� n� p) � Θ(mnp�L

p
Z).

Case II: (m � α
p

Z and n� p � α
p

Z) or (n � α
p

Z and
m� p� α

p
Z) or (p� α

p
Z and m� n � α

p
Z). Here, we

shall present the case where m � α
p

Z and n� p � α
p

Z.
The proofs for the other cases are only small variations
of this proof. The REC-MULT algorithm always divides
n or p by 2 according to cases (3) and (4). At some point

(a) 00 77 (b)11 22 33 44 55 66
88 99 1010 1111 1212 1313 1414 1515
1616 1717 1818 1919 2020 2121 2222 2323
2424 2525 2626 2727 2828 2929 3030 3131
3232 3333 3434 3535 3636 3737 3838 3939
4040 4141 4242 4343 4444 4545 4646 4747
4848 4949 5050 5151 5252 5353 5454 5555
5656 5757 5858 5959 6060 6161 6262 6363

(c) 00 1616 1717 1818 1919 (d)11 22 33
44 55 66 77
88 99 1010 1111
1212 1313 1414 1515

2020 2121 2222 2323
2424 2525 2626 2727
2828 2929 3030 3131

3232 3333 3434 3535
3636 3737 3838 3939
4040 4141 4242 4343
4444 4545 4646 4747

4848 4949 5050 5151
5252 5353 5454 5555
5656 5757 5858 5959
6060 6161 6262 6363

00
11
22
33
44
55
66
77

88
99

1010
1111
1212
1313
1414
1515

1616
1717
1818
1919
2020
2121
2222
2323

2424
2525
2626
2727
2828
2929
3030
3131

3232
3333
3434
3535
3636
3737
3838
3939

4040
4141
4242
4343
4444
4545
4646
4747

4848
4949
5050
5151
5252
5353
5454
5555

5656
5757
5858
5959
6060
6161
6262
6363

00 11
22 33

44 55
66 77

88 99
1010 1111

1212 1313
1414 1515

1616 1717
1818 1919

2020 2121
2222 2323

2424 2525
2626 2727

2828 2929
3030 3131

3232 3333
3434 3535

3636 3737
3838 3939

4040 4141
4242 4343

4444 4545
4646 4747

4848 4949
5050 5151

5252 5353
5454 5555

5656 5757
5858 5959

6060 6161
6262 6363

Figure 2: Layout of a 16 � 16 matrix in (a) row ma­
jor, (b) column major, (c) 4 � 4-blocked, and (d) bit-
interleaved layouts.

in the recursion, both are small enough that the whole
problem fits into cache. The number of cache misses
can be described by the recurrence

Q(m� n� p) � (6) 8 �

Θ(1 + n+ np�L+ m) if n� p � [α
p

Z�2� α
p

Z] �

2Q(m� n�2� p)+ O(1) otherwise if n � p � :

2Q(m� n� p�2)+ O(1) otherwise ;

whose solution is Q(m� n� p) � Θ(np�L+ mnp�L
p

Z).

Case III: (n� p � α
p

Z and m � α
p

Z) or (m� p � α
p

Z
and n � α

p
Z) or (m� n � α

p
Z and p� α

p
Z). In each

of these cases, one of the matrices fits into cache, and
the others do not. Here, we shall present the case where
n� p � α

p
Z and m � α

p
Z. The other cases can be

proven similarly. The REC-MULT algorithm always di­
vides m by 2 according to case (2). At some point in the
recursion, m falls into the range α

p
Z�2 � m � α

p
Z,

and the whole problem fits in cache. The number cache
misses can be described by the recurrence

Q(m� n) � (7) �

Θ(1 + m) if m � [α
p

Z�2� α
p

Z] �

2Q(m�2� n� p)+ O(1) otherwise ;

whose solution is Q(m� n� p) � Θ(m+ mnp�L
p

Z).

Case IV: m� n� p � α
p

Z. From the choice of α, all
three matrices fit into cache. The matrices are stored
on Θ(1 + mn�L+ np�L+ mp�L) cache lines. Therefore,
we have Q(m� n� p) � Θ(1 +(mn + np + mp)�L).

We require the tall-cache assumption (1) in these
analyses, because the matrices are stored in row-major
order. Tall caches are also needed if matrices are stored

in column-major order (Figure 2(b)), but the assumption
that Z � Ω(L2) can be relaxed for certain other matrix
layouts. The s� s-blocked layout (Figure 2(c)), for some
tuning parameter s, can be used to achieve the same
bounds with the weaker assumption that the cache holds
at least some sufficiently large constant number of lines.
The cache-oblivious bit-interleaved layout (Figure 2(d))
has the same advantage as the blocked layout, but no
tuning parameter need be set, since submatrices of size
O(
p

L) � O(
p

L) are cache-obliviously stored on O(1)

cache lines. The advantages of bit-interleaved and re­
lated layouts have been studied in [11, 12, 16]. One of
the practical disadvantages of bit-interleaved layouts is
that index calculations on conventional microprocessors
can be costly, a deficiency we hope that processor archi­
tects will remedy.

For square matrices, the cache complexity Q(n) �

Θ(n+ n2�L+ n3�L
p

Z) of the REC-MULT algorithm is
the same as the cache complexity of the cache-aware
BLOCK-MULT algorithm and also matches the lower
bound by Hong and Kung [21]. This lower bound
holds for all algorithms that execute the Θ(n3) opera­
tions given by the definition of matrix multiplication

n

ci j � ∑ aikbk j :

k�1

No tight lower bounds for the general problem of matrix
multiplication are known.

By using an asymptotically faster algorithm, such as
Strassen’s algorithm [31] or one of its variants [37], both
the work and cache complexity can be reduced. When
multiplying n� n matrices, Strassen’s algorithm, which
is cache oblivious, requires only 7 recursive multiplica­
tions of n�2 � n�2 matrices and a constant number of
matrix additions, yielding the recurrence �

Θ(1 + n+ n2�L) if n2 � αZ �

(8)Q(n) �

7Q(n�2)+ O(n2�L) otherwise ;

where α is a sufficiently small constant. The solution to
this recurrence is Θ(n+ n2�L+ nlg7�L

p
Z).

3. Matrix transposition and FFT
This section describes a recursive cache-oblivious al­
gorithm for transposing an m � n matrix which uses
O(mn) work and incurs O(1 + mn�L) cache misses,
which is optimal. Using matrix transposition as a sub­
routine, we convert a variant [36] of the “six-step” fast
Fourier transform (FFT) algorithm [6] into an optimal
cache-oblivious algorithm. This FFT algorithm uses
O(n lg n) work and incurs O(1 +(n�L)(1 + logZ n))

cache misses.
The problem of matrix transposition is defined as fol­

lows. Given an m� n matrix stored in a row-major lay­
out, compute and store AT into an n � m matrix B also

stored in a row-major layout. The straightforward algo­
rithm for transposition that employs doubly nested loops
incurs Θ(mn) cache misses on one of the matrices when
m � Z�L and n � Z�L, which is suboptimal.

Optimal work and cache complexities can be ob­
tained with a divide-and-conquer strategy, however. If
n � m, the REC-TRANSPOSE algorithm partitions � �

B1A � (A1 A2) � B � B2

and recursively executes REC-TRANSPOSE(A1� B1) and
REC-TRANSPOSE(A2� B2). Otherwise, it divides matrix
A horizontally and matrix B vertically and likewise per­
forms two transpositions recursively. The next two lem­
mas provide upper and lower bounds on the performance
of this algorithm.

Lemma 2 The REC-TRANSPOSE algorithm involves
O(mn) work and incurs O(1 + mn�L) cache misses for
an m� n matrix.

Proof. That the algorithm does O(mn) work is straight­
forward. For the cache analysis, let Q(m� n) be the cache
complexity of transposing an m � n matrix. We as­
sume that the matrices are stored in row-major order, the
column-major layout having a similar analysis.

Let α be a constant sufficiently small such that two
submatrices of size m� n and n� m, where max fm� ng�

αL, fit completely in the cache even if each row is stored
in a different cache line. We distinguish the three cases.

Case I: max fm� ng � αL. Both the matrices fit in
O(1)+ 2mn�L lines. From the choice of α, the number
of lines required is at most Z�L. Therefore Q(m� n) �

O(1 + mn�L).

Case II: m � αL� n or n � αL � m. Suppose first that
m � αL � n. The REC-TRANSPOSE algorithm divides
the greater dimension n by 2 and performs divide and
conquer. At some point in the recursion, n falls into the
range αL�2 � n � αL, and the whole problem fits in
cache. Because the layout is row-major, at this point the
input array has n rows and m columns, and it is laid out
in contiguous locations, requiring at most O(1 + nm�L)

cache misses to be read. The output array consists of nm
elements in m rows, where in the worst case every row
lies on a different cache line. Consequently, we incur at
most O(m + nm�L) for writing the output array. Since
n � αL�2, the total cache complexity for this base case
is O(1 + m). These observations yield the recurrence �

O(1 + m) if n � [αL�2� αL] �
Q(m� n) � 2Q(m� n�2)+ O(1) otherwise ;

whose solution is Q(m� n) � O(1 + mn�L).
The case n � αL � m is analogous.

Case III: m� n � αL. As in Case II, at some point in the
recursion both n and m fall into the range [αL�2� αL].
The whole problem fits into cache and can be solved
with at most O(m+ n+ mn�L) cache misses. The cache
complexity thus satisfies the recurrence

Q(m� n) � 8 �	
O(m+ n+ mn�L) if m� n � [αL�2� αL] �

2Q(m�2� n)+ O(1) if m � n � : 2Q(m� n�2)+ O(1) otherwise;

whose solution is Q(m� n) � O(1 + mn�L).

Theorem 3 The REC-TRANSPOSE algorithm has opti­
mal cache complexity.

Proof. For an m� n matrix, the algorithm must write to
mn distinct elements, which occupy at least dmn�Le �

Ω(1 + mn�L) cache lines.

As an example of an application of this cache-
oblivious transposition algorithm, in the rest of this sec­
tion we describe and analyze a cache-oblivious algo­
rithm for computing the discrete Fourier transform of a
complex array of n elements, where n is an exact power
of 2. The basic algorithm is the well-known “six-step”
variant [6, 36] of the Cooley-Tukey FFT algorithm [13].
Using the cache-oblivious transposition algorithm, how­
ever, the FFT becomes cache-oblivious, and its perfor­
mance matches the lower bound by Hong and Kung [21].

Recall that the discrete Fourier transform (DFT) of
an array X of n complex numbers is the array Y given by

n�1

]ω�i jY [i] � ∑ X [j � (9)n
j�0

where ωn � e2π
p�1�n is a primitive nth root of unity,

and 0 � i� n. Many algorithms evaluate Equation (9) in
O(n lg n) time for all integers n [15]. In this paper, how­
ever, we assume that n is an exact power of 2, and we
compute Equation (9) according to the Cooley-Tukey al­
gorithm, which works recursively as follows. In the base
case where n � O(1), we compute Equation (9) directly.
Otherwise, for any factorization n � n1n2 of n, we have

Y [i1 + i2n1] �	 (10) "�	 ! #

n2�1 n1�1

∑ X [j1n2 + j2]ω�i1 j1 ω�i1 j2 ω�i2 j2 :∑ n1 n n2

j2 �0 j1�0

Observe that both the inner and outer summations in
Equation (10) are DFT’s. Operationally, the computa­
tion specified by Equation (10) can be performed by
computing n2 transforms of size n1 (the inner sum), mul­
tiplying the result by the factors ω�i1 j2 (called the twid­n
dle factors [15]), and finally computing n1 transforms of
size n2 (the outer sum).

We choose n1 to be 2dlg n�2e and n2 to be 2blg n�2c. The
recursive step then operates as follows:

1. Pretend that input is a row-major n1 � n2 matrix A.
Transpose A in place, i.e., use the cache-oblivious
REC-TRANSPOSE algorithm to transpose A onto an
auxiliary array B, and copy B back onto A. Notice
that if n1 � 2n2, we can consider the matrix to be
made up of records containing two elements.

2. At this stage, the inner sum corresponds to a DFT
of the n2 rows of the transposed matrix. Compute
these n2 DFT’s of size n1 recursively. Observe that,
because of the previous transposition, we are trans­
forming a contiguous array of elements.

3. Multiply A by the twiddle factors, which can be
computed on the fly with no extra cache misses.

4. Transpose A in place, so that the inputs to the next
stage are arranged in contiguous locations.

5. Compute n1 DFT’s of the rows of the matrix recur­
sively.

6. Transpose A in place so as to produce the correct
output order.

It can be proven by induction that the work com­
plexity of this FFT algorithm is O(n lg n). We now an­
alyze its cache complexity. The algorithm always op­
erates on contiguous data, by construction. Thus, by
the tall-cache assumption (1), the transposition oper­
ations and the twiddle-factor multiplication require at
most O(1 + n�L) cache misses. Thus, the cache com­
plexity satisfies the recurrence 8 �

O(1 + n�L)� if n � αZ �

Q(n) �

n1Q(n2) + n2Q(n1) otherwise ; (11) : +O(1 + n�L)

where α � 0 is a constant sufficiently small that a sub­
problem of size αZ fits in cache. This recurrence has
solution

Q(n) � O(1 +(n�L)(1 + logZ n)) �

which is optimal for a Cooley-Tukey algorithm, match­
ing the lower bound by Hong and Kung [21] when n is
an exact power of 2. As with matrix multiplication, no
tight lower bounds for cache complexity are known for
the general DFT problem.

4. Funnelsort
Cache-oblivious algorithms, like the familiar two-way
merge sort, are not optimal with respect to cache misses.
The Z-way mergesort suggested by Aggarwal and Vit­
ter [3] has optimal cache complexity, but although it ap­
parently works well in practice [23], it is cache aware.
This section describes a cache-oblivious sorting algo­
rithm called “funnelsort.” This algorithm has optimal

L1

k

R

Lpk

-merger

buffers

Figure 3: Illustration of a k-merger. A k-merger is built
recursively out of

p
k “left”

p
k-mergers L1, L2, : : : , Lp

k,
a series of buffers, and one “right”

p
k-merger R.

O(n lg n) work complexity, and optimal O(1 +(n�L)(1 +

logZ n)) cache complexity.
Funnelsort is similar to mergesort. In order to sort

a (contiguous) array of n elements, funnelsort performs
the following two steps:

1. Split the input into n1�3 contiguous arrays of size
n2�3, and sort these arrays recursively.

2. Merge the	 n1�3 sorted sequences using a n1�3-
merger, which is described below.

Funnelsort differs from mergesort in the way the
merge operation works. Merging is performed by a de­
vice called a k-merger, which inputs k sorted sequences
and merges them. A k-merger operates by recursively
merging sorted sequences which become progressively
longer as the algorithm proceeds. Unlike mergesort,
however, a k-merger suspends work on a merging sub­
problem when the merged output sequence becomes
“long enough” and resumes work on another merging
subproblem.

This complicated flow of control makes a k-merger
a bit tricky to describe. Figure 3 shows a representa­
tion of a k-merger, which has k sorted sequences as in­
puts. Throughout its execution, the k-merger maintains
the following invariant.

Invariant Each invocation of a k-merger outputs the
next k3 elements of the sorted sequence obtained by
merging the k input sequences.

A k-merger is built recursively out of
p

k-mergers in
the following way. The k inputs are partitioned into

p
k

sets of
p

k elements, which form the input to the
p

kp
k-mergers L1� L2� : : : � Lp

k in the left part of the figure.
The outputs of these mergers are connected to the inputs

of
p

k buffers. Each buffer is a FIFO queue that can
hold 2k3�2 elements. Finally, the outputs of the buffers
are connected to the

p
k inputs of the

p
k-merger R in

the right part of the figure. The output of this final
p

k-
merger becomes the output of the whole k-merger. The
intermediate buffers are overdimensioned, since each
can hold 2k3�2 elements, which is twice the number k3�2

of elements output by a
p

k-merger. This additional
buffer space is necessary for the correct behavior of the
algorithm, as will be explained below. The base case of
the recursion is a k-merger with k � 2, which produces
k3 � 8 elements whenever invoked.

A k-merger operates recursively in the following way.
In order to output k3 elements, the k-merger invokes
R k3�2 times. Before each invocation, however, the k-
merger fills all buffers that are less than half full, i.e.,
all buffers that contain less than k3�2 elements. In order
to fill buffer i, the algorithm invokes the corresponding
left merger Li once. Since Li outputs k3�2 elements, the
buffer contains at least k3�2 elements after Li finishes.

It can be proven by induction that the work com­
plexity of funnelsort is O(n lg n). We will now analyze
the cache complexity. The goal of the analysis is to
show that funnelsort on n elements requires at most Q(n)

cache misses, where

Q(n) � O(1 +(n�L)(1 + logZ n)) :

In order to prove this result, we need three auxiliary lem­
mas. The first lemma bounds the space required by a
k-merger.

Lemma 4 A k-merger can be laid out in O(k2) contigu­
ous memory locations.

Proof. A k-merger requires O(k2) memory locations
for the buffers, plus the space required by the

p
k-

mergers. The space S(k) thus satisfies the recurrence

S(k) � (
p

k+ 1)S(
p

k)+ O(k2) �

whose solution is S(k) � O(k2).
In order to achieve the bound on Q(n), the buffers

in a k-merger must be maintained as circular queues of
size k. This requirement guarantees that we can man­
age the queue cache-efficiently, in the sense stated by
the next lemma.

Lemma 5 Performing r insert and remove operations
on a circular queue causes in O(1 + r�L) cache misses
as long as two cache lines are available for the buffer.

Proof. Associate the two cache lines with the head and
tail of the circular queue. If a new cache line is read
during a insert (delete) operation, the next L� 1 insert
(delete) operations do not cause a cache miss.

The next lemma bounds the cache complexity of a
k-merger.

Lemma 6 If Z � Ω(L2), then a k-merger operates with
at most

QM(k) � O(1 + k+ k3�L+ k3 logZ k�L)

cache misses.

Proof. There are two cases: either k � α
p

Z or k �

α
p

Z, where α is a sufficiently small constant.

Case I: k � α
p

Z. By Lemma 4, the data structure
associated with the k-merger requires at most O(k2) �

O(Z) contiguous memory locations, and therefore it fits
into cache. The k-merger has k input queues from
which it loads O(k3) elements. Let ri be the number
of elements extracted from the ith input queue. Since
k � α

p
Z and the tall-cache assumption (1) implies that

L � O(
p

Z), there are at least Z�L � Ω(k) cache lines
available for the input buffers. Lemma 5 applies, whence
the total number of cache misses for accessing the input
queues is

k

∑ O(1 + ri�L) � O(k+ k3�L) :

i�1

Similarly, Lemma 4 implies that the cache complexity
of writing the output queue is O(1 + k3�L). Finally, the
algorithm incurs O(1 + k2�L) cache misses for touching
its internal data structures. The total cache complexity is
therefore QM(k) � O(1 + k+ k3�L).

Case I: k � α
p

Z. We prove by induction on k that
whenever k � α

p
Z, we have

QM(k) � ck3 logZ k�L� A(k) � (12)

where A(k) � k(1 + 2c logZ k�L) � o(k3). This particular
value of A(k) will be justified at the end of the analysis.

The base case of the induction consists of values of
k such that αZ1�4 � k � α

p
Z. (It is not sufficient only

to consider k � Θ(
p

Z), since k can become as small as
Θ(Z1�4) in the recursive calls.) The analysis of the first
case applies, yielding QM(k) � O(1 + k + k3�L). Be­
cause k2 � α

p
Z � Ω(L) and k � Ω(1), the last term

dominates, which implies QM(k) � O(k3�L). Conse­
quently, a big enough value of c can be found that satis­
fies Inequality (12).

For the inductive case, suppose that k � α
p

Z. The
k-merger invokes the

p
k-mergers recursively. Since

αZ1�4 �

p
k � k, the inductive hypothesis can be used to

bound the number QM(
p

k) of cache misses incurred by
the submergers. The “right” merger R is invoked exactly
k3�2 times. The total number l of invocations of “left”
mergers is bounded by l � k3�2 + 2

p
k. To see why, con­

sider that every invocation of a left merger puts k3�2 el­
ements into some buffer. Since k3 elements are output
and the buffer space is 2k2, the bound l � k3�2 + 2

p
k

follows.

Before invoking R, the algorithm must check every
buffer to see whether it is empty. One such check re­
quires at most

p
k cache misses, since there are

p
k

buffers. This check is repeated exactly k3�2 times, lead­
ing to at most k2 cache misses for all checks. These
considerations lead to the recurrence � �

QM(k) � 2k3�2 + 2
p

k QM(
p

k)+ k2 :

Application of the inductive hypothesis and the choice
A(k) � k(1 + 2c logZ k�L) yields Inequality (12) as fol­
lows: � �

QM(k) � 2k3�2 + 2
p

k QM(
p

k)+ k2

" # � � ck3�2 logZ k � A(
p

k) + k2� 2 k3�2 +

p
k

2L

� ck3 logZ k�L+ k2 (1 + c logZ k�L) � �

� 2k3�2 + 2
p

k A(
p

k)

� ck3 logZ k�L� A(k) :

Theorem 7 To sort n elements, funnelsort incurs O(1 +

(n�L)(1 + logZ n)) cache misses.

Proof. If n � αZ for a small enough constant α, then
the algorithm fits into cache. To see why, observe that
only one k-merger is active at any time. The biggest
k-merger is the top-level n1�3-merger, which requires
O(n2�3) � O(n) space. The algorithm thus can operate
in O(1 + n�L) cache misses.

If N � αZ, we have the recurrence
2�3 QM(n1�3Q(n) � n1�3Q(n)+) :

By Lemma 6, we have QM(n1�3) � O(1 + n1�3 + n�L+

n logZ n�L).
By the tall-cache assumption (1), we have n�L �

Ω(n1�3). Moreover, we also have n1�3 � Ω(1) and lg n �

Ω(lg Z). Consequently, QM(n1�3) � O(n logZ n�L)

holds, and the recurrence simplifies to

Q(n) � n1�3Q(n2�3)+ O(n logZ n�L) :

The result follows by induction on n.
This upper bound matches the lower bound stated

by the next theorem, proving that funnelsort is cache-
optimal.

Theorem 8 The cache complexity of any sorting algo­
rithm is Q(n) � Ω(1 +(n�L)(1 + logZ n)).

Proof. Aggarwal and Vitter [3] show that there is an
Ω((n�L) logZ�L(n�Z)) bound on the number of cache
misses made by any sorting algorithm on their “out-of-
core” memory model, a bound that extends to the ideal-
cache model. The theorem can be proved by apply­
ing the tall-cache assumption Z � Ω(L2) and the trivial
lower bounds of Q(n) � Ω(1) and Q(n) � Ω(n�L).

5. Distribution sort

In this section, we describe another cache-oblivious op­
timal sorting algorithm based on distribution sort. Like
the funnelsort algorithm from Section 4, the distribution-
sorting algorithm uses O(n lg n) work to sort n elements,
and it incurs O(1 +(n�L)(1 + logZ n)) cache misses.
Unlike previous cache-efficient distribution-sorting al­
gorithms [1, 3, 25, 34, 36], which use sampling or other
techniques to find the partitioning elements before the
distribution step, our algorithm uses a “bucket splitting”
technique to select pivots incrementally during the dis­
tribution step.

Given an array A (stored in contiguous locations) of
length n, the cache-oblivious distribution sort operates
as follows:

1. Partition A into
p

n contiguous subarrays of size p
n. Recursively sort each subarray.

2. Distribute	 the sorted subarrays into q buckets
B1� : : : � Bq of size n1� : : : � nq, respectively, such that

1. max fx j x � Big � min fx j x � Bi+1g for i �

1� 2� : : : � q� 1.
2.	 ni � 2

p
n for i � 1� 2� : : : � q.

(See below for details.)

3. Recursively sort each bucket.

4. Copy the sorted buckets to array A.

A stack-based memory allocator is used to exploit spatial
locality.

The goal of Step 2 is to distribute the sorted subarrays
of A into q buckets B1� B2� : : : � Bq. The algorithm main­
tains two invariants. First, at any time each bucket holds
at most 2

p
n elements, and any element in bucket Bi is

smaller than any element in bucket Bi+1. Second, every
bucket has an associated pivot. Initially, only one empty
bucket exists with pivot ∞.

The idea is to copy all elements from the subarrays
into the buckets while maintaining the invariants. We
keep state information for each subarray and bucket. The
state of a subarray consists of the index next of the next
element to be read from the subarray and the bucket
number bnum where this element should be copied. By
convention, bnum � ∞ if all elements in a subarray have
been copied. The state of a bucket consists of the pivot
and the number of elements currently in the bucket.

We would like to copy the element at position next of
a subarray to bucket bnum. If this element is greater than
the pivot of bucket bnum, we would increment bnum un­
til we find a bucket for which the element is smaller than
the pivot. Unfortunately, this basic strategy has poor
caching behavior, which calls for a more complicated
procedure.

The distribution step is accomplished by the recur­
sive procedure DISTRIBUTE(i� j� m) which distributes
elements from the ith through (i + m � 1)th subarrays
into buckets starting from B j. Given the precondition
that each subarray i� i+ 1� : : : � i+ m� 1 has its bnum � j,
the execution of DISTRIBUTE(i� j� m) enforces the post-
condition that subarrays i� i+ 1� : : : � i+ m� 1 have their
bnum � j + m. Step 2 of the distribution sort invokes
DISTRIBUTE(1� 1�

p
n). The following is a recursive im­

plementation of DISTRIBUTE:

DISTRIBUTE(i� j� m)

1	 if m � 1
2 then COPYELEMS(i� j)

3 else DISTRIBUTE(i� j� m�2)

4 DISTRIBUTE(i+ m�2� j� m�2)

5 DISTRIBUTE(i� j+ m�2� m�2)

6 DISTRIBUTE(i+ m�2� j+ m�2� m�2)

In the base case, the procedure COPYELEMS(i� j)

copies all elements from subarray i that belong to
bucket j. If bucket j has more than 2

p
n elements af­

ter the insertion, it can be split into two buckets of size
at least

p
n. For the splitting operation, we use the deter­

ministic median-finding algorithm [14, p. 189] followed
by a partition.

Lemma 9 The median of n elements can be found
cache-obliviously using O(n) work and incurring O(1 +

n�L) cache misses.

Proof. See [14, p. 189] for the linear-time median find­
ing algorithm and the work analysis. The cache com­
plexity is given by the same recurrence as the work com­
plexity with a different base case. 8 �

O(1 + m�L) if m � αZ �

Q(m) �

Q(dm�5e)+ Q(7m�10 + 6) otherwise ; : + O(1 + m�L)

where α is a sufficiently small constant. The result fol­
lows.

In our case, we have buckets of size 2
p

n+ 1. In ad­
dition, when a bucket splits, all subarrays whose bnum
is greater than the bnum of the split bucket must have
their bnum’s incremented. The analysis of DISTRIBUTE

is given by the following lemma.

Lemma 10 The distribution step involves O(n) work,
incurs O(1 + n�L) cache misses, and uses O(n) stack
space to distribute n elements.

Proof. In order to simplify the analysis of the work
used by DISTRIBUTE, assume that COPYELEMS uses
O(1) work for procedural overhead. We will account for
the work due to copying elements and splitting of buck­
ets separately. The work of DISTRIBUTE is described by

the recurrence

T (c) � 4T (c�2)+ O(1) :

It follows that T (c) � O(c2), where c �

p
n initially. The

work due to copying elements is also O(n).
The total number of bucket splits is at most

p
n. To

see why, observe that there are at most
p

n buckets at the
end of the distribution step, since each bucket contains at
least

p
n elements. Each split operation involves O(

p
n)

work and so the net contribution to the work is O(n).
Thus, the total work used by DISTRIBUTE is W (n) �

O(T (
p

n)) + O(n)+ O(n) � O(n).
For the cache analysis, we distinguish two cases. Let

α be a sufficiently small constant such that the stack
space used fits into cache.
Case I, n � αZ: The input and the auxiliary space of
size O(n) fit into cache using O(1 + n�L) cache lines.
Consequently, the cache complexity is O(1 + n�L).
Case II, n � αZ: Let R(c� m) denote the cache misses
incurred by an invocation of DISTRIBUTE(a� b� c) that
copies m elements from subarrays to buckets. We first
prove that R(c� m) � O(L+ c2�L+ m�L), ignoring the
cost splitting of buckets, which we shall account for sep­
arately. We argue that R(c� m) satisfies the recurrence 8

O(L+ m�L) if c � αL � �

R(c� m) �

4 :	 ∑ R(c�2� mi) otherwise ;
(13)

i�1

where ∑i
4
�1 mi � m, whose solution is R(c� m) � O(L+

c2�L+ m�L). The recursive case c � αL follows im­
mediately from the algorithm. The base case c �

αL can be justified as follows. An invocation of
DISTRIBUTE(a� b� c) operates with c subarrays and c
buckets. Since there are Ω(L) cache lines, the cache can
hold all the auxiliary storage involved and the currently
accessed element in each subarray and bucket. In this
case there are O(L+ m�L) cache misses. The initial ac­
cess to each subarray and bucket causes O(c) � O(L)

cache misses. Copying the m elements to and from con­
tiguous locations causes O(1 + m�L) cache misses.

We still need to account for the cache misses caused
by the splitting of buckets. Each split causes O(1 + p

n�L) cache misses due to median finding (Lemma 9)
and partitioning of

p
n contiguous elements. An addi­

tional O(1 +

p
n�L) misses are incurred by restoring the

cache. As proven in the work analysis, there are at most p
n split operations. By adding R(

p
n� n) to the split

complexity, we conclude that the total cache complexity
of the distribution step is O(L+ n�L+

p
n(1 +

p
n�L)) �

O(n�L).

The analysis of distribution sort is given in the next
theorem. The work and cache complexity match lower
bounds specified in Theorem 8.

Theorem 11 Distribution sort uses O(n lg n) work and
incurs O(1 +(n�L)(1 + logZ n)) cache misses to sort n
elements.

Proof. The work done by the algorithm is given by
q

W (n) �

p
nW (

p
n)+ ∑W (ni)+ O(n) �

i�1

where each ni � 2
p

n and ∑ni � n. The solution to this
recurrence is W (n) � O(n lg n).

The space complexity of the algorithm is given by

S(n) � S(2
p

n)+ O(n) �

where the O(n) term comes from Step 2. The solution to
this recurrence is S(n) � O(n).

The cache complexity of distribution sort is described
by the recurrence 8 �

O(1 + n�L) if n � αZ �

Q(n) � p
nQ(

p
n)+ ∑q

i�1 Q(ni) otherwise ; : +O(1 + n�L)

where α is a sufficiently small constant such that the
stack space used by a sorting problem of size αZ, in­
cluding the input array, fits completely in cache. The
base case n � αZ arises when both the input array A
and the contiguous stack space of size S(n) � O(n) fit
in O(1 + n�L) cache lines of the cache. In this case,
the algorithm incurs O(1 + n�L) cache misses to touch
all involved memory locations once. In the case where
n � αZ, the recursive calls in Steps 1 and 3 cause
Q(
p

n) + ∑i
q
�1 Q(ni) cache misses and O(1 + n�L) is

the cache complexity of Steps 2 and 4, as shown by
Lemma 10. The theorem follows by solving the recur­
rence.

6.	 Theoretical justifications for the ideal-
cache model

How reasonable is the ideal-cache model for algorithm
design? The model incorporates four major assumptions
that deserve scrutiny:
� optimal replacement,
� exactly two levels of memory,
� automatic replacement,
� full associativity.

Designing algorithms in the ideal-cache model is easier
than in models lacking these properties, but are these
assumptions too strong? In this section we show that
cache-oblivious algorithms designed in the ideal-cache
model can be efficiently simulated by weaker models.

The first assumption that we shall eliminate is that
of optimal replacement. Our strategy for the simula­
tion is to use an LRU (least-recently used) replacement
strategy [20, p. 378] in place of the optimal and om­
niscient replacement strategy. We start by proving a

lemma that bounds the effectiveness of the LRU simu­
lation. We then show that algorithms whose complex­
ity bounds satisfy a simple regularity condition (includ­
ing all algorithms heretofore presented) can be ported to
caches incorporating an LRU replacement policy.

Lemma 12 Consider an algorithm that causes
Q�(n; Z� L) cache misses on a problem of size n using
a (Z� L) ideal cache. Then, the same algorithm incurs
Q(n; Z� L) � 2Q�(n; Z�2� L) cache misses on a (Z� L)

cache that uses LRU replacement.

Proof. Sleator and Tarjan [30] have shown that the
cache misses on a (Z� L) cache using LRU replacement
are (Z�L)�((Z � Z�)�L + 1)-competitive with optimal
replacement on a (Z�� L) ideal cache if both caches start
empty. It follows that the number of misses on a (Z� L)

LRU-cache is at most twice the number of misses on a
(Z�2� L) ideal-cache.

Corollary 13 For any algorithm whose cache-
complexity bound Q(n; Z� L) in the ideal-cache model
satisfies the regularity condition

Q(n; Z� L) � O(Q(n;2Z� L)) � (14)

the number of cache misses with LRU replacement is
Θ(Q(n; Z� L)).

Proof. Follows directly from (14) and Lemma 12.

The second assumption we shall eliminate is the as­
sumption of only two levels of memory. Although mod­
els incorporating multiple levels of caches may be nec­
essary to analyze some algorithms, for cache-oblivious
algorithms, analysis in the two-level ideal-cache model
suffices. Specifically, optimal cache-oblivious algo­
rithms also perform optimally in computers with mul­
tiple levels of LRU caches. We assume that the caches
satisfy the inclusion property [20, p. 723], which says
that the values stored in cache i are also stored in cache
i+ 1 (where cache 1 is the cache closest to the proces­
sor). We also assume that if two elements belong to
the same cache line at level i, then they belong to the
same line at level i+ 1. Moreover, we assume that cache
i+ 1 has strictly more cache lines than cache i. These as­
sumptions ensure that cache i+ 1 includes the contents
of cache i plus at least one more cache line.

The multilevel LRU cache operates as follows. A hit
on an element in cache i is served by cache i and is not
seen by higher-level caches. We consider a line in cache
i+ 1 to be marked if any element stored on the line be­
longs to cache i. When cache i misses on an access, it
recursively fetches the needed line from cache i+ 1, re­
placing the least-recently accessed unmarked cache line.
The replaced cache line is then brought to the front of
cache (i+ 1)’s LRU list. Because marked cache lines are

never replaced, the multilevel cache maintains the inclu­
sion property. The next lemma, whose proof is omitted,
asserts that even though a cache in a multilevel model
does not see accesses that hit at lower levels, it neverthe­
less behaves like the first-level cache of a simple two-
level model, which sees all the memory accesses.

Lemma 14 A (Zi� Li)-cache at a given level i of a mul­
tilevel LRU model always contains the same cache lines
as a simple (Zi� Li)-cache managed by LRU that serves
the same sequence of memory accesses.

Lemma 15 An optimal cache-oblivious algorithm
whose cache complexity satisifies the regularity condi­
tion (14) incurs an optimal number of cache misses on
each level3 of a multilevel cache with LRU replacement.

Proof. Let cache i in the multilevel LRU model be a
(Zi� Li) cache. Lemma 14 says that the cache holds ex­
actly the same elements as a (Zi� Li) cache in a two-level
LRU model. From Corollary 13, the cache complex­
ity of a cache-oblivious algorithm working on a (Zi� Li)

LRU cache lower-bounds that of any cache-aware algo­
rithm for a (Zi� Li) ideal cache. A (Zi� Li) level in a mul­
tilevel cache incurs at least as many cache misses as a
(Zi� Li) ideal cache when the same algorithm is executed.

Finally, we remove the two assumptions of automatic
replacement and full associativity. Specifically, we shall
show that a fully associative LRU cache can be main­
tained in ordinary memory with no asymptotic loss in
expected performance.

Lemma 16 A (Z� L) LRU-cache can be maintained us­
ing O(Z) memory locations such that every access to a
cache line in memory takes O(1) expected time.

Proof. Given the address of the memory location to
be accessed, we use a 2-universal hash function [24,
p. 216] to maintain a hash table of cache lines present
in the memory. The Z�L entries in the hash table
point to linked lists in a heap of memory that contains
Z�L records corresponding to the cache lines. The 2­
universal hash function guarantees that the expected size
of a chain is O(1). All records in the heap are organized
as a doubly linked list in the LRU order. Thus, the LRU
policy can be implemented in O(1) expected time using
O(Z�L) records of O(L) words each.

3Alpern, Carter and Feig [5] show that optimality on each level of
memory in the UMH model does not necessarily imply global optimal­
ity. The UMH model incorporates a single cost measure that combines
the costs of work and cache faults at each of the levels of memory. By
analyzing the levels independently, our multilevel ideal-cache model
remains agnostic about the various schemes by which work and cache
faults might be combined.

3

Theorem 17 An optimal cache-oblivious algorithm
whose cache-complexity bound satisfies the regularity
condition (14) can be implemented optimally in expec­
tation in multilevel models with explicit memory man­
agement.

Proof. Combine Lemma 15 and Lemma 16.

Corollary 18 The recursive cache-oblivious algorithms
for matrix multiplication, matrix transpose, FFT, and
sorting are optimal in multilevel models with explicit
memory management.

Proof. Their complexity bounds satisfy the regularity
condition (14).

It can also be shown [26] that cache-oblivous algo­
rithms satisfying (14) are also optimal (in expectation)
in the previously studied SUMH [5, 34] and HMM [1]
models. Thus, all the algorithmic results in this paper
apply to these models, matching the best bounds previ­
ously achieved.

Other simulation results can be shown. For example,
by using the copying technique of [22], cache-oblivious
algorithms for matrix multiplication and other problems
can be designed that are provably optimal on direct-
mapped caches.

7. Related work
In this section, we discuss the origin of the notion of
cache-obliviousness. We also give an overview of other
hierarchical memory models.

Our research group at MIT noticed as far back as
1994 that divide-and-conquer matrix multiplication was
a cache-optimal algorithm that required no tuning, but
we did not adopt the term “cache-oblivious” until 1997.
This matrix-multiplication algorithm, as well as a cache-
oblivious algorithm for LU-decomposition without piv­
oting, eventually appeared in [9]. Shortly after leaving
our research group, Toledo [32] independently proposed
a cache-oblivious algorithm for LU-decomposition with
pivoting. For n � n matrices, Toledo’s algorithm uses
Θ(n) work and incurs Θ(1 + n2�L + n3�L

p
Z) cache

misses. More recently, our group has produced an FFT
library called FFTW [18], which in its most recent incar­
nation [17], employs a register-allocation and schedul­
ing algorithm inspired by our cache-oblivious FFT al­
gorithm. The general idea that divide-and-conquer en­
hances memory locality has been known for a long
time [29].

Previous theoretical work on understanding hierar­
chical memories and the I/O-complexity of algorithms
has been studied in cache-aware models lacking an auto­
matic replacement strategy, although [10, 28] are recent

T
im

e
(m

ic
ro

se
co

nd
s)

0.25

0.2

0.15

0.1

0.05

0
0 200 400 600 800 1000 1200

N

iterative
recursive

Figure 4: Average time to transpose an N � N matrix,
divided by N2.

exceptions. Hong and Kung [21] use the red-blue peb­
ble game to prove lower bounds on the I/O-complexity
of matrix multiplication, FFT, and other problems. The
red-blue pebble game models temporal locality using
two levels of memory. The model was extended by
Savage [27] for deeper memory hierarchies. Aggarwal
and Vitter [3] introduced spatial locality and investigated
a two-level memory in which a block of P contiguous
items can be transferred in one step. They obtained tight
bounds for matrix multiplication, FFT, sorting, and other
problems. The hierarchical memory model (HMM) by
Aggarwal et al. [1] treats memory as a linear array,
where the cost of an access to element at location x is
given by a cost function f (x). The BT model [2] extends
HMM to support block transfers. The UMH model by
Alpern et al. [5] is a multilevel model that allows I/O at
different levels to proceed in parallel. Vitter and Shriver
introduce parallelism, and they give algorithms for ma­
trix multiplication, FFT, sorting, and other problems in
both a two-level model [35] and several parallel hierar­
chical memory models [36]. Vitter [33] provides a com­
prehensive survey of external-memory algorithms.

8. Conclusion
The theoretical work presented in this paper opens two
important avenues for future research. The first is to
determine the range of practicality of cache-oblivious
algorithms, or indeed, of any algorithms developed in
the ideal-cache model. The second is to resolve, from a
complexity-theoretic point of view, the relative strengths
of cache-oblivious and cache-aware algorithms. To con­
clude, we discuss each of these avenues in turn.

Figure 4 compares per-element time to transpose a
matrix using the naive iterative algorithm employing a
doubly nested loop with the recursive cache-oblivious
REC-TRANSPOSE algorithm from Section 3. The two
algorithms were evaluated on a 450 megahertz AMD
K6III processor with a 32-kilobyte 2-way set-associative
L1 cache, a 64-kilobyte 4-way set-associative L2 cache,
and a 1-megabyte L3 cache of unknown associativ­
ity, all with 32-byte cache lines. The code for REC­
TRANSPOSE was the same as presented in Section 3, ex­

T
im

e
(m

ic
ro

se
co

nd
s)

0.12

0.1

0.08

0.06

0.04

0.02

0
0 100 200 300 400 500 600

N

iterative
recursive

Figure 5: Average time taken to multiply two N � N
matrices, divided by N3.

cept that the divide-and-conquer structure was modified
to produce exact powers of 2 as submatrix sizes wher­
ever possible. In addition, the base cases were “coars­
ened” by inlining the recursion near the leaves to in­
crease their size and overcome the overhead of proce­
dure calls. (A good research problem is to determine
an effective compiler strategy for coarsening base cases
automatically.)

Although these results must be considered prelimi­
nary, Figure 4 strongly indicates that the recursive al­
gorithm outperforms the iterative algorithm throughout
the range of matrix sizes. Moreover, the iterative al­
gorithm behaves erratically, apparently due to so-called
“conflict” misses [20, p. 390], where limited cache asso­
ciativity interacts with the regular addressing of the ma­
trix to cause systematic interference. Blocking the itera­
tive algorithm should help with conflict misses [22], but
it would make the algorithm cache aware. For large ma­
trices, the recursive algorithm executes in less than 70%
of the time used by the iterative algorithm, even though
the transpose problem exhibits no temporal locality.

Figure 5 makes a similar comparison between the
naive iterative matrix-multiplication algorithm, which
uses three nested loops, with the O(n3)-work recur­
sive REC-MULT algorithm described in Section 2. This
problem exhibits a high degree of temporal locality,
which REC-MULT exploits effectively. As the figure
shows, the average time used per integer multiplication
in the recursive algorithm is almost constant, which for
large matrices, is less than 50% of the time used by the
iterative variant. A similar study for Jacobi multipass
filters can be found in [26].

Several researchers [12, 16] have also observed that
recursive algorithms exhibit performance advantages
over iterative algorithms for computers with caches. A
comprehensive empirical study has yet to be done, how­
ever. Do cache-oblivious algorithms perform nearly as
well as cache-aware algorithms in practice, where con­
stant factors matter? Does the ideal-cache model cap­
ture the substantial caching concerns for an algorithms
designer?

An anecdotal affirmative answer to these questions is
exhibited by the popular FFTW library [17, 18], which

uses a recursive strategy to exploit caches in Fourier
transform calculations. FFTW’s code generator pro­
duces straight-line “codelets,” which are coarsened base
cases for the FFT algorithm. Because these codelets are
cache oblivious, a C compiler can perform its register
allocation efficiently, and yet the codelets can be gen­
erated without knowing the number of registers on the
target architecture.

To close, we mention two theoretical avenues
that should be explored to determine the complexity-
theoretic relationship between cache-oblivious algo­
rithms and cache-aware algorithms.

Separation: Is there a gap in asymptotic complexity
between cache-aware and cache-oblivious algorithms?
It appears that cache-aware algorithms should be able to
use caches better than cache-oblivious algorithms, since
they have more knowledge about the system on which
they are running. Do there exist problems for which this
advantage is asymptotically significant, for example an
Ω(lg Z) advantage? Bilardi and Peserico [8] have re­
cently taken some steps in proving a separation.

Simulation: Is there a limit as to how much better a
cache-aware algorithm can be than a cache-oblivious
algorithm for the same problem? That is, given a class
of optimal cache-aware algorithms to solve a single
problem, can we construct a good cache-oblivious al­
gorithm that solves the same problem with only, for
example, O(lg Z) loss of efficiency? Perhaps simula­
tion techniques can be used to convert a class of effi­
cient cache-aware algorithms into a comparably efficient
cache-oblivious algorithm.

Acknowledgments

Thanks to Bobby Blumofe, now of the University of
Texas at Austin, who sparked early discussions at MIT
about what we now call cache obliviousness. Thanks to
Gianfranco Bilardi of University of Padova, Sid Chat­
terjee of University of North Carolina, Chris Joerg of
Compaq CRL, Martin Rinard of MIT, Bin Song of MIT,
Sivan Toledo of Tel Aviv University, and David Wise of
Indiana University for helpful discussions. Thanks also
to our anonymous reviewers.

References
[1] A. Aggarwal, B. Alpern, A. K. Chandra, and M. Snir.

A model for hierarchical memory. In Proceedings of the
19th Annual ACM Symposium on Theory of Computing
(STOC), pages 305–314, May 1987.

[2] A. Aggarwal, A. K. Chandra, and M. Snir.	 Hierarchi­
cal memory with block transfer. In 28th Annual Sym­
posium on Foundations of Computer Science (FOCS),
pages 204–216, Los Angeles, California, 12–14 Oct.
1987. IEEE.

[3] A. Aggarwal and J. S. Vitter. The input/output complex­
ity of sorting and related problems. Communications of
the ACM, 31(9):1116–1127, Sept. 1988.

[4] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design
and Analysis of Computer Algorithms. Addison-Wesley
Publishing Company, 1974.

[5] B. Alpern, L. Carter, and E. Feig. Uniform memory hier­
archies. In Proceedings of the 31st Annual IEEE Sym­
posium on Foundations of Computer Science (FOCS),
pages 600–608, Oct. 1990.

[6] D. H. Bailey.	 FFTs in external or hierarchical memory.
Journal of Supercomputing, 4(1):23–35, May 1990.

[7] L. A. Belady. A study of replacement algorithms for vir­
tual storage computers. IBM Systems Journal, 5(2):78–
101, 1966.

[8] G. Bilardi and E. Peserico. Efficient portability across
memory hierarchies. Unpublished manuscript, 1999.

[9] R. D. Blumofe, M. Frigo, C. F. Joerg, C. E. Leiserson,
and K. H. Randall. An analysis of dag-consistent dis­
tributed shared-memory algorithms. In Proceedings of
the Eighth Annual ACM Symposium on Parallel Algo­
rithms and Architectures (SPAA), pages 297–308, Padua,
Italy, June 1996.

[10] L. Carter and K. S. Gatlin.	 Towards an optimal bit-
reversal permutation program. In Proceedings of the 39th
Annual Symposium on Foundations of Computer Science,
pages 544–555. IEEE Computer Society Press, 1998.

[11] S. Chatterjee, V. V. Jain, A. R. Lebeck, and S. Mundhra.
Nonlinear array layouts for hierarchical memory sys­
tems. In Proceedings of the ACM International Confer­
ence on Supercomputing, Rhodes, Greece, June 1999.

[12] S. Chatterjee, A. R. Lebeck, P. K. Patnala, and M. Thot­
tethodi. Recursive array layouts and fast parallel matrix
multiplication. In Proceedings of the Eleventh ACM Sym­
posium on Parallel Algorithms and Architectures (SPAA),
June 1999.

[13] J. W. Cooley and J. W. Tukey. An algorithm for the ma­
chine computation of the complex Fourier series. Mathe­
matics of Computation, 19:297–301, Apr. 1965.

[14] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.	 In­
troduction to Algorithms. MIT Press and McGraw Hill,
1990.

[15] P. Duhamel and M. Vetterli. Fast Fourier transforms:	 a
tutorial review and a state of the art. Signal Processing,
19:259–299, Apr. 1990.

[16] J. D. Frens and D. S. Wise.	 Auto-blocking matrix-
multiplication or tracking BLAS3 performance from
source code. In Proceedings of the Sixth ACM SIG­
PLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP), pages 206–216, Las Vegas, NV,
June 1997.

[17] M. Frigo. A fast Fourier transform compiler. In Proceed­
ings of the ACM SIGPLAN’99 Conference on Program­
ming Language Design and Implementation (PLDI), At­
lanta, Georgia, May 1999.

[18] M. Frigo and S. G. Johnson. FFTW: An adaptive soft­
ware architecture for the FFT. In Proceedings of the In­
ternational Conference on Acoustics, Speech, and Signal
Processing, Seattle, Washington, May 1998.

[19] G. H. Golub and C. F. van Loan. Matrix Computations.
Johns Hopkins University Press, 1989.

[20] J. L. Hennessy and D. A. Patterson. Computer Architec­
ture: A Quantitative Approach. Morgan Kaufmann, 2nd
edition, 1996.

[21] J.-W. Hong and H. T. Kung. I/O complexity: the red-blue
pebbling game. In Proceedings of the 13th Annual ACM
Symposium on Theory of Computing (STOC), pages 326–
333, Milwaukee, 1981.

[22] M. S. Lam, E. Rothberg, and M. E. Wolf. The cache per­
formance and optimizations of blocked algortihms. In
Fourth International Conference on Architectural Sup­
port for Programming Languages and Operating Systems
(ASPLOS), pages 63–74, Santa Clara, CA, Apr. 1991.
ACM SIGPLAN Notices 26:4.

[23] A. LaMarca and R. E. Ladner.	 The influence of caches
on the performance of sorting. Proceedings of the Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 370–377, 1997.

[24] R. Motwani and P. Raghavan.	 Randomized Algorithms.
Cambridge University Press, 1995.

[25] M. H. Nodine and J. S. Vitter. Deterministic distribution
sort in shared and distributed memory multiprocessors.
In Proceedings of the Fifth ACM Symposium on Paral­
lel Algorithms and Architectures (SPAA), pages 120–129,
Velen, Germany, 1993.

[26] H. Prokop. Cache-oblivious algorithms. Master’s thesis,
Massachusetts Institute of Technology, June 1999.

[27] J. E. Savage. Extending the Hong-Kung model to mem­
ory hierarchies. In D.-Z. Du and M. Li, editors, Com­
puting and Combinatorics, volume 959 of Lecture Notes
in Computer Science, pages 270–281. Springer Verlag,
1995.

[28] S. Sen and S. Chatterjee.	 Towards a theory of cache-
efficient algorithms. Unpublished manuscript, 1999.

[29] R. C. Singleton. An algorithm for computing the mixed
radix fast Fourier transform. IEEE Transactions on Audio
and Electroacoustics, AU-17(2):93–103, June 1969.

[30] D. D. Sleator and R. E. Tarjan.	 Amortized efficiency
of list update and paging rules. Communications of the
ACM, 28(2):202–208, Feb. 1985.

[31] V. Strassen.	 Gaussian elimination is not optimal. Nu­
merische Mathematik, 13:354–356, 1969.

[32] S. Toledo. Locality of reference in LU decomposition
with partial pivoting. SIAM Journal on Matrix Analysis
and Applications, 18(4):1065–1081, Oct. 1997.

[33] J. S. Vitter. External memory algorithms and data struc­
tures. In J. Abello and J. S. Vitter, editors, External
Memory Algorithms and Visualization, DIMACS Series
in Discrete Mathematics and Theoretical Computer Sci­
ence. American Mathematical Society Press, Providence,
RI, 1999.

[34] J. S. Vitter and M. H. Nodine.	 Large-scale sorting in
uniform memory hierarchies. Journal of Parallel and
Distributed Computing, 17(1–2):107–114, January and
February 1993.

[35] J. S. Vitter and E. A. M. Shriver.	 Algorithms for par­
allel memory I: Two-level memories. Algorithmica,
12(2/3):110–147, August and September 1994.

[36] J. S. Vitter and E. A. M. Shriver. Algorithms for parallel
memory II: Hierarchical multilevel memories. Algorith­
mica, 12(2/3):148–169, August and September 1994.

[37] S. Winograd. On the algebraic complexity of functions.
Actes du Congrès International des Mathématiciens,
3:283–288, 1970.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

