
Atomic Transactions in Cilk

6.895 Project Presentation

12/1/03

Data Races and Nondeterminism

int x = 0;

cilk void increment() {

x = x + 1;

}

cilk int main() {

spawn increment();

spawn increment();

sync;

printf(‘’x is %d\n’’, x);

return 1;

}

1: read x time

1: write x

2: read x
2: write x

Correct execution : x = 2

time
1: read x

2: read x
1: write x

2: write x

Incorrect execution: x = 1

Two Solutions to the Problem

Traditional Solution: Locks Our Solution: Transactions

cilk void increment() { cilk void increment() {
lock(x); xbegin
x = x + 1; x = x + 1;
unlock(x); xend

} }

For this example, both solutions look the same. However, using
transactions, to make any arbitrary section of code atomic, the
programmer ideally needs only one xbegin and xend.

Locking vs. Transactions

Using Locks: Using Transactions:

STOP

STOP

Acquiring a lock ensures that there will be no conflicts while code is executing.
With transactions, we go ahead and execute code, assuming conflicts are unlikely.

A Transaction With A Collision

When a conflict does occur, at least one of colliding transactions
must abort, restore everything back to the same state before the
transaction, and then try again.

Steps of the Existing Cilk Compiler

Compiler Modified For Atomic Transactions

This module does a source-
code transformation.

This module implements

code by cilk2c.
the functions added to the

- - - -

- - - -

Code Transformation for a Transaction

xbegin

xend

cilk2c inserts labels and goto
statements into the code for
executing transactions.

1.	 Create atomic context for each
transaction.

2.	 Execute main body of the transaction.

3.	 Handle conflicts.

4.	 Try to commit transaction.

5.	 Clean up after a successful transaction.

1.

2.

3.

4.

5.

Atomic Context* ac = createNewAC();

initTransaction(ac);

attemptTrans:

goto tryCommit;

failed:

doAbort(ac);

doBackoff(ac);

goto attemptTrans;

tryCommit:

if (failedCommit(ac))

goto failed;

done:

destroyAC(ac);

Inside the Body of a Transaction

Load:
(({ if (AtomicReadFailed (&x, sizeof(x),

atomicContext))

x;
 goto failed;

}),

x);

Store:
{ int *tempAddressX = &x;

({ if (AtomicWriteFailed(tempAddressX,
x = 1;

sizeof(*tempAddressX),

atomicContext))

goto failed;

});

*tempAddressX = 1;

}

cilk2c transforms every load and store. The extra code
around each load/store detects if a conflict has occurred and
backs up the original values in case we have to abort.

Atomic Runtime System

This module implements

code by cilk2c.
the functions added to the

For every memory location that has been accessed by a currently
executing transaction, the runtime system keeps track of:

1. Owner: the transaction that is allowed to access the location .

2. Backup Value: the value to put back in case of an abort.

slow

How fast are transactions in software?
●	 We have the overhead of creating/destroying a

transaction.
●	 We have to make a function call with each load/store.
●	 Unfortunately, to ensure operations on the owner array

occur atomically, we use locks.

... ...OwnerOwner

x y	 z

... ...Locks
x y	 z

●	 Ideally, we would have hardware support for the
runtime system.

An Experiment

int x = 0;

cilk void incX() {

x = x + 1;

}

cilk void incrementTest(int n) {

if (n > 0) {

if (n == 1) {

incX();

}

else {

spawn incrementTest(n/2);

spawn incrementTest(n-n/2);

sync;

}

}

}

Preliminary Results

On n = 10,000,000: Transactions

Running Aborted /
time (s) Final x Correct? Total Aborts

1 processor 7.4 s 10,000,000 Y -
2 processors 8.6 s 9,938,893 N -
1 proc, with
Cilk_lock

8.1 s 10,000,000 Y -

2 proc, with
Cilk_lock

9.8 s 10,000,000 Y -

1 proc, atomic 25.8 s 10,000,000 Y 0

2 proc, atomic 25.7 s 10,000,000 Y 4657/6712

In last case, max # times a transaction was aborted: 8

A Longer Transaction:

int x = 0;
 On n = 10,000,000:
cilk void incX() {

int j = 0;

for (j = 0; j < 100; j++) {

x = x + 1;

x = x - 1;

}

x = x + 1;

}

Max # times

a transaction

was aborted:

Running Transactions
time (s) Final x Aborted

1 processor 11.6 s 10,000,000 -
2 processors 29.9 s 7,192,399 -
1 proc, with
Cilk_lock

14.2 s 10,000,000 -

2 proc, with
Cilk_lock

34.9 s 10,000,000 -

1 proc,
atomic

605 s 10,000,000 0

2 proc,
atomic

612 s 10,000,000 2
30

Conclusion

●	 Options for further work:
–Test more complicated transactions.

–Modify cilkc to be more user-friendly and portable.

–Improve runtime system.

–Experiment with different backoff schemes.

–More testing!

●	 We have a version of Cilk which can successfully
compile and execute simple transactions
atomically.

A Transaction with Random Memory Accesses

int x[10];

n = 100,000:
cilk void incX() { Transactions

int j = 0;
int i = rand() % 10; Running Aborted /
for (j = 0; j < 100; j++) { time (s) Sum x[i] Total Aborts

i = rand() %10;

x[i] = x[i] + 1;

x[i] = x[i] - 1;

}

x[i] = x[i] + 1;

}

Max # times

a transaction

was aborted:

1 processor 2.2 s 100,000 -
2 processors 30 s 99,987 -
1 proc, with
Cilk_lock

3.1 s 100,000 -

2 proc, with
Cilk_lock

32.1 s 100,000 -

1 proc,
atomic

15.9s 100,000 0/0

2 proc,
atomic

16.4 s
????

100,000 6/53
24

A Correct Execution Sequence

int x = 5;

int y = 0;

int z = 1;

cilk void foo() {

xbegin

x = x + 1;

y = x;

xend

}

cilk void bar() {

xbegin

z = 42;

y = y + 1;

xend

}

cilk int main() {

spawn foo();

spawn bar();

sync;

}

1: read x
1: write x
1: read x
1: write y
1: commit

time

2: write z
2: read y
2: write y
2: commit

5

A Successful Transaction

...Owner 1 1

x y z

1: read x
x y z

1: write x Actual
Memory

1: read x

1: write y Atomic Contexts:

1: commit

cilk void foo() {

xbegin

x = x + 1;

y = x;

... ...

Status:
Owned
Addresses:

#1

0

PENDING

5 0

6

COMMITTED

6

xend

}

1

1

Conflicting Transactions

1: read x
1: write x
1: read x
1: write y

2: write z
2: read y
2: abort

1: commit

CONFLICT!

OwnerOwner11 2

x y z

x y z

Normal

Memory

... ...6 6 1

Atomic Contexts

#1 COMMITTED

Status: PENDING

Owned

Addresses:

Status:
Owned
Addresses:

#2

05

PENDING

1

42

ABORTED

1

	Atomic Transactions in Cilk
	Data Races and Nondeterminism
	Two Solutions to the Problem
	Locking vs. Transactions
	A Transaction With A Collision
	Steps of the Existing Cilk Compiler
	Compiler Modified For Atomic Transactions
	Code Transformation for a Transaction
	Inside the Body of a Transaction
	Atomic Runtime System
	How fast are transactions in software?
	An Experiment
	Preliminary Results
	A Longer Transaction:
	Conclusion
	A Transaction with Random Memory Accesses
	A Correct Execution Sequence
	A Successful Transaction
	Conflicting Transactions

