
Maintaining SP Relationships
Efficiently, on-the-fly

Jeremy Fineman

The Problem

• Fork-Join (e.g. Cilk) programs have threads
that operate either in series or logically
parallel.

• Want to query relationship between two
threads as the program runs.

• For example, Nondeterminator uses
relationship between two threads as basis
for determinacy race.

Parse Tree
S

P

d

a

S

cb

a c

b

d

• Represent SP-DAG as a parse tree
• S nodes show series relationships
• P nodes are parallel relationships

Least Common Ancestor
S

P

d

a

S

cb

• SP-Bags uses LCA lookup.
• LCA of b and d is an S-node

– So b and d are in series
• Cost is α(v,v) per query (in Nondeterminator)

Two Complementary Walks
S

P

d

a

S

cb

• At S-node, always walk left then right
• At P-node, can go left then right, or right then left

Two Complementary Walks
S

P

d

a

S

cb

• Produce two orders of threads:
– a b c d
– a c b d

• Notice b || c, and orders differ between b and c.

Two Complementary Walks
S

P

d

a

S

cb

• Claim: If e1 precedes e2 in one walk, and e2
precedes e1 in the other, then e1 || e2.

Maintaining both orders in a
single tree walk

• Walk of tree represents execution of
program.
– Can execute program twice, but execution

could be nondeterministic.
– Instead, maintain both thread orderings on-the-

fly, in a single pass.

Order Maintenance Problem

• We need a data structure which supports the
following operations:
– Insert(X,Y): Place Y after X in the list.
– Precedes(X,Y): Does X come before Y?

Naïve Order Maintenance
Structure

• Naïve Implementation is just a linked list

Naïve Order Maintenance Insert

X

Y

• Insert(X,Y) does standard linked list insert

Naïve Order Maintenance Insert

X

Y

• Insert(X,Y) does standard linked list insert

Naïve Order Maintenance Insert

X

Y

• Insert(X,Y) does standard linked list insert

Naïve Order Maintenance Query

X Z

• Precedes(X,Z) looks forward in list.

Naïve Order Maintenance Query

X Z

• Precedes(X,Z) looks forward in list.

Naïve Order Maintenance Query

X Z

• Precedes(X,Z) looks forward in list.

Naïve Order Maintenance Query

ZX

• Precedes(X,Z) looks forward in list.

The algorithm

• Recall, we are thinking in terms of parse
tree.

• Maintain two order structures.
• When executing node x:

– Insert children of x after x in the lists.
– Ordering of children depends on whether x is

an S or P node.

Example
S1

P

d

a

S2

cb

Order 1:

Order 2:

Example
S1

P

d

a

S2

cb

S1Order 1:

S1Order 2:

Example
S1

P

d

a

S2

cb

S1 S2 dOrder 1:

S1 S2 dOrder 2:

Example
S1

P

d

a

S2

cb

S2S1 dOrder 1:

S2S1 dOrder 2:

Example
S1

P

d

a

S2

cb

S2S1Order 1:

Order 2: S1 S2

d

d

a P

a P

Example
S1

P

d

a

S2

cb

Order 1:

Order 2:

S1

S1

S2

S2

d

d

a P

a P

Example
S1

P

d

a

S2

cb

PS1 S2Order 1:

Order 2: S1 S2

d

d

a

Pa

Example
S1

P

d

a

S2

cb

PS1 S2Order 1:

Order 2: S1 S2

d

d

a

a P

b c

c b

Example
S1

P

d

a

S2

cb

Order 1:

Order 2:

S1

S1

S2

S2

d

d

a

a

P

P

b c

bc

Example
S1

P

d

a

S2

cb

cS1 S2Order 1:

Order 2: S1 S2

d

d

a P

a P

b

c b

Example
S1

P

d

a

S2

cb

dS1 S2Order 1:

Order 2: S1 S2 d

a P

a P

b c

c b

Analysis

• Correctness does not depend on execution
– Any valid serial or parallel execution produces

correct results.
• Inserts after x in orders only happen when x

executes.
• Only one processor will ever insert after x.

• Running time depends on implementation
of order maintenance data structure.

Serial Running Time

• Current Nondeterminator does serial
execution.

• Can have O(T1) queries and inserts.
• Naïve implementation is

– O(n) time for query of n-element list.
– O(1) time for insert.
– Total time is very poor: O(T1

2)

Use Dietz and Sleator Order
Maintenance Structure

• Essentially a linked list with labels.
• Queries are O(1): just compare the labels.
• Inserts are O(1) amortized cost.

– On some inserts, need to perform relabel.
• O(T1) operations only takes O(T1) time.

– Gives us linear time Nondeterminator. Better
than SP-bags algorithm.

Parallel Problem

• Dietz and Sleator relabels on inserts
– Does not work concurrently.

• Lock entire structure on insert?
– Query is still O(1).
– Single relabel can cost O(T1) operations.

• Critical path increases to O(T1)
• Running time is O(T1/p + T1).

Parallel Problem Solution

• Leverage the Cilk scheduler:
– There are only O(pT∞) steals

• There is no contention on subcomputations
done by single processor between steals.
– We do not need to lock every insert.

Parallel Problem Solution
Global Structure
Size: O(pT∞)

• Top level is global ordering of subcomputations.
• Bottom level is local ordering of subcomputation

performed on single processor.
• On a steal, insert O(1) nodes into global structure.

Parallel Running Time

• An insert into a local order structure is still O(1).
• An insert into the global structure involves locking

the entire global structure.
– May need to wait for p processors to insert serially.
– Amortized cost is O(p) per insert.
– Only O(pT∞) inserts into global structure.

• Total work and waiting time is O(T1 + p2T∞)
– Running time is O(T1/p + pT∞)

Questions?

	Maintaining SP Relationships Efficiently, on-the-fly
	The Problem
	Parse Tree
	Least Common Ancestor
	Two Complementary Walks
	Two Complementary Walks
	Two Complementary Walks
	Maintaining both orders in a single tree walk
	Order Maintenance Problem
	Naïve Order Maintenance Structure
	Naïve Order Maintenance Insert
	Naïve Order Maintenance Insert
	Naïve Order Maintenance Insert
	Naïve Order Maintenance Query
	Naïve Order Maintenance Query
	Naïve Order Maintenance Query
	Naïve Order Maintenance Query
	The algorithm
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Analysis
	Serial Running Time
	Use Dietz and Sleator Order Maintenance Structure
	Parallel Problem
	Parallel Problem Solution
	Parallel Problem Solution
	Parallel Running Time
	Questions?

