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The Problem

• Fork-Join (e.g. Cilk) programs have threads 
that operate either in series or logically 
parallel.

• Want to query relationship between two 
threads as the program runs.

• For example, Nondeterminator uses 
relationship between two threads as basis 
for determinacy race.
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• Represent SP-DAG as a parse tree
• S nodes show series relationships
• P nodes are parallel relationships



Least Common Ancestor
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• SP-Bags uses LCA lookup.
• LCA of b and d is an S-node

– So b and d are in series
• Cost is α(v,v) per query (in Nondeterminator)



Two Complementary Walks
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• At S-node, always walk left then right
• At P-node, can go left then right, or right then left



Two Complementary Walks
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• Produce two orders of threads:
– a b c d
– a c b d

• Notice b || c, and orders differ between b and c.



Two Complementary Walks
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• Claim: If e1 precedes e2 in one walk, and e2
precedes e1 in the other, then e1 || e2.



Maintaining both orders in a 
single tree walk

• Walk of tree represents execution of 
program. 
– Can execute program twice, but execution 

could be nondeterministic.
– Instead, maintain both thread orderings on-the-

fly, in a single pass.



Order Maintenance Problem

• We need a data structure which supports the 
following operations:
– Insert(X,Y): Place Y after X in the list.
– Precedes(X,Y): Does X come before Y?



Naïve Order Maintenance 
Structure

• Naïve Implementation is just a linked list



Naïve Order Maintenance Insert
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• Insert(X,Y) does standard linked list insert



Naïve Order Maintenance Insert
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• Insert(X,Y) does standard linked list insert



Naïve Order Maintenance Insert
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• Insert(X,Y) does standard linked list insert



Naïve Order Maintenance Query

X Z

• Precedes(X,Z) looks forward in list.



Naïve Order Maintenance Query
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• Precedes(X,Z) looks forward in list.



Naïve Order Maintenance Query
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• Precedes(X,Z) looks forward in list.



Naïve Order Maintenance Query

ZX

• Precedes(X,Z) looks forward in list.



The algorithm

• Recall, we are thinking in terms of parse 
tree.

• Maintain two order structures.
• When executing node x:

– Insert children of x after x in the lists.
– Ordering of children depends on whether x is 

an S or P node.
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Analysis

• Correctness does not depend on execution
– Any valid serial or parallel execution produces 

correct results.
• Inserts after x in orders only happen when x 

executes. 
• Only one processor will ever insert after x.

• Running time depends on implementation 
of order maintenance data structure.



Serial Running Time

• Current Nondeterminator does serial 
execution.

• Can have O(T1) queries and inserts. 
• Naïve implementation is 

– O(n) time for query of n-element list. 
– O(1) time for insert.
– Total time is very poor: O(T1

2)



Use Dietz and Sleator Order 
Maintenance Structure

• Essentially a linked list with labels.
• Queries are O(1): just compare the labels.
• Inserts are O(1) amortized cost.

– On some inserts, need to perform relabel.
• O(T1) operations only takes O(T1) time.

– Gives us linear time Nondeterminator. Better 
than SP-bags algorithm.



Parallel Problem

• Dietz and Sleator relabels on inserts
– Does not work concurrently.

• Lock entire structure on insert?
– Query is still O(1).
– Single relabel can cost O(T1) operations.

• Critical path increases to O(T1)
• Running time is O(T1/p + T1).



Parallel Problem Solution

• Leverage the Cilk scheduler:
– There are only O(pT∞) steals

• There is no contention on subcomputations
done by single processor between steals.
– We do not need to lock every insert.



Parallel Problem Solution
Global Structure
Size: O(pT∞)

• Top level is global ordering of subcomputations.
• Bottom level is local ordering of subcomputation

performed on single processor.
• On a steal, insert O(1) nodes into global structure.



Parallel Running Time

• An insert into a local order structure is still O(1).
• An insert into the global structure involves locking 

the entire global structure.
– May need to wait for p processors to insert serially.
– Amortized cost is O(p) per insert.
– Only O(pT∞) inserts into global structure.

• Total work and waiting time is O(T1 + p2T∞)
– Running time is O(T1/p + pT∞)



Questions?
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