
Funnel Sort*: Cache Efficiency
and Parallelism

Paul Youn, 6.895 Final Project
(5689FPPYaaceijllnnoortuu)

* Developed by Frigo, Leiserson, et. al.

Outline

• Cache Efficient vs Cache Oblivious
• Funnel Sort: How it achieves cache

efficiency
• Performance:

– Serial Execution
– Cache Performance
– Parallel Implementation

• Future Possible Work
• Conclusions

Cache Efficiency and Sorting
• Cache Efficiency: Many sorting algorithms are cache

oblivious, but not cache efficient. For example, a 2-way
recursive sorting algorithm (such as Quick Sort or Merge
Sort).

N elements

N/2 elements N/2 elements

N/4 N/4 N/4 N/4

• At every level all N elements are processed, which
means all N elements are loaded into cache. If loaded
one line at a time, for every L (size of cache line)
elements loaded into cache, there is 1 cache miss: 1/L
amortized cache miss per element.

Cache Performance

• Implies an O(n/L lg n) cache miss bound.
• If Z is the number of lines in a cache, Professor

Bender’s lecture showed cache aware O(n/L *
(log n)/(log Z)) cache miss sorting algorithm by
doing an O(Z)-way merge sort.

• Works by decreasing the height of the tree.
• Can we achieve this bound with a cache-

oblivious algorithm? Yes!

Funnel Sort

• Try to get as close to a Z-way merge as
possible.

• Intuition: Want to recursively lay out a K-
way merge (lets call it a K-funnel) to
consist of smaller funnels.

• Important that all K-funnels be the same
size no matter what location in the sort
tree!

• Note that all
K-funnels will
be of the
same size
regardless of
the size of
inputs.

• At some
point, K is
small enough
that the K-
way merge
fits into
cache.

When K fits in cache

• For some K, the
entire K-funnel will
fit in cache.

• Now, think of the
original problem as
a series of K
merges, where K is
close to Z.

Funnel Sort cache efficiency

• For the appropriate constants for the size
of buffers, achieve O(n/L * (log n)/(log Z))
cache misses for this cache-oblivious
sorting algorithm.

• Provable that no better cache-oblivious
bound exists.

Performance: Serial Execution

• Actual implementation performed poorly!
• Runs significantly slower than Quicksort

(about 4x as slow).

Why? Possible Reasons
• Bad implementation.
• Runtime not dominated by cache misses.
• Much more memory management than Quick Sort (not in

place).
• Lots of calculations to keep track of buffers and how full

they are.
• Cache dominated by the internal buffers of a funnel, for a

K-funnel, K^2 memory used for internal buffers, 2*K used
for input buffers.

• Rounding errors! Funnel sort relies on taking square
roots, and cube roots often, which in practice yields an
imbalanced funnel.

Cache Performance
• Tested by changing type of item being sorted

from int to long. Should approximately double
the number of cache misses!

• Change in performance is less than 5% slower
in a 4-way merge sort (Cilk Sort, implemented by
Matteo Frigo), implying perhaps that cache
misses are not a large cost.

• Appears that Funnel Sort suffers the smallest
slowdown from increasing the size of data
(versus Quick Sort and Cilk Sort), but difficult to
say accurately.

Parallelize FunnelSort?
• Not terribly practical without a fast serial

implementation.
• Lends well to parallelism.

– Recursive merging can be done on separate
processors.

– Because of buffering, final merge shortly after inputs
start being processed.

– Could use locks on the circular buffers so that
simultaneous reads from the head and writes to the
tail are possible.

– With log(n)/log(Z) processors, possibly O(n) sorting?

Conclusions

• Possible to create a cache-oblivious
sorting algorithm that has cache misses on
the order of a cache-aware algorithm.

• In practice, difficult to implement correctly.
• Extra overhead difficult to recover with the

reduced cache misses.
• Potentially very parallelizable.

	Funnel Sort*: Cache Efficiency and Parallelism
	Outline
	Cache Efficiency and Sorting
	Cache Performance
	Funnel Sort
	When K fits in cache
	Funnel Sort cache efficiency
	Performance: Serial Execution
	Why? Possible Reasons
	Cache Performance
	Parallelize FunnelSort?
	Conclusions

