Funnel Sort*: Cache Efficiency
and Parallelism

Paul Youn, 6.895 Final Project
(5689FPPYaaceljlinnoortuu)

* Developed by Frigo, Leiserson, et. al.

Outline

Cache Efficient vs Cache Oblivious

Funnel Sort: How It achieves cache
efficiency

Performance:

— Serial Execution

— Cache Performance

— Parallel Implementation

Future Possible Work
Conclusions

Cache Efficiency and Sorting

« Cache Efficiency: Many sorting algorithms are cache
oblivious, but not cache efficient. For example, a 2-way

recursive sorting algorithm (such as Quick Sort or Merge
Sort).

[]
e = e

« Atevery level all N elements are processed, which
means all N elements are loaded into cache. If loaded
one line at a time, for every L (size of cache line)
elements loaded into cache, there is 1 cache miss: 1/L
amortized cache miss per element.

Cache Performance

Implies an O(n/L Ig n) cache miss bound.

If Z Is the number of lines in a cache, Professor
Bender’'s lecture showed cache aware O(n/L *
(log n)/(log Z)) cache miss sorting algorithm by
doing an O(Z)-way merge sort.

Works by decreasing the height of the tree.

Can we achieve this bound with a cache-
oblivious algorithm? Yes!

Funnel Sort

e Try to get as close to a Z-way merge as
possible.

* Intuition: Want to recursively lay out a K-
way merge (lets call it a K-funnel) to
consist of smaller funnels.

 Important that all K-funnels be the same
size no matter what location in the sort
tree!

 Note that all Q
K-funnels will Output Buffer
be of the
same Ssize
regardless of
the size of
Inputs.

e At some
point, K Is
small enoug
that the K-
way merge
fits Into

cacte: o B B e

Size K°

Funnel of size K'°

Each buftfer of size hia:

Buffers ;
h HHEL Total size = K°

When K fits In cache

e For some K, the

entire K-funnel will ;
fit In cache.
» Now, think of the SVAVAN

original problem as
a series of K N A }}\
merges, where K Is

close to Z.

IMPLIT=

Funnel Sort cache efficiency

* For the appropriate constants for the size
of buffers, achieve O(n/L * (log n)/(log 2))
cache misses for this cache-oblivious
sorting algorithm.

 Provable that no better cache-oblivious
bound exists.

Performance: Serial Execution

« Actual implementation performed poorly!

* Runs significantly slower than Quicksort
(about 4x as slow).

Why? Possible Reasons

Bad implementation.

Runtime not dominated by cache misses.

Much more memory management than Quick Sort (not in
place).

Lots of calculations to keep track of buffers and how full
they are.

Cache dominated by the internal buffers of a funnel, for a
K-funnel, K2 memory used for internal buffers, 2*K used
for input buffers.

Rounding errors! Funnel sort relies on taking square
roots, and cube roots often, which in practice yields an
Imbalanced funnel.

Cache Performance

* Tested by changing type of item being sorted
from int to long. Should approximately double
the number of cache misses!

 Change In performance is less than 5% slower
In a 4-way merge sort (Cilk Sort, implemented by
Matteo Frigo), implying perhaps that cache
misses are not a large cost.

« Appears that Funnel Sort suffers the smallest
slowdown from increasing the size of data
(versus Quick Sort and Cilk Sort), but difficult to
say accurately.

Parallelize FunnelSort?

* Not terribly practical without a fast serial
Implementation.

* Lends well to parallelism.

— Recursive merging can be done on separate
pProcessors.

— Because of buffering, final merge shortly after inputs
start being processed.

— Could use locks on the circular buffers so that
simultaneous reads from the head and writes to the
tail are possible.

— With log(n)/log(Z) processors, possibly O(n) sorting?

Cutput Bufter Q Size K°

Funnel of size K'*

qlf funmel

Each buftar of size K™~

Butfers \
Total size =K~

[

Inputs H E ﬁﬁ ﬁaﬁ At least total size of K°

Conclusions

Possible to create a cache-oblivious
sorting algorithm that has cache misses on
the order of a cache-aware algorithm.

In practice, difficult to implement correctly.

Extra overhead difficult to recover with the
reduced cache misses.

Potentially very parallelizable.

	Funnel Sort*: Cache Efficiency and Parallelism
	Outline
	Cache Efficiency and Sorting
	Cache Performance
	Funnel Sort
	When K fits in cache
	Funnel Sort cache efficiency
	Performance: Serial Execution
	Why? Possible Reasons
	Cache Performance
	Parallelize FunnelSort?
	Conclusions

