
MIT OpenCourseWare
http://ocw.mit.edu

6.945 Adventures in Advanced Symbolic Programming
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

ps.txt Tue Feb 17 15:47:33 2009 1

 MASSACHVSETTS INSTITVTE OF TECHNOLOGY

 Department of Electrical Engineering and Computer Science

 6.945 Spring 2009

 Problem Set 3

 Issued: Wed. 18 Feb. 2009 Due: Wed. 25 Feb. 2009

Reading:

 SICP, From Chapter 4: 4.1 and 4.2; (pp. 359--411)

 en.wikipedia.org/wiki/Evaluation_strategy

 www.cs.indiana.edu/cgi-bin/techreports/TRNNN.cgi?trnum=TR44

Code: load.scm, utils.scm, ghelper.scm,

syntax.scm, rtdata.scm, interp.scm, repl.scm

 general-procedures.scm

 code is on the class web page... no reason to kill more trees.

Evaluators for Extended Scheme

You will be working with an evaluator system for an extended version

of Scheme similar to the ones described in SICP, Chapter 4. Without a

good understanding of how the evaluator is structured it is very easy

to become confused between the programs that the evaluator is

interpreting, the procedures that implement the evaluator itself, and

Scheme procedures called by the evaluator. You will need to study

Chapter 4 through subsection 4.2.2 carefully in order to do this

assignment.

The interpreters in the code that we will work with in this problem

set are built on the generic operations infrastructure we developed in

the last problem set. (Actually, there is a small change: we specify

a handler with "defhandler" as an alias for "assign-operation". Also,

we allow handlers to be specified without declaring all of the

arguments, avoiding the need for "any?".) Indeed, in these

interpreters, unlike the ones in SICP, EVAL and APPLY are generic

operations! That means that we may easily extend the types of

expressons (by adding new handlers to EVAL) and the types of

procedures (by adding new handlers to APPLY).

Before beginning work on this problem set you should carefully read

the code in interp.scm. Also, look at the difference between the

ghelper.scm in this problem set and the ghelper.scm in the previous

set.

ps.txt Tue Feb 17 15:47:33 2009 2

 Using the generic interpreter

Download the supplied code to a fresh directory in your computer.

Get a fresh Scheme system, and load the file load.scm:

 (load "<your-code-directory>/load")

Initialize the evaluator:

 (init)

You will get a prompt:

 eval>

You can enter an expression at the prompt:

 eval> (define cube (lambda (x) (* x x x)))

 cube

 eval> (cube 3)

 27

The evaluator code we supplied does not have an error system of its

own, so it reverts to the underlying Scheme error system. (Maybe an

interesting little project? It is worth understanding how to make

exception-handling systems!) If you get an error, clear the error

with two control Cs and then continue the evaluator with "(go)" at the

Scheme. If you redo "(init)" you will lose the definition of cube,

because a new environment will be made.

 eval> (cube a)

 ;Unbound variable a

 ;Quit!

 (go)

 eval> (cube 4)

 64

 eval> (define (fib n)

 (if (< n 2) n (+ (fib (- n 1)) (fib (- n 2)))))

 fib

 eval> (fib 10)

 55

You can always get out of the generic evaluator and get back to the

underlying Scheme system by quitting (with two control Cs).

ps.txt Tue Feb 17 15:47:33 2009 3

Problem 3.1: Warmup

In mathematical text a common abuse of notation is to identify a

tuple of functions with a function that returns a tuple of values.

For example, (written in Lisp prefix form)

 If (cos 0.6) ==> 0.8253356149096783

and (sin 0.6) ==> 0.5646424733950354

 then we expect

 ((vector cos sin) 0.6) ==> #(0.8253356149096783 0.5646424733950354)

This requires that an extension to APPLY so it can handle Scheme

vectors as a kind of function. Make this extension; demonstrate it;

show that it interoperates with more conventional code.

Problem 3.2: Unbound-variable handling

In Lisps, including Scheme, attempting to evaluate an unbound symbol

is an unbound-variable error. However, in some algebraic processes it

is sensible to allow an unbound symbol to be a self-evaluating object.

For example, if we generically extend arithmetic to build algebraic

expressions with symbolic values, it is sometimes useful to allow the

following:

(+ (* 2 3) (* 4 5)) ==> 26

(+ (* a 3) (* 4 5)) ==> (+ (* a 3) 20)

In this case, the symbol "a" is unbound and self-evaluating. The

operators "*" and "+" are extended to just build expressions when

their arguments are not reducible to numbers.

Make generic extensions to +, *, -, /, and to EVAL, to allow this kind

of behavior.

Also augment APPLY to allow literal functions, known only by their

names:

(+ (f 3) (* 4 5)) ==> (+ (f 3) 20)

These extensions to EVAL and APPLY are generally dangerous, because

they hide real unbound-variable errors. Make them contingent on the

value of a user-settable variable: ALLOW-SELF-EVALUATING-SYMBOLS.

ps.txt Tue Feb 17 15:47:33 2009 4

Much more powerful extensions are available once we accept generic

operations at this level. For example, we can allow procedures to

have both strict and non-strict arguments.

If you don’t know what we are talking about here please read

the article: http://en.wikipedia.org/wiki/Evaluation_strategy.

If you load the file general-procedures.scm into the underlying

Scheme, after loading (with ’(load "load")’) the generic interpreter,

you will find that there are extensions that allow us to define

procedures with some formal parameters asking for the matching

arguments to be lazy (or lazy and memoized). Other undecorated

parameters take their arguments strictly. These extensions make it

relatively easy to play otherwise painful games. For example, we may

define the UNLESS conditional as an ordinary procedure:

 ;Quit!

 (load "general-procedures" generic-evaluation-environment)

 ;Loading "general-procedures.scm"...

;Warning: Replacing top-level handler

 ;... done

 ;Value: #[compound-procedure 17 operator]

 (go)

 eval> (define unless

 (lambda (condition (usual lazy) (exception lazy))

 (if condition exception usual)))

We may use the usual define abbreviations (see syntax.scm):

 eval> (define (unless condition (usual lazy) (exception lazy))

 (if condition exception usual))

 unless

 eval> (define (ffib n)

 (unless (< n 2)

 (+ (ffib (- n 1)) (ffib (- n 2)))

 n))

 ffib

 eval> (ffib 10)

 55

Notice that UNLESS is declared to be strict in its first argument (the

predicate) but nonstrict in the alternatives: neither alternative will

be evaluated until it is necessary.

http://en.wikipedia.org/wiki/Evaluation_strategy

ps.txt Tue Feb 17 15:47:33 2009 5

Additionally, if we include the file kons.scm we get a special form

that is the non-strict memoized version of CONS. This immediately

gives us the power of infinite streams:

 ;Quit!

 (load "kons" generic-evaluation-environment)

 ;Loading "kons.scm"... done

 ;Value: #[compound-procedure 19 operator]

 (go)

 eval> (define (add-streams s1 s2)

 (kons (+ (car s1) (car s2))

 (add-streams (cdr s1) (cdr s2))))

 add-streams

 eval> (define (ref-stream stream n)

 (if (= n 0)

 (car stream)

 (ref-stream (cdr stream) (- n 1))))

 ref-stream

 eval> (define fibs

 (kons 0

 (kons 1

 (add-streams (cdr fibs) fibs))))

 fibs

 eval> (ref-stream fibs 10)

 55

 eval> (ref-stream fibs 20)

 6765

 eval> (ref-stream fibs 30)

 832040

 eval> (ref-stream fibs 40)

 102334155

ps.txt Tue Feb 17 15:47:33 2009 6

Problem 3.3: Streams

a. The non-strict procedure KONS adds great power to the system.

Notice that there is no need to make CAR or CDR different to obtain

the use of streams. In a short paragraph explain why KONS is almost

sufficient. It may be instructive to read an ancient paper by

Friedman and Wise:

 www.cs.indiana.edu/cgi-bin/techreports/TRNNN.cgi?trnum=TR44

b. Unfortunately, the addition of KONS does not, in itself, solve all

stream problems. For example, the difficulty alluded to in SICP

section 4.2.3 (p. 411) does not automatically dissipate. If we make

the following definitions:

 (define (map-stream proc items)

 (kons (proc (car items))

 (map-stream proc (cdr items))))

 (define (scale-stream items factor)

 (map-stream (lambda (x) (* x factor))

 items))

 (define (integral integrand initial-value dt)

 (define int

 (kons initial-value

 (add-streams (scale-stream integrand dt)

 int)))

 int)

 (define (solve f y0 dt)

 (define y (integral dy y0 dt))

 (define dy (map-stream f y))

 y)

and then we try:

 (ref-stream (solve (lambda (x) x) 1 0.001) 1000)

we will get an error (try it!). Why? Explain the error. What other

declarations should be made in these stream-procedure definitions to

fix all such errors?

ps.txt Tue Feb 17 15:47:33 2009 7

Problem 3.4: Why not?

a. The KONS special form is equivalent to a CONS with both arguments

lazy and memoized. If the arguments were not memoized the computation

(ref-stream fibs 40) in Problem 3.3a above would take a very long

time. Is there ever any advantage to not memoizing? When might it

matter?

b. Why, given that CONS is a strict procedure imported from Scheme,

could we not have defined KONS simply as:

 (define (kons (a lazy memo) (d lazy memo))

 (cons a d))

?

c. More generally, the Lisp community has avoided changing CONS to be

KONS, as recommended by Friedman and Wise. What potentially serious

problems are avoided by using CONS rather than KONS? Assume that we

do not care about small constant factors in performance.

Problem 3.5: Your turn

Invent some fun, interesting construct that can easily be implemented

using generic EVAL/APPLY that would be rather painful without that

kind of generic support. Show us the construct, the implementation,

and some illustrative examples. Enjoy!

