
MIT OpenCourseWare
http://ocw.mit.edu

6.945 Adventures in Advanced Symbolic Programming
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

ps.txt Mon Jan 26 15:35:03 2009 1

 MASSACHVSETTS INSTITVTE OF TECHNOLOGY

 Department of Electrical Engineering and Computer Science

 6.945 Spring 2009

 Problem Set 2

 Issued: Wed. 11 Feb. 2009 Due: Wed. 18 Feb. 2009

Reading:

 SICP sections 2.4 and 2.5

 (Tagged data, Data-directed programming, Generic Operations)

 If you are really interested in generic dispatch see the paper

 by Ernst, et al. Do not obsess over the formal semantics, what

is really interesting here is the way predicate dispatch can be

 used to subsume other kinds of dispatch.

Code: ghelper.scm, generic-specs.scm, generic-sequences.scm, attached.

Documentation:

 The MIT/GNU Scheme documentation

 online at http://www.gnu.org/software/mit-scheme/

 Generic Operations

In this problem set we will explore a variety of methods we can use for

implementing and exploiting generic operations.

The procedures in the file ghelper.scm are an elegant mechanism for

implementing generic-operator dispatch, where the handlers for the

generic operators are specified by the predicates that the arguments

satisfy.

The file generic-specs.scm is an informal programmer’s specification

of generic operations that can be defined over a variety of ordered

linear data structures, such as lists, vectors, and strings.

The file, generic-sequences.scm is a beginning implementation of the

generic operators specified in generic-specs.scm.

Problem 2.1:

Complete the implementation started in generic-sequences.scm to match

the specifications in generic-specs.scm. Demonstrate that each of

your generic operators works as specified, by showing examples. You

should insert your tests as comments in the code you hand in.

Notice that the types in the underlying Scheme are not uniformly

specified, so this is not entirely trivial: in our seed file, for

example, we had to define vector-null?, list-set!, and vector-append

just to fill out things a bit.

http://www.cs.washington.edu/homes/mernst/pubs/dispatching-ecoop98-abstract.html

ps.txt Mon Jan 26 15:35:03 2009 2

Operations like sequence:append can be extended to allow the

combination of unlike sequences. For example, we might expect to be

able to write

(sequence:append (list ’a ’b ’c) (vector ’d ’e ’f))

and get back the list (a b c d e f), assuming that we want a sequence

of the first argument type to be the sequence type of the result.

One way to implement this sort of thing is to write specific handlers

for all the combinations of types we might want. This may be a large

problem. However, the problem can be mitigated by using coercions,

such as vector->list, list->vector, etc. The cost of doing the

coercions is the construction of a new intermediate data structure

that is not needed in the result. This may or may not be important,

depending on the application. With coercions, we make up and use new

combinators to help construct the generic operator entries:

 (define (compose-1st-arg f g)

 (lambda (x y) (f (g x) y)))

 (define (compose-2nd-arg f g)

 (lambda (x y) (f x (g y))))

Using these we can write such things as:

 (assign-operation generic:binary-append

 (compose-2nd-arg vector-append list->vector)

 vector? list?)

 (assign-operation generic:binary-append

 (compose-2nd-arg append vector->list)

 list? vector?)

Problem 2.2:

Examine the generic specifications. What generalizations that mix

combinations of sequence types may be useful? Amend the specification

document so as to include the generalization. (Turn in the amended

specification sheet with your changes clearly indicated.) Amend your

implementation to make these generalizations.

Some of the coercions that you may need are provided by Scheme, but

others may need to be written, such as vector->string. (Consult the

online MIT/GNU Scheme reference manual to see what is and is not

provided.)

ps.txt Mon Jan 26 15:35:03 2009 3

The code for sequence:append illustrates an interesting problem. Our

generic dispatch program does not allow us to make generic operations

with unspecified arity -- that take many arguments -- such as

addition. We programmed around that restriction by defining a binary

generic operation and then using a folding reduction (fold-right) to

extend the binary operation to take an arbitrary number of arguments.

However, the folding reduction needs to know the null sequence of the

type being constructed. Alternatively, we could have extended the

generic dispatch to allow creation of procedures with unspecified

arity. This would allow us to move the folding to the type-specific

procedures rather than make it a wrapper around the binary generic

procedure.

Problem 2.3

Is this a good idea? (Please state and argue your opinion.)

Assuming that we want to do this, what changes would you have to make

in the ghelper.scm file? For example, how would make-generic-operator

have to change? assign-operation?

We do not want you to actually implement these changes, just think

about what would have to be done and informally describe your

conclusions.

Ben Bitdiddle is pleased with our generic sequences but notes that,

beyond generic N-tuples, it is useful also to have generic sets. He

proposes that we further extend our language with:

 (generic:sequence->set <sequence>)

 Returns a list corresponding to <sequence> with no duplicates.

 Duplication is determined using EQUAL? (not EQ? nor EQV?).

 The remaining traditional set operations are straightforward:

 (set:equal? <set-1> <set-2>)

 (set:union <set-1> <set-2>)

 (set:intersection <set-1> <set-2>)

 (set:difference <set-1> <set-2>) - E.g. {A,B,C}\{9,B,D}={A,C}

 (set:strict-subset? <set-1> <set-2>)

Alyssa P. Hacker is quick to point out that an efficient way to

implement sets is as sorted, irredundant lists. She adds, ‘‘Of

course, this would require a generic:less? predicate to induce a total

order on the potential set elements.’’

ps.txt Mon Jan 26 15:35:03 2009 4

To that end, Alyssa proposes the following ordering on types of objects:

 null < Boolean < char < number < symbol < string < vector < list

She notes that MIT Scheme already provides handy implementations of

each of: char<?, <, symbol<? and string<?. Adding that null<? and

boolean<? are straightforward to define and that vector<? can just

cheat and resort to list<? (for now), she cautions that list<?, on the

other hand, must take special care to ensure that:

 (generic:less? x y)

 implies (not (generic:less? y x))

...in order to be well defined (and, thus, well behaved), although

list<? can, of course, leverage generic:less? in any recursive

subexpression predications.

Louis Reasoner, ignoring this advice, proposes the following

implementation of list<?:

(define (list<? list-1 list-2)

 (let ((len-1 (length list-1))

 (len-2 (length list-2)))

 (cond ((< len-1 len-2) #t)

 ((> len-1 len-2) #f)

 ;; Invariant: equal lengths

 ((null? list-1) #f) ; same

 (else

 (or (generic:less? (car list-1) (car list-2))

 (generic:less? (cdr list-1) (cdr list-2)))))))

Alyssa counters that the following is more appropriate:

(define (list<? list-1 list-2)

 (let ((len-1 (length list-1))

 (len-2 (length list-2)))

 (cond ((< len-1 len-2) #t)

 ((> len-1 len-2) #f)

 ;; Invariant: equal lengths

 (else

 (let prefix<? ((list-1 list-1)

 (list-2 list-2))

 (cond ((null? list-1) #f) ; same

 ((generic:less? (car list-1) (car list-2)) #t)

 ((generic:less? (car list-2) (car list-1)) #f)

 (else (prefix<? (cdr list-1) (cdr list-2)))))))))

As a parting shot, Alyssa also advises that entering N^2 items into the

generic dispatch table can be avoided by just defining generic:less?

outright, as per:

(define (generic:less? x y)

 (cond ((null? x) (if (null? y) (null<? x y) #t))

 ((null? y) #f)

 ((boolean? x) (if (boolean? y) (boolean<? x y) #t))

 ((boolean? y) #f)

 ...

 (else (error "Unrecognized data type" x))))

ps.txt Mon Jan 26 15:35:03 2009 5

Problem 2.4:

A. What’s wrong with Louis’ implementation of the list<? predicate?

 Give a simple example and a brief explanation of what problems

 this would cause if it were used in generic:less? to sort sets.

B. Briefly critique Alyssa’s suggesting for implementing generic:less?

 as an explicit case analysis versus using the dispatch table.

C. Implement and demonstrate Ben’s specification for set operations

 using Alyssa’s total ordering of data types (and her list<? code).

 (Feel free to use MIT Scheme’s native SORT procedure.)

D. Critique how your implementation would change had we not taken

 Alyssa’s recommendation of implementing sets as sorted lists.

 Consider both the code size as well as its run-time complexity.

The system for implementing generic operations that we have looked at

so far in this problem set is extremely general and flexible: the

dispatch to a handler is based on arbitrary predicates applied to

the arguments. Most generic operation systems are more constrained,

in that the arguments are presumed to have types that are determined

either statically by some declaration mechanism or by a type tag that

is associated with the argument data. For example, in the SICP

readings for this problem set, the data is tagged and the dispatch is

based on these tags. Such a tagged-data system has important

advantages of efficiency, but it gives up some flexibility.

Problem 2.5:

How much does dispatch on predicates cost? What is the fundamental

efficiency problem here? Imagine that we have a system with tagged

data, but that we test for the tags with predicates. What can be done

with the data tags that can eliminate much of the work of the

predicate-based system?

On the other hand, what do we give up in a more conventional system,

such as the one outlined in SICP, by contrast to the predicate-based

system? What is an example of lost flexibility?

Write a few clear paragraphs expounding on these ideas. Try to

separate accident from essence. (Some aspects of a system are

consequences of accidental choices--ones that could easily be

changed--such as the use of a hash table rather than an association

list. Other aspects are essential in that no local modifications can

significantly change the behavior.)

ps.txt Mon Jan 26 15:35:03 2009 6

;;;; Generic sequence operations

;;; generic-specs.scm

;;; There are many kinds of data that can be used to represent sequences:

;;; examples include strings, lists, and vectors.

;;; There are operations that can be defined for all sequence types.

;;; Constructing

;;;

;;; (sequence:construct <sequence-type> <item-1> ... <item-n>)

;;; Constructs a new sequence of the given type and of size n with

;;; the given elements: item-1 ... item-n

;;; (sequence:null <sequence-type>)

;;; Produces the null sequence of the given type

;;; Selecting

;;;

;;; (sequence:ref <sequence> <i>)

;;; Returns the ith element of the sequence. We use zero-based

;;; indexing, so for a sequence of length n the ith item is

;;; referenced by (sequence:ref <sequence> <i-1>).

;;; (sequence:size <sequence>)

;;; Returns the number of elements in the sequence.

;;; (sequence:type <sequence>)

;;; Returns the predicate defining the type of the sequence given.

;;; Testing

;;;

;;; (sequence:null? <sequence>)

;;; Returns #t if the sequence is null, otherwise returns #f.

;;; (sequence:equal? <sequence-1> <sequence-2>)

;;; Returns #t if the sequences are of the same type and have equal

;;; elements in the same order, otherwise returns #f.

;;; Mutation

;;;

;;; Some sequences are immutable, while others can be changed.

;;;

;;; For those that can be modified we can change an element:

;;;

;;; (sequence:set! <sequence> <i> <v>)

;;; Sets the ith element of the sequence to v.

ps.txt Mon Jan 26 15:35:03 2009 7

;;; Cutting and Pasting

;;;

;;; (sequence:subsequence <sequence> <start> <end>)

;;; The arguments start and end must be exact integers such that

;;; 0 <= start <= end <= (sequence:size <sequence>).

;;; Returns a new sequence of the same type as the given sequence,

;;; of size end-start with elements selected from the given sequence.

;;; The new sequence starts with the element of the given sequence

;;; referenced by start. It ends with the element of the given

;;; sequence referenced by end-1.

;;; (sequence:append <sequence-1> ... <sequence-n>)

;;; Requires that the sequences are all of the same type. Returns

;;; a new sequence of the type, formed by concatenating the

;;; elements of the given sequences. The size of the new sequence

;;; is the sum of the sizes of the given sequences.

;;; Iterators

;;;

;;; (sequence:generate <sequence-type> <n> <function>)

;;; Makes a new sequence of the given sequence type, of size n.

;;; The ith element of the new sequence is the value of the

;;; function at the index i.

;;; (sequence:map <function> <seq-1> ... <seq-n>)

;;; Requires that the sequences given are of the same size and

;;; type, and that the arity of the function is n. The ith element

;;; of the new sequence is the value of the function applied to the

;;; n ith elements of the given sequences.

;;; (sequence:for-each <procedure> <seq-1> ... <seq-n>)

;;; Requires that the sequences given are of the same size and

;;; type, and that the arity of the procedure is n. Applies the

;;; procedure to the n ith elements of the given sequences;

;;; discards the value. This is done for effect.

;;; Filtration and Search

;;;

;;; (sequence:filter <sequence> <predicate>)

;;; Returns a new sequence with exactly those elements of the given

;;; sequence for which the predicate is true (does not return #f).

;;;

;;; (sequence:get-index <sequence> <predicate>)

;;; Returns the index of the first element of the sequence that

;;; satisfies the predicate. Returns #f if no element of the

;;; sequence satisfies the predicate.

;;;

;;; (sequence:get-element <sequence> <predicate>)

;;; Returns the first element of the sequence that satisfies the

;;; predicate. Returns #f if no element of the sequence satisfies

;;; the predicate.

ps.txt Mon Jan 26 15:35:03 2009 8

;;; Accumulation

;;;

;;; (sequence:fold-right <function> <initial> <sequence>)

;;; Returns the result of applying the given binary function,

;;; from the right, starting with the initial value.

;;; For example,

;;; (sequence:fold-right list ’end ’(a b c))

;;; => (a (b (c end)))

;;;

;;; (sequence:fold-left <function> <initial> <sequence>)

;;; Returns the result of applying the given binary function,

;;; starting with the initial value, from the left.

;;; For example,

;;; (sequence:fold-left list ’start ’(a b c))

;;; => (((start a) b) c)

ps.txt Mon Jan 26 15:35:03 2009 9

;;;; Generic sequence operator definitions

;;; generic-sequences.scm

;;; First we declare the operators we want to be generic.

;;; Each declaration specifies the arity (number of arguments)

;;; and the default operation, if necessary.

(define sequence:null

 (make-generic-operator 1 #f))

(define sequence:ref

 (make-generic-operator 2 #f))

(define sequence:size

 (make-generic-operator 1 #f))

(define sequence:type

 (make-generic-operator 1 #f))

(define sequence:null?

 (make-generic-operator 1 #f))

(define sequence:equal?

 (make-generic-operator 2 #f))

(define sequence:set!

 (make-generic-operator 3 #f))

(define sequence:subsequence

 (make-generic-operator 3 #f))

;;; sequence:append takes multiple arguments. It is defined in terms

;;; of a binary generic append that takes a sequence and a list of

;;; sequences.

(define (sequence:append . sequences)

 (if (null? sequences)

 (error "Need at least one sequence for append"))

 (let ((type? (sequence:type (car sequences))))

 (if (not (for-all? (cdr sequences) type?))

 (error "All sequences for append must be of the same type"

 sequences))

 (fold-right generic:binary-append (sequence:null type?) sequences)))

(define generic:binary-append (make-generic-operator 2 #f))

ps.txt Mon Jan 26 15:35:03 2009 10

;;; Implementations of the generic operators.

(define (any? x) #t)

(define (constant val) (lambda (x) val))

(define (is-exactly val) (lambda (x) (eq? x val)))

(assign-operation sequence:null (constant "") (is-exactly string?))

(assign-operation sequence:null (constant ’()) (is-exactly list?))

(assign-operation sequence:null (constant #()) (is-exactly vector?))

(assign-operation sequence:ref string-ref string? exact-nonnegative-integer?)

(assign-operation sequence:ref list-ref list? exact-nonnegative-integer?)

(assign-operation sequence:ref vector-ref vector? exact-nonnegative-integer?)

(assign-operation sequence:size string-length string?)

(assign-operation sequence:size length list?)

(assign-operation sequence:size vector-length vector?)

(assign-operation sequence:type (constant string?) string?)

(assign-operation sequence:type (constant list?) list?)

(assign-operation sequence:type (constant vector?) vector?)

(define (vector-null? v) (= (vector-length v) 0))

(assign-operation sequence:null? string-null? string?)

(assign-operation sequence:null? null? list?)

(assign-operation sequence:null? vector-null? vector?)

;;; To assign to the ith element of a list:

(define (list-set! list i val)

 (cond ((null? list)

 (error "List does not have enough elements" i))

 ((= i 0) (set-car! list val))

 (else (list-set! (cdr list) (- i 1) val))))

(assign-operation sequence:set! string-set!

 string? exact-nonnegative-integer? any?)

(assign-operation sequence:set! list-set!

 list? exact-nonnegative-integer? any?)

(assign-operation sequence:set! vector-set!

 vector? exact-nonnegative-integer? any?)

ps.txt Mon Jan 26 15:35:03 2009 11

(assign-operation sequence:subsequence substring

 string? exact-nonnegative-integer? exact-nonnegative-integer?)

(assign-operation sequence:subsequence sublist

 list? exact-nonnegative-integer? exact-nonnegative-integer?)

(assign-operation sequence:subsequence subvector

 vector? exact-nonnegative-integer? exact-nonnegative-integer?)

(define (vector-append v1 v2)

 (let ((n1 (vector-length v1))

 (n2 (vector-length v2)))

 (make-initialized-vector (+ n1 n2)

 (lambda (i)

 (if (< i n1)

 (vector-ref v1 i)

 (vector-ref v2 (- i n1)))))))

(assign-operation generic:binary-append string-append string? string?)

(assign-operation generic:binary-append append list? list?)

(assign-operation generic:binary-append vector-append vector? vector?)

ps.txt Mon Jan 26 15:35:03 2009 12

;;;; Most General Generic-Operator Dispatch

;;; ghelper.scm

(declare (usual-integrations))

;;; Generic-operator dispatch is implemented here by a discrimination

;;; list, where the arguments passed to the operator are examined by

;;; predicates that are supplied at the point of attachment of a

;;; handler (by ASSIGN-OPERATION).

;;; To be the correct branch all arguments must be accepted by

;;; the branch predicates, so this makes it necessary to

;;; backtrack to find another branch where the first argument

;;; is accepted if the second argument is rejected. Here

;;; backtracking is implemented by OR.

(define (make-generic-operator arity default-operation)

 (let ((record (make-operator-record arity)))

 (define (operator . arguments)

 (if (not (= (length arguments) arity))

 (error:wrong-number-of-arguments operator arity arguments))

 (apply (or (let per-arg

 ((tree (operator-record-tree record))

 (args arguments))

 (let per-pred ((tree tree))

 (and (pair? tree)

 (if ((caar tree) (car args))

 (if (pair? (cdr args))

 (or (per-arg (cdar tree) (cdr args))

 (per-pred (cdr tree)))

 (cdar tree))

 (per-pred (cdr tree))))))

 default-operation

 (error:no-applicable-methods operator arguments))

 arguments))

 (hash-table/put! *generic-operator-table* operator record)

 operator))

(define *generic-operator-table*

 (make-eq-hash-table))

ps.txt Mon Jan 26 15:35:03 2009 13

(define (make-operator-record arity) (cons arity ’()))

(define (operator-record-arity record) (car record))

(define (operator-record-tree record) (cdr record))

(define (set-operator-record-tree! record tree) (set-cdr! record tree))

(define (assign-operation operator handler . argument-predicates)

 (let ((record

 (let ((record

 (hash-table/get *generic-operator-table* operator #f))

 (arity (length argument-predicates)))

 (if record

 (begin

 (if (not (= arity (operator-record-arity record)))

 (error "Incorrect operator arity:" operator))

 record)

 (let ((record (make-operator-record arity)))

 (hash-table/put! *generic-operator-table*

operator

 record)

 record)))))

 (set-operator-record-tree! record

 (bind-in-tree argument-predicates

 handler

 (operator-record-tree record))))

 operator)

(define (bind-in-tree keys handler tree)

 (let loop ((keys keys) (tree tree))

 (let ((p.v (assq (car keys) tree)))

 (if (pair? (cdr keys))

 (if p.v

 (begin

 (set-cdr! p.v

 (loop (cdr keys) (cdr p.v)))

 tree)

 (cons (cons (car keys)

 (loop (cdr keys) ’()))

 tree))

 (if p.v

 (begin

 (warn "Replacing a handler:" (cdr p.v) handler)

 (set-cdr! p.v handler)

 tree)

 (cons (cons (car keys) handler)

 tree))))))

