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MIT 6.972 Algebraic techniques and semidefinite optimization March 9, 2006 

Lecture 9 
Lecturer: Pablo A. Parrilo Scribe: ??? 

In this lecture, we study first a relatively simple type of polynomial equations, namely binomial 
equations. As we will see, in this case there exists a quite efficient solution method. We define next an 
important geometric and combinatorial object associated with every multivariate polynomial, called the 
Newton polytope. Finally, we put together these two notions in the formulation of a family of bounds 
on the number of solutions of systems of polynomial equations. Our presentation of the material here is 
inspired by [Stu02, Chapter 3]. 

Binomial equations 

We introduce in this section a particular kind of polynomial equations, that have nice computational 
properties. A binomial system of polynomial equations is one where each equation has only two terms. 
We also assume that the system has only a finite number of solutions, i.e., the solution set is a finite 
set of points in Cn . We are interested in determining the exact number of solutions, and in efficient 
computational procedures for solving the system. 

Let’s start with an example. Consider the binomial system given by 

32 y8x − 1 = 0 
(1)

23 y2x − yx = 0. 

If we assume that the solutions satisfy x =� 0, y = 0, then we can put these equations in the more 
symmetric form 

2 3 = 1 8x y 
(2)

22x y = 1. 

1 
2Now, by dividing the first equation by the second one, we obtain 4y2 = 1, which has two solutions (y = 

1 
2and y = ). Substituting into the resulting equations for every value of y we have two corresponding −

values of x, so the system has a big total of four complex solutions. 
Let’s try to understand in a big more detail what manipulations we where performing here. For this, 

let’s define the integer matrix 
2 3 

B = 2 1 

corresponding to the exponents in (2). Notice that when we divided the two equations, that is equivalent 
to an elementary row operation in the matrix B, namely subtracting the second row of B from the first 
one. Thus, the operations we have done can be understood as the matrix multiplication UB = C, where 

0 1 2 1 
U = 1 −1 

, C = 0 2 
. 

The fact that the matrix C is lower triangular, is what allows us to start solving the system for y, and 
then backsolving for the other variable. 

It is not too difficult to understand from this example how to generalize this. Let C∗ = C \ {0}, 
and consider a system of binomial equations in n variables, where we are interested in computing (or 
bounding the number of) solutions in (C∗)n . We can always put the system in the normalized form in 
(2). Notice that, in general, the entries of the integer B could be either positive or negative (i.e., we 
write polynomials in xi and x−1, which is fine since xi = 0). �i 

Then, a wellknown result in integer linear algebra (the Hermite normal form of an integer matrix) 
guarantees the existence of a matrix U ∈ SLn(Z) (an integer matrix, with determinant equal to one), 
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4Figure 1: Newton polytope of the polynomial p(x, y) = 5 − xy − x2y2 + 3y2 + x . 

such that C = UB is a lower triangular matrix. We can then use this expression to obtain values for 
the last variable, and backsolve to obtain all solutions. 

How can we determine the number of solutions from this factorization? When backsubstituting 
using C, at each step we have to solve an equation of the type x cii = di, and thus the current number i 
of possible solutions is multiplied by cii|. Therefore, the total number of solutions in (C∗)n will then be |
equal to det(C)| = det(U) det(B)| = det(B)|.| | | 

Remark 1. To compute the Hermite normal form of an integer matrix in Maple, you can use the 
command ihermite. In Mathematica, use instead HermiteNormalForm. 

Newton polytopes 

Many of the polynomial systems that appear in practice are far from being “generic,” but rather present a 
number of structural features that, when properly exploited, allow for much more efficient computational 
techniques. This is quite similar to the situation in numerical linear algebra, where there is a big difference 
in performance between algorithms that take into account the sparsity structure of a matrix and those 
that do not. For matrices, the standard notion of sparsity is relatively straightforward, and relates 
mostly to the number of nonzero coefficients. In computational algebra, however, there exists a much 
more refined notion of sparsity that refers not only to the number of zero coefficients of a polynomial, 
but also to the underlying combinatorial structure. 

This notion of sparsity for multivariate polynomials is usually presented in terms of the Newton 
polytope of a polynomial, defined below. 

Definition 2. Consider a multivariate polynomial p(x1, . . . , xn) = α cαxα . The Newton polytope of 
p, denoted by New(f), is defined as the convex hull of the set of exponents α, considered as vectors in 
Rn . 

Thus, the Newton polytope of a polynomial always has integer extreme points, given by a subset of 
the exponents of the polynomial. 

4Example 3. Consider the polynomial p(x, y) = 5 − xy − x2y2 + 3y2 + x . Its Newton polytope New(f), 
displayed in Figure 1, is the convex hull of the points (0, 0), (1, 1), (2, 2), (0, 2), (4, 0). 

4Example 4. Consider the polynomial p(x, y) = 1 − x2 + xy + 4y . Its Newton polytope New (p) is the 
triangle in R2 with vertices {(0, 0), (2, 0), (0, 4)}. 

Newton polytopes are an essential tool when considering polynomial arithmetic because of the fol
lowing fundamental identity: 

New(g · h) = New(g) + New(h), 

where + denotes the Minkowski addition of polytopes. 
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Example 5. Let p(a, b, c, d) = (a4 + 1)(b4 + 1)(c4 + 1)(d4 + 1) + 2a + 3b + 4c + 5d. Its Newton polytope 
is the hypercube in R4 of side length equal to 4, and with opposing vertices at (0, 0, 0, 0) and (4, 4, 4, 4). 

It is a general theme in computational algebra that the complexity of many problems involving 
polynomials is directly related to some measure of the size of the corresponding Newton polytopes. 
We discuss an example below, in terms of the number of solutions of polynomial equations. We will 
encounter Newton polytopes again later in the course, when discussing the semidefinite characterization 
of polynomials that are sums of squares. 

The Bézout and BKK bounds 

Consider a system of two polynomial equations, p(x, y) = 0, q(x, y) = 0. As we have seen in previous 
lectures, we can solve this by computing the resultant of the polynomials p and q with respect to either 
variable, and then factorizing the corresponding univariate polynomial. If the degree of the polynomials 
is d1 and d2, respectively, then the degree of the resultant is bounded by d1 · d2, and thus the number of 
zeros of the system is at most this number. 

However, when the polynomials p and q are sparse (in the sense defined earlier) then the number of 
solutions can be much smaller. For instance, the system 

a + bx + cy + dy2 = 0 
(3) 

ex + fy + gxy = 0 

has, for a generic choice of the coefficients {a, . . . , g}, exactly three complex roots, while the bound based 
on the individuals degrees (usually called the Bézout bound) will give a total of 2 ×2 = 4. As we will see, 
much sharper bounds can be obtained by considering the Newton polytopes of the individual equations. 

To introduce the main theorem, we need to introduce the following concept, that generalizes the 
notion of volume of a polytope, to a collection of them. 

Definition 6. Consider polytopes P1, . . . , Pn ⊂ Rn, nonnegative scalars λ1, . . . , λn, and let V (λ) = 
Vol(λ1P1 + · · ·+ λnPn). It can be shown that V (λ) is a homogeneous polynomial of degree n. The mixed 
volume MV (P1, . . . , Pn) is the coefficient of this polynomial, corresponding to the monomial λ1λ2 · · ·λn. 

The main result in this area, with different versions due to Bernstein, Kouchnirenko, and Khovanskii, 
relates the number of solutions of a sparse polynomial system with the mixed volume of the Newton 
polytopes of the individual equations. Formally, we have 

Theorem 7. The number of solutions in (C∗)n of a sparse polynomial system of n equations and n 
unknowns is less than or equal to the mixed volume of the n Newton polytopes. If the coefficients are 
“generic” enough, then the upper bound is achieved. 

The basic idea behind the derivation of the theorem is to introduce an additional parameter t in 
the equations, in such a way that for t = 1 we have the original system, while for t = 0 the system is 
binomial, which as we have seen can be solved in an efficient manner. This process is usually called a 
toric deformation, and is somewhat similar in spirit to the homotopies used in interior point methods. 
To make our words a bit more precise, an important fact is that we will not deform to just one binomial 
system, but actually to a collection of them, given by what is called a mixed subdivision of the sum 
of Newton polytopes. The important fact is that the sum of the number of roots of all these binomial 
systems is exactly equal to the mixed volume of the collection of polytopes. 

Example 8. Consider the univariate polynomial 
m p(x) = anx n + an−1x + amx , n−1 + · · ·

where n ≥ m. It is clear that the Newton polytope is the line segment with endpoints in n and m. The 
mixed volume (in this case, just the volume) is equal to n−m. Thus, the BKK bound for this polynomial 
is equal to n−m, which is clearly exact for generic choices of the coefficients. 
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Example 9. Let us consider again the example discussed in (1). The Newton polytope of the first 
polynomial is the line segment with endpoints (0, 0) and (2, 3), while the second one has endpoints (1, 1) 
and (3, 2). If we denote these by P1 and P2, it is easy to see that 

Vol(λ1P1 + λ2P2) = 4λ1λ2, 

and thus the mixed volume of (P1, P2) is equal to 4, which is the number of solutions of (1). 

Application: Nash equilibria 

We can use the results described, to give a bound on the number of Nash equilibria of a game. For 
simplicity, consider the three player case, where each player has two pure strategies. We are interested 
here only in totally mixed equilibria, i.e., those where the players randomize among all their pure 
strategies with nonzero probability (if this is not the case, then by eliminating the never played strategies 
we can reduce the game to the totally mixed case). Thus, the mixed strategies can be parametrized in 
terms of three variables a, b, c ∈ (0, 1), representing the probabilities with which they play their different 
strategies. 

It can be shown that the Nash equilibrium condition result in a polynomial system of the structure 

p11bc + p12b + p13c + p14 = 0


p21ca + p22c + p23a + p24 = 0 (4)

p31ab + p32a + p33b + p34 = 0,


where the coefficients pij are explicit linear functions of the payoffs. The mixed volume of the Newton 
polytopes of these three equations is equal to 2, so the maximum number of totally mixed Nash equilibria 
that a threeplayer, twostrategy game can have is equal to two. 

Theorem 10 ([Stu02, p.82]). The maximum number of isolated totally mixed Nash equilibria for an 
nperson game where each player has two pure strategies is equal to the mixed volume of the n facets of 
the n cube. This number is the closest integer to n!/e. 

There are extensions of this result to the graphical case; see [Stu02] and the references therein for 
details. 
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