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Notation: The set of real symmetric n ×n matrices is denoted Sn . A matrix A ∈ Sn is called positive 
semidefinite if xT Ax ≥ 0 for all x ∈ Rn, and is called positive definite if xT Ax > 0 for all nonzero 
x ∈ Rn . The set of positive semidefinite matrices is denoted Sn and the set of positive definite matrices + 

nis denoted by S++. The cone Sn is a proper cone (i.e., closed, convex, pointed, and solid). + 

PSD matrices 

There are several equivalent conditions for a matrix to be positive (semi)definite. We present below 
some of the most useful ones: 

Proposition 1 The following statements are equivalent: 

•	 The matrix A ∈ Sn is positive semidefinite (A � 0). 

•	 For all x ∈ Rn , xT Ax ≥ 0. 

•	 All eigenvalues of A are nonnegative. 

•	 All 2n − 1 principal minors of A are nonnegative.


There exists a factorization A = BT B.
• 

For the definite case, we have a similar characterization: 

Proposition 2 The following statements are equivalent: 

•	 The matrix A ∈ Sn is positive semidefinite (A � 0). 

•	 For all nonzero x ∈ Rn , xT Ax > 0. 

•	 All eigenvalues of A are strictly positive. 

•	 All n leading principal minors of A are positive. 

• There exists a factorization A = BT B, with B square and nonsingular. 

Here are some useful additional facts: 

•	 If T is nonsingular, A � 0 ⇔ T T AT � 0. 

•	 Schur complement. The following conditions are equivalent: 

A B A � 0 C � 0 

BT C 
� 0 ⇔ 

C −BT A−1B � 0 
⇔ 

A −BC−1BT � 0 
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2 Semidefinite programming 

Semidefinite programming (SDP) is a specific kind of convex optimization problem (e.g., [VB96, Tod01, 
BV04]), with very appealing numerical properties. An SDP problem corresponds to the optimization of 
a linear function subject to matrix inequality constraints. 

An SDP problem in standard primal form is written as: 

minimize C •X 

subject to Ai •X = bi, i = 1, . . . ,m (1) 
X � 0, 

where C,Ai ∈ Sn, and X•Y := Tr(XY ). The matrix X ∈ Sn is the variable over which the maximization 
is performed. The inequality in the second line means that the matrix X must be positive semidefinite, 
i.e., all its eigenvalues should be greater than or equal to zero. The set of feasible solutions, i.e., the set 
of matrices X that satisfy the constraints, is always a convex set. In the particular case in which C = 0, 
the problem reduces to whether or not the inequality can be satisfied for some matrix X. In this case, 
the SDP is referred to as a feasibility problem. The convexity of SDP has made it possible to develop 
sophisticated and reliable analytical and numerical methods to solve them. 

A very important feature of SDP problems, from both the theoretical and applied viewpoints, is the 
associated duality theory. For every SDP of the form (1) (usually called the primal problem), there is 
another associated SDP, called the dual problem, that can be stated as 

maximize bT y 
msubject to Aiyi � C, (2)i=1 

where b = (b1, . . . , bm), and the vector y = (y1, . . . , ym) contains the dual decision variables. 
The key relationship between the primal and the dual problem is the fact that feasible solutions of 

one can be used to bound the values of the other problem. Indeed, let X and y be any two feasible 
solutions of the primal and dual problems respectively. Then we have the following inequality: 

m

X − bT y = (C − Aiyi) •X ≥ 0, (3)C •
i=1 

where the last inequality follows from the fact that the two terms are positive semidefinite matrices. 
From (1) and (2) we can see that the left hand side of (3) is just the difference between the objective 
functions of the primal and dual problems. The inequality in (3) tells us that the value of the primal 
objective function evaluated at any feasible matrix X is always greater than or equal to the value of 
the dual objective function at any feasible vector y. This property is known as weak duality. Thus, 
we can use any feasible X to compute an upper bound for the optimum of bT y, and we can also use 
any feasible y to compute a lower bound for the optimum of Tr(C · X). Furthermore, in the case of 
feasibility problems (i.e., C = 0), the dual problem can be used to certify the nonexistence of solutions 
of the primal. This property will be crucial in our developments. 

2.1 Conic duality 

A general formulation, discussed briefly during the previous lecture, that unifies LP and SDP (as well as 
some other classes of optimization problems) is conic programming. We will be more careful than usual 
here (risking being a bit pedantic) in the definition of the respective spaces and mappings. It does not 
make much of a difference if we are working on Rn (since we can identify a space and its dual), but it 
is “good hygiene” to keep these distinctions in mind, and also useful when dealing on more complicated 
spaces. 
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We will start with two real vector spaces, S and T , and a linear mapping A : S T . Every real →
vector space has an associated dual space, which is the vector space of real­valued linear functionals. We 
will denote these dual spaces by S∗ and T ∗, respectively, and the pairing between an element of a vector 
space and one of the dual as �·, ·� (i.e., f(x) = �f, x�). The dual mapping of A is the unique linear map 

S∗ defined through the property A∗ : T ∗ →
∗y, x�S = �y, Ax�T x ∈ S, y ∈ T ∗.�A ∀

Notice here that the brackets on the left­hand side of the equation represent the pairing in S, and those 
on the right­hand side correspond to the pairing in T . We can then define the primal­dual pair of (conic) 
optimization problems: 

x = b
min �c, x�S s.t. 

A
x ∈ K 

max �y, b�T s.t. c −A∗y ∈ K∗, 

where b ∈ T , c ∈ S∗, K ⊂ S is a proper cone, and K∗ ⊂ S∗ is the corresponding dual cone. Notice that 
exactly the same proof presented earlier works here to show weak duality: 

�c, x�S − �y, b�T = �c, x� TS − �y, Ax�
= �c, x� ∗y, x�SS − �A
= ∗y, x�S�c −A
≥ 0. 

In the usual cases (e.g., LP and SDP), the vector spaces are finite dimensional, and thus isomorphic to 
their duals. The specific correspondence between these is given through whatever inner product we use. 

Among the classes of problems that can be interpreted as particular cases of the general conic 
formulation we have linear programs, second­order cone programs (SOCP), and SDP, when we take the 

, the second order cone in n variables, or the PSD cone S
We have then the following natural inclusion relationship among the different optimization classes. 

to be the nonnegative orthant Rncone K +
n 
+. 

LP ⊆ SOCP ⊆ SDP. 

2.2 Geometric interpretation: separating hyperplanes 

To be written. 

2.3 Strong duality in SDP 

We have seen that weak duality always holds for conic LP. As opposed to the LP case, strong duality 
can fail in SDP (and thus, in general conic programming). A nice example is given in [VB96, p. 65], 
where both the primal and dual problems are feasible, but their optimal values are different (i.e., there 
is a nonzero finite duality gap). 

Nevertheless, under relatively mild constraint qualifications (Slater’s condition, equivalent to the 
existence of strictly feasible primal and dual solutions) that usually satisfied in practice, SDP problems 
have strong duality, and thus zero duality gap. 

There are several geometric interpretations of what causes the failure of strong duality for general SDP 
problems. A good one is based on the fact that the image of a proper cone under a linear transformation 
is not necessarily a proper cone. This fact seems quite surprising (or even wrong!) the first time one 
encounters it, but after a little while it starts being quite reasonable. Can you think of an example where 
this happens? What property will fail? 

It should be mentioned that it is possible to formulate a more complicated SDP dual program 
(called the “Extended Lagrange­Slater Dual” in [Ram97]) for which strong duality always holds. For 
details, as well as a comparison with the more general “minimal cone” approach, we refer the reader to 
[Ram97, RTW97].
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3 Applications 

There have been many applications of SDP in a variety of areas of applied mathematics and engineering. 
We present here just a few, to give a flavor of what is possible. Many more will follow. 

3.1 Lyapunov stability and control 

Consider a linear difference equation (i.e., a discrete­time linear system) given by 

x(k + 1) = Ax(k), x(0) = x0. 

It is well­known (and relatively simple to prove) that x(k) converges to zero for all initial conditiosn x0 

iff λi(A)| < 1, i = 1, . . . n.|
There is a simple characterization of this spectral radius condition in terms of a quadratic Lyapunov 

function V (x(k)) = x(k)T Px(k): 

|λi(A)| < 1 ∀i ⇐⇒ ∃P � 0 AT P A − P � 0 

Proof 

=) Let Av = λv. Then,• (⇐
20 > v T (AT PA − P )v = ( λ − 1) �v T ��P v �,| |

>0 

and therefore |λ| < 1 

∞• (=⇒) Let P = i=0(A
i)T QAi, where Q � 0. The sum converges by the eigenvalue assumption. 

Then, 
∞ ∞

AT PA − P = (Ai)T QAi − (Ai)T QAi = −Q � 0 
i=1 i=0 

Consider now the case where A is not stable, but we can use linear state feedback, i.e., A(K) = 
A + BK, where K is a fixed matrix. We want to find a matrix K such that A + BK is stable, i.e., all 
its eigenvalues have absolute value smaller than one. 

Use Schur complements to rewrite the condition: 

(A + BK)T P (A + BK) − P � 0, P � 0 

P (A + BK)T P 
P (A + BK) P 

� 0 

Condition is nonlinear in (P, K). However, we can do a congruence transformation with Q := P−1, and 
obtain: � � 

Q Q(A + BK)T 

(A + BK)Q Q 
� 0 

Now, defining a new variable Y := KQ we have 

Q QAT + Y T BT 

AQ + BY Q 
� 0. 

This problem is now linear in (Q, Y ). In fact, it is an SDP problem. After solving it, we can recover the 
controller K via K = Q−1Y . 
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3.2 Theta function 

Given a graph G = (V, E), a stable set is a subset of V with the property that the induced subgraph 
has no edges. In other words, none of the selected vertices are adjacent to each other. 

The stability number of a graph, usually denoted by α(G), is the cardinality of the largest stable 
set. Computing the stability number of a graph is NP­hard. There are many interesting applications of 
the stable set problem. In particular, they can be used to provide bounds on the Shannon capacity of a 
graph [Lov79], a problem of importance in coding. In fact, this was one of the first appearances of what 
today is known as SDP. 

The Lovász theta function is denoted by ϑ(G), and is defined as the solution of the SDP : 

max J • X s.t. 

⎧ ⎪⎨ ⎪⎩ 

Tr(X) = 1 

Xij = 0 (i, j) ∈ E	 (4) 
X � 0 

where J is the matrix with all entries equal to one. The theta function is an upper bound on the stability 
number, i.e., 

α(G) ≤ ϑ(G). 

The inequality is easy to prove. Consider the indicator vector ξ(S) of any stable set S, and define the 
matrix X := 1 ξξT . Is is easy to see that this X is a feasible solution of the SDP, and thus the inequality |S|
follows. 

Software 

Remark There are many good software codes for semidefinite programming. Among the most well­
known, we mention the following ones: 

• SeDuMi, originally by Jos Sturm, now being maintained by the optimization group at McMaster: 
http://sedumi.mcmaster.ca/ 

• SDPT3, by Kim­Chuan Toh, Reha T¨ unc¨ut¨ u, and Mike Todd. http://www.math.nus.edu.sg/ 
~mattohkc/sdpt3.html 

• SDPA, by the research group of Masakazu Kojima, http://grid.r.dendai.ac.jp/sdpa/ 

• CSDP, by Brian Borchers, http://infohost.nmt.edu/~borchers/csdp.html 

A very convenient way of using these (and other) SDP solvers under MATLAB is through the YALMIP 
parser/solver (Johan Löfberg, http://control.ee.ethz.ch/~joloef/yalmip.php). 
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