Fast Fourier Transform: VLSI Architectures

Lecture 10
Vladimir Stojanović

6.973 Communication System Design - Spring 2006 Massachusetts Institute of Technology

Pipelined FFT architectures

- Examples
- Radix-2
- multi-path delay commutator
- single-path delay feedback
- Radix-4
- single-path delay feedback
- multi-path delay commutator
- single-path delay commutator

Figure by MIT OpenCourseWare.

Radix-2 Multi-path Delay Commutator

Figure by MIT OpenCourseWare.

- The most classical approach for pipeline implementation of radix-2 FFT
- Input sequence broken into two parallel data streams flowing forward with correct "distance" between data elements entering the butterfly scheduled by proper delays
- Both butterflies and multipliers are in 50\% utilization

Radix-2 Single-path Delay Feedback

Figure by MIT OpenCourseWare.
[Wold \& Despain '84]

- Uses registers more efficiently
- Both as input and the output of the butterfly
- A single data stream goes through the multiplier at every stage
- Multiplier utilization is also 50\%

Radix-4 Single-path Delay Feedback

[Despain74]

Figure by MIT OpenCourseWare.

Figure by MIT OpenCourseWare.

- Radix-4 butterfly utilization only 25%
- Butterfly fairly complicated
- At least 8 complex adders

Fgureby Mr pencocursevare.

Figure by MIT OpenCourseWare.

Radix-4 Multi-path Delay Commutator

[Swartzlander84]

Figure by MIT OpenCourseWare.

- What is the utilization of
- Butterflies?
- Multipliers?

Figure by MIT OpenCourseWare.

Figure by MIT OpenCourseWare.

Radix-4 Single-path Delay Commutator

[Bi \& Jones ‘89]

Figure by MIT OpenCourseWare

Figure by MIT OpenCourseWare.

- Modified radix-4 algorithm
- Programmable $1 / 4$ radix-4 BF
- 75\% utilization

Figure by MIT OpenCourseWare.

- Used to build one of the largest single-chip FFTs (8192pts) [Bidet'95]

R4SDC commutator and butterfly details

Figure by MIT OpenCourseWare.

Figure by MIT OpenCourseWare.

Figure by MIT OpenCourseWare.

Figure by MIT OpenCourseWare.

Some conclusions

- Delay feedback approaches are always more efficient than corresponding delay-commutator approaches
- In terms of memory utilization
- Since butterfly outputs share same storage with its inputs
- Pipeline architectures require FFT algorithms to be formulated in a "hardware-oriented" form
- Where spatial regularity is preserved in a signal-flow graph (SFG)
- So that arithmetic operations can be tightly scheduled for efficient hardware utilization

Decomposition - a review

$$
X(k)=\sum_{n=0}^{N-1} x(n) W_{N}^{n k} \quad 0 \leq k<N
$$

- Twiddle factor is Nth primitive root of unity
- With exponent evaluated modulo N
- Most fast algorithms share same general strategy
- Map one-dimensional transform int a two or multidimensional representation
- Exploit congruence property of coefficients to simplify computation
- Unlike traditional step-by-step decomposition of twiddle factors
- Cascading the twiddle factor decomposition leads to new forms of FFT with high-spatial regularity

Radix 2^{2} approach

- Start by classical divide-and-conquer radix-2 DIF indexing $\quad \begin{aligned} & n=<{ }_{k}^{n} n_{1}+\frac{N}{4} n_{2}+n_{3}>_{N} \\ & k=\left\langle k_{1}+2 k_{2}+4 k_{3}>_{N}\right.\end{aligned}$
- But, consider the first two steps of decomposition together

$$
\begin{aligned}
& X\left(k_{1}+2 k_{2}+4 k_{3}\right) \\
& =\sum_{n_{3}=0}^{\frac{N}{4}-1} \sum_{n_{2}=0}^{1} \sum_{n_{1}=0}^{1} x\left(\frac{N}{2} n_{1}+\frac{N}{4} n_{2}+n_{3}\right) W_{N}^{\left(\frac{N}{2} n_{1}+\frac{N}{4} n_{2}+n_{3}\right)\left(k_{1}+2 k_{2}+4 k_{3}\right)} \\
& =\sum_{n_{3}=0}^{\frac{N}{4}-1} \sum_{n_{2}=0}^{1} B_{\frac{N}{2}}^{k_{1}}\left(\frac{N}{4} n_{2}+n_{3}\right) W_{N}^{\left(\frac{N}{4} n_{2}+n_{3}\right) k_{1}} S_{N}^{\left(\frac{N}{4} n_{2}+n_{3}\right)\left(2 k_{2}+4 k_{3}\right)} \\
& W_{N}^{\left(\frac{N}{4} n_{2}+n_{3}\right)\left(k_{1}+2 k_{2}+4 k_{3}\right)} \quad \text { the twiddle factor } \mathrm{W}_{\mathrm{N}}^{(\mathrm{N} / 4 \mathrm{n} 2+\mathrm{n} 3) \mathrm{k} 1} \\
& =W_{N}^{N n_{2} k_{3}} W_{N}^{\frac{N}{4} n_{2}\left(k_{1}+2 k_{2}\right)} W_{N}^{n_{3}\left(k_{1}+2 k_{2}\right)} W_{N}^{4 n_{3} k_{3}} \\
& \begin{array}{ll}
=(-j)^{n_{2}\left(k_{1}+2 k_{2}\right)} W_{N}^{n_{3}\left(k_{1}+2 k_{2}\right)} W_{N}^{4 n_{3} k_{3}}
\end{array} \quad B_{\frac{N}{2}}^{k_{1}}\left(\frac{N}{4} n_{2}+n_{3}\right)=x\left(\frac{N}{4} n_{2}+n_{3}\right)+(-1)^{k_{1}} x\left(\frac{N}{4} n_{2}+n_{3}+\frac{N}{2}\right) \\
& X\left(k_{1}+2 k_{2}+4 k_{3}\right)=\sum_{n_{3}=0}^{\frac{N}{4}-1}\left[H\left(k_{1}, k_{2}, n_{3}\right) W_{N}^{n_{3}\left(k_{1}+2 k_{2}\right)}\right]_{\mathrm{BF} \mathrm{I}}^{\frac{N}{4}} W_{n_{3}}^{n_{3}} \\
& \text { [Shouseng and Torkelson 1996] } \\
& \text { New idea is to proceed to shorter DFTs cascading } \\
& H\left(k_{1}, k_{2}, n_{3}\right)=\underbrace{\overbrace{\left[x\left(n_{3}\right)+(-1)^{k_{1}} x\left(n_{3}+\frac{N}{2}\right)\right]}^{\text {BF I }}+(-j)^{\left(k_{1}+2 k_{2}\right)} \overbrace{\left[x\left(n_{3}+\frac{N}{4}\right)+(-1)^{k_{1}} x\left(n_{3}+\frac{3}{4} N\right)\right]}^{\text {BF I }}}_{\text {RF II }}
\end{aligned}
$$

A 16pt example

- Get radix-4-like mulitplier complexity with radix-2 butterfly structures (radix- $\mathbf{2}^{2}$)

$$
\begin{aligned}
& X\left(k_{1}+2 k_{2}+4 k_{3}\right)=\sum_{n_{3}=0}^{\frac{N}{4}-1}\left[H\left(k_{1}, k_{2}, n_{3}\right) W_{N}^{n_{3}\left(k_{1}+2 k_{2}\right)}\right] W_{\frac{N}{4}}^{n_{3} k_{3}} \\
& H\left(k_{1}, k_{2}, n_{3}\right)=\underbrace{\overbrace{\text { BF I }}}_{\underbrace{\left[x\left(n_{3}\right)+(-1)^{k_{1}} x\left(n_{3}+\frac{N}{2}\right)\right]}+(-j)^{\left(k_{1}+2 k_{2}\right)} \overbrace{\left[x\left(n_{3}+\frac{N}{4}\right)+(-1)^{k_{1}} x\left(n_{3}+\frac{3}{4} N\right)\right]}^{\mathrm{BF} \text { II }}}
\end{aligned}
$$

A 64pt radix-2 ${ }^{2}$ example

Image removed due to copyright restrictions.

Radix- ${ }^{2}$ (R2²SDF) architecture

$N=256$

Figure by MIT OpenCourseWare.

Figure by MIT OpenCourseWare

Figure by MIT OpenCourseWare

- One identical to that in R2SDF
- The other contains the logic for trivial twiddle factor multiplication (with j)
- Synchronization control very simple due to spatial regularity
- Just a $\log _{2} \mathrm{~N}$ binary counter

Radix- 2^{2} architecture - Sync control

- log2N-bit binary counter
- Synchronization controller
- Address counter for twiddle factor reading in each stage
- On first N/2 cycles, 2-to-1 mux in BF1 switch to 0
- Butterfly is idle (input data directed to shift registers)
- On next N/2 cycles, muxes in BF1 switch to 1
- Butterfly computes a 2 pt DFT with incoming data and data stored in the shift registers
- Output Z1(n) sent to twiddle multiplier
- Output $\mathrm{Z} 1(\mathrm{n}+\mathrm{N} / 2$) sent back to the shift register to be "multiplied" in next $\mathrm{N} / 2$ cycles, when the first half of the next frame is loaded in

$\begin{array}{ll}Z 1(n) & =x(n)+x(n+N / 2) \\ Z 1(n+N / 2) & =x(n)-x(n+N / 2)\end{array} \quad, 0 \leq n<N / 2$
Figure by MIT OpenCourseWare.
- Operation of BF2 is similar, except the "distance" of butterfly input sequence is just N/4 and the trivial multiply logic
- Utilization of the multiplier is 75%
- Next frame can be computed w/o pausing due to the pipelined processing in each stage
- Pipeline register can be inserted between each multiplier and BF stage to improve the performance

Arithmetic complexity

	multiplier \#	adder \#	memory size	control
R2MDC	$2\left(\log _{4} N-1\right)$	$4 \log _{4} N$	$3 N / 2-2$	simple
R2SDF	$2\left(\log _{4} N-1\right)$	$4 \log _{4} N$	$N-1$	simple
R4SDF	$\log _{4} N-1$	$8 \log _{4} N$	$N-1$	medium
R4MDC	$3\left(\log _{4} N-1\right)$	$8 \log _{4} N$	$5 N / 2-4$	simple
R4SDC	$\log _{4} N-1$	$3 \log _{4} N$	$2 N-2$	complex
R22 SDF	$\log _{4} N-1$	$4 \log _{4} N$	$N-1$	simple

Figure by MIT OpenCourseWare.

- R2²SDF has reached minimum requirement for both multiplier and storage
- Only R4SDC better in terms of adder usage
- R2²SDF well suited for VLSI implementations of pipeline FFT processors

Memory issues

- The area/power consumption in the pipeline architectures dominated by the
- FIFO register files at each stage
- Complex multipliers at each (or every other stage)
- To diminish the unnecessary data moving in the FIFO need to reconstruct the storage
- A known approach is to use FIFO with 2-port RAM
- With read and write addresses displaced by a constant
- 2-port RAM cells 33\% more area of the 1-port RAM cell
- Use two N/2 1-port RAMs
- Read and write interleaved
- Each active every other cycle

Figure by MIT OpenCourseWare.

Figure by MIT OpenCourseWare.

Single stage hardware example

Figure by MIT OpenCourseWare.

- Fold stages onto each other
- Need constant geometry signal flow graph
- Big price in area for parallelism (within each stage)

Radix-8 Pipelined/Parallel implementation

- A 64pt FFT example for 802.11a

$$
\begin{aligned}
& A(r)=\sum_{k=0}^{x-1} B(k) W_{i}^{*}
\end{aligned}
$$

- Two dimensional structure of 8pt FFTs
- The number of nontrivial complex multiplications is 49 (7×7)
- Since the first twiddle is always 1
- The number of nontrivial complex multiplications for radix-2 FFT is 66
- Radix-4 (or 2^{2}) FFTs need only 52 multiplies
- Important to note that for 8pt FFT (DIT) no need for multiplies

8pt DIT FFT

Figure from Maharatna, K., E. Grass, and U. Jagdhold. "A 64-point Fourier Transform Chip for High-speed Wireless LAN Application Using OFDM." Solid-State Circuits 39 (2004): 484-493. Copyright 2004 IEEE. Used with permission.

- The only nontrivial multiply is with $1 /$ sqrt(2)
- Easily realize using hardwired shift-and-add

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology.

Block diagram of the FFT unit

Figure from Maharatna, K., E. Grass, and U. Jagdhold. "A 64-point Fourier Transform Chip for High-speed Wireless LAN Application Using OFDM." Solid-State Circuits 39 (2004): 484-493. Copyright 2004 IEEE. Used with permission.

- Two-stages are pipelined
- Fully parallel in each stage (radix-2 8pt FFT, single clk cycle)
- Two performance bottlenecks
- Large number of global wires resulting from the multiplexing of complex data to the 8-point FFTs
- Construction of the multiplier unit to attain the required speed with minimal silicon are is not trivial

Input unit

- Hard wired outputs and data shifting
- To the 8pt FFT
- Reduce de-muxing
- Reduce global wires
- Cannot shift every clk
- Multiplier cannot finish
- Extend latency
- Temporary registers 1,2,3

Figure from Maharatna, K., E. Grass, and U. Jagdhold. "A 64-point Fourier Transform Chip for High-speed Wireless LAN Application Using OFDM." Solid-State Circuits 39 (2004): 484-493. Copyright 2004 IEEE. Used with permission.

Multiplier unit

49 multiplies $\left.{ }^{\left(W_{64}^{s}, s, l\right.} \in\{1,2, \ldots, 7\}\right)$

- Only nine sets unique (cos,sin)

They are $(1,0),(0.995178,0.097961),(0.980773,0.195068)$,
($0.956909,0.290283$), ($0.923828,0.382629),(0.881896$,
$0.471374), \quad(0.831420, \quad 0.555541), \quad(0.773010,0.634338)$, hard-wired constant
($0.707092,0.707092$), where, in each set, the first entry cor-

- Significantly less storage space
- for coefficients
- Turn multiplies into shift\&add
$0.995178\left(1-2^{-8}-2^{-10}+2^{-14}\right)$

Figure from Maharatna, K., E. Grass, and U. Jagdhold. "A 64-point Fourier Transform Chip for High-speed Wireless LAN Application Using OFDM." Solid-State Circuits 39 (2004): 484-493. Copyright 2004 IEEE. Used with permission.

Multiplier unit and scheduling

Utilization of the Different Hard-Wired Constants During the 49 Complex Multiplication Operation

Time instant	Block data from 8point FFT	Const1	Const2	Const3	Const 4	Const5	Const6	Const7	Const8
$\mathrm{T}=0$	$0^{\text {th }}$	'0'	'0'	${ }^{0}{ }^{\text {' }}$	'0'	'0'	'0'	'0'	'0'
$\mathrm{T}=1$	$1^{\text {st }}$	'1'	'1	${ }^{1} 1$	'1'	'1'	'1'	'1'	'0'
T=2	$2^{\text {nd }}$	${ }^{0} 0$	1	${ }^{0} 0$	1	'0'	1	'0,	'1'
T=3		${ }^{\prime} 0$	(1)	${ }^{\prime} 0$	1	${ }^{\prime} 0$	1	'0'	'0'
T=4	$3^{\text {rd }}$	${ }^{1}$ '	'1'	'1'	T 1	'1'	'1'	'1'	'0'
T=5	$4^{\text {th }}$	'0'	${ }^{\circ}{ }^{\prime}$	${ }^{0} 0$	1	${ }^{\circ} 0$	'0'	'0'	'1'
T=6		'0'	${ }^{\circ}{ }^{\prime}$	'0'	${ }^{\prime} 1{ }^{\prime}$	'0'	'0'	'0'	'0'
$\mathrm{T}=7$		${ }^{\prime}{ }^{\prime}$	'0'	${ }^{\circ} 0$	${ }^{\prime \prime}{ }^{\prime}$	'0'	'0'	${ }^{\prime} 0$	'1'
T=8		'0'	${ }^{\circ}{ }^{\prime}$	${ }^{\prime} 0$	${ }^{1}$	'0'	'0'	'0'	'0'
$\mathrm{T}=9$	$5^{\text {th }}$	'1'	'1'	'I'	-	'1'	'1'	'1'	${ }^{6} 0$
$\mathrm{T}=10$	$6^{\text {th }}$	'0'	1	${ }^{\circ}{ }^{\prime}$	1	'0'	1	'0'	'1'
$\mathrm{T}=11$		'0'	(1)	${ }^{\circ}{ }^{\prime}$	1)	'0'	1,	'0'	'0'
$\mathrm{T}=12$	$7^{\text {th }}$	'1'	. ${ }^{\prime}$	'1'	'1'	'1'	' 1 '	'1'	'0'

Figures from Maharatna, K., E. Grass, and U. Jagdhold. "A 64-point Fourier Transform Chip for High-speed Wireless LAN Application Using OFDM." Solid-State Circuits 39 (2004): 484-493. Copyright 2004 IEEE. Used with permission.

- Some of the coefficients requested concurrently by different FFT outputs
- Solve by adding temp registers in the input unit
- $\sim 50 \%$ less power and area than 8 standard complex multipliers
- Buffer unit similar to input unit, just w/o temporary registers
- Outputs also hardwired with distance of 8

Output unit

- A mirror of input unit
- Just w/o temporary registers
- Control/sync is simple
- 5-bit counter
- Starts counting when input full
- Local counters control
- Input
- Intermediate
- Output units

Figure from Maharatna, K., E. Grass, and U. Jagdhold. "A 64-point Fourier Transform Chip for High-speed Wireless LAN Application Using OFDM." Solid-State Circuits 39 (2004): 484-493. Copyright 2004 IEEE. Used with permission.

Readings

- [1] H.e. Shousheng and M. Torkelson "A new approach to pipeline FFT processor," Parallel Processing Symposium, 1996., Proceedings of IPPS '96, The 10th International no. SN -, pp. 766-770, 1996.
- [3] H.e. Shousheng and M. Torkelson "Designing pipeline FFT processor for OFDM (de)modulation," Signals, Systems, and Electronics, 1998. ISSSE 98. 1998 URSI International Symposium on no. SN -, pp. 257-262, 1998.
- [2] E. Wold and Alvin M. Despain "Pipeline and Parallel-Pipeline FFT Processors for VLSI Implementations," IEEE Trans. Computers vol. 33, no. 5, pp. 414-426, 1984.
- [3] G. Bi and E.V. Jones "A pipelined FFT processor for word-sequential data," Acoustics, Speech, and Signal Processing [see also IEEE Transactions on Signal Processing], IEEE Transactions on vol. 37, no. 12 SN - 0096-3518, pp. 1982-1985, 1989.
- [4] K. Maharatna, E. Grass and U. Jagdhold "A 64-point Fourier transform chip for highspeed wireless LAN application using OFDM," Solid-State Circuits, IEEE Journal of vol. 39, no. 3 SN -0018-9200, pp. 484-493, 2004.
- Interesting DIT\&F algorithm
- [4] C. Chiu, W. Hui, T.J. Ding and J.V. McCanny "A 64-point Fourier transform chip for video motion compensation using phase correlation," Solid-State Circuits, IEEE Journal of vol. 31, no. 11 SN -0018-9200, pp. 1751-1761, 1996.
- Power-performance estimation
- [2] S. Hong, S. Kim, M.C. Papaefthymiou and W.E. Stark "Power-complexity analysis of pipelined VLSI FFT architectures for low energy wireless communication applications," Circuits and Systems, 1999. 42nd Midwest Symposium on vol. 1, no. SN -, pp. 313-316 vol. 1, 1999.
- [3] K. Pagiamtzis and P.G. Gulak "Empirical performance prediction for IFFT/FFT cores for OFDM systems-on-a-chip," Circuits and Systems, 2002. MWSCAS-2002. The 2002 45th Midwest Symposium on vol. 1, no. SN -, pp. l-583-6 vol.1, 2002.

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006.
MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology.
Downloaded on [DD Month YYYY].

