Fast Fourier Transform: Practical aspects and Basic Architectures

Lecture 9 Vladimir Stojanović

6.973 Communication System Design – Spring 2006 Massachusetts Institute of Technology

Multiplication complexity per output point

CTFFT and SRFFT

Figure by MIT OpenCoursWare.

Multiplies and adds

1	N	Radix 2	Radix 4	SRFFT	PFA	Winograd
16		24	20	20		
	30				100	68
32		88		68		
	60				200	136
64		264	208	196		
	120				460	276
128		712		516		
	240				1100	632
256		1800	1392	1284		
	504				2524	1572
512		4360		3076		
	1008				5804	3548
1024		10248	7856	7172		
2048		23560		16388		
	2520				17660	9492

Real multiplies

N		Radix 2	Radix 4	SRFFT	PFA	Winograd			
16		152	148	148					
	30				384	384			
32		408		388					
	60				888	888			
64		1032	976	964					
	120				2076	2076			
128		2504		2308					
	240				4812	5016			
256		5896	5488	5380					
	504				13388	14540			
512		13566		12292					
	1008				29548	34668			
1024		30728	28336	27652					
2048		68616		61444					
	2520				84076	99628			

Real adds

Figure by MIT OpenCourseWare. Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006.

MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology.

Downloaded on [DD Month YYYY].

Structural considerations

- How to compare different FFT algorithms?
- Many metrics to choose from
- The ease of obtaining the inverse FFT
- In-place computation
- Regularity
 - Computation
 - Interconnect
- Parallelism and pipelining
- Quantization noise

Inverse FFT

- FFTs often used for computing FIR filtering
 - Fast convolution (FFT + pointwise multiply + IFFT)
- In some applications (like 802.11a)
 - Can reuse FFT block to do the IFFT (half-duplex scheme)
- Simple trick [Duhamel88]
 - Swap the real and imaginary inputs and outputs
 - If FFT(x_R,x_I,N) computes the FFT of sequence x_R(k)+jx_I(k)
 - Then $FFT(x_I, x_R, N)$ computes the IFFT of $jx_R(k)+x_I(k)$

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology.

14117

Downloaded on [DD Month YYYY].

In-place computation

Most algorithms allow in-place computation

- Cooley-Tukey, SRFFT, PFA
- No auxiliary storage of size dependent on N is needed
- WFTA (Winograd Fourier Transform Algorithm) does not allow in-place computation
 - A drawback for large sequences

Cooley-Tukey and SRFFT are most compatible with longer size FFTs

Regularity, parallelism

Regularity

- Cooley-Tukey FFT very regular
 - Repeat butterflies of same type
 - Sums and twiddle multiplies
- SRFFT slightly more involved
 - Different butterfly types in parallel
 - e.g. radix-2 and radix-4 used in parallel on even/odd samples
- PFA even more involved
 - Repetitive use of more complicated modules (like cyclic convolution, for prime length DFTs)
- WFTA most involved
 - Repetition of parts of the cyclic conv. modules from PFA
- Parallelization
 - Fairly easy for C-TFFT and SRFFT
 - Small modules applied on sets of data that are separable and contiguous
 - More difficult for PFA
 - Data required for each module not in contiguous locations

Quantization noise

- Roundoff noise generated by finite precision of operations inside FFT (adds, multiplies)
- CTFFT (lengths 2ⁿ)
 - Four error sources per butterfly (variance 2^{-2B}/12)
 - Total variance per butterfly 2^{-2B}/3
 - Each output node receives signals from a total of N-1 butterflies in the flow graph (N/2 from the first stage, N/4 in the second, ...)
 - Total variance for each output ~ N/3*2-2B
 - Assuming input power 1/3N² (|x(n)|<1/N to avoid overflow)
 - Output power is 1/3N
 - Error-to-signal ratio is then N²2^{-2B} (needs 1 additional bit per stage to maintain SER)
 - Since a maximum magnitude increases by less than 2x from stage to stage we
 can prevent the overflow by requiring that |x(n)|<1 and scaling by ½ from stage-tostage
 - The output will be 1/N of the previous case, but the input magnitude can be Nx larger, improving the SER
 - Error-to-signal ratio is then 4N*2-2B (needs 1/2 additional bit per stage to maintain SER)
 - Radix-4 and SRFFT generate less roundoff noise than radix-2
- WFTA
 - Fewer multiplications (hence fewer noise sources)
 - More difficult to include proper rescaling in the algorithm
 - Error-to-signal ratio is higher than in CTFFT or SRFFT
 - Two more bits are necessary to represent data in WFTA for same error order as CTFFT

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006.

1917

MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Particular cases

- DFT algorithms for real data sequence x_k
 - X_k has Hermitian symmetry $(X_{N-k}=X_k^*)$
 - X_0 is real, and when N even, $X_{N/2}$ real as well
 - N input values map to
 - 2 real and N/2-1 complex conjugate values when N even
 - 1 real and (N-1)/2 complex conjugate values when N odd
- Can exploit the redundancy
 - Reduce complexity and storage by a factor of 2
 - If take the real DFT of x_R and x_I separately
 - 2N additions are sufficient to obtain complex DFT
 - Goal to obtain real DFT with half multiplies and half adds
 - Example DIF SRFFT
 - X_{2k} requires half-length DFT on real data
 - Then b/c of Hermitian symmetry X_{4k+1}=X^{*}_{4(N/4-k-1)+3}
 - Only need to compute one DFT of size N/4 (not two)

DFT pruning

- In practice, may only need to compute a few tones
 - Or only a few inputs are different from zero
 - Typical cases: spectral analysis, interpolation, fast conv
 - Computing a full FFT can be wasteful
- Goertzel algorithm
 - Can be obtained by simply pruning the FFT flow graph
 - Alternately, looks just like a recursive 1-tap filter for each tone

Related transforms

Mostly focused on efficient matrix-vector product involving Fourier matrix

No assumption made on the input/output vector

- Some assumptions on these leads to related transforms
- Discrete Hartley Transform (DHT)
- Discrete Cosine (and Sine) Transform (DCT, DST)

Related transforms: DHT

$$X_{k} = \sum_{n=0}^{N-1} x_{n} (\cos(2\pi nk/N) + \sin(2\pi nk/N))$$

Proposed as an alternative to DFT

- Initial (false) claims of improved arithmetic complexity
 - Real-valued FFT complexity is equivalent

Self-inverse

- Provided that X₀ further weighted by 1/sqrt(2)
- Inverse real DFT on Hermitian data
 - Same complexity as the real DFT so no significant gain from self-inverse property of DHT

Related transforms: DCT

$$X_k = \sum_{n=0}^{N-1} x_n \cos(2\pi (2k+1)n/4N).$$

Lots of applications in image and video processing

- Scale factor of 1/sqrt(2) for X_0 left out
 - Formula above appears as a sub-problem in length-4N real DFT
 - Multiplicative complexity can be related to real DFT

 $\mu(\text{DCT}(N)) = (\mu(\text{real-DFT}(4N))$

 $-\mu(\text{real-DFT}(2N)))/2.$

- Practical algorithms depend on the transform length
 - N odd: Permutations and sign changes map to real DFT
 - N even: Map into same length real DFT + N/2 rotations

Relationship with FFT

DHT, DCT, DST and related transforms can all be mapped to DFT

[]	1	a	Complex DFT 2 ⁿ	2 real DFT's 2^n $+2^{n+1} - 4$ additions
	RSDFT		b	Real DFT 2 ⁿ	1 real DFT 2^{n-1} + 1 complex DFT 2^{n-2} + $(3.2^{n-2} - 4)$ multiplications + $(2^n + 3.2^{n-2} - n)$ additions
	$ \begin{array}{c} A \\ \bullet \\ b \\ \bullet \\ \end{array} \begin{array}{c} 6 \\ \bullet \\ a \\ \hline 2 \\ a \\ \hline 2 \\ a \\ \hline \end{array} \right) $	2	a	Real DFT 2 ⁿ	1 real DFT $2^{n-1} + 2$ DCTs $2^{n-2} + 3 \cdot 2^{n-1} - 2$ additions
$(1) a \rightarrow (1) $			b	DCT 2 ⁿ	1 real DFT 2^{n} + $(3.2^{n-1} - 2)$ multiplications + $(3.2^{n-1} - 3)$ additions
↓ ③ ^b	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	3	a	Complex DFT 2 ⁿ	1 odd DFT 2^{n-1} + 1 complex DFT 2^{n-1} + 2^{n+1} additions
b v a	b ¥ a		b	Odd DFT 2 ⁿ⁻¹	2 complex DFT's 2^{n-2} + 2(3. 2^{n-2} -4) multiplications + (2^{n} +3. 2^{n-1} -8) additions
	DHI	4	a	Real DFT 2 ⁿ	1 DHT 2 ⁿ -2 additions
₩ PT (2D)			b	DHT 2 ⁿ	1 real DFT 2 ⁿ +2 additions
		5		Complex DFT 2 ⁿ x2 ⁿ	3.2^{n-1} odd DFT $2^{n-1} + 1$ complex DFT $2^{n-1}x2^{n-1} + n.2^{n}$ additions
		6	a	Real DFT 2 ⁿ	1 real symmetric DFT $2^{n} + 1$ real antisymmetric DFT $2^{n} + (6n+10), 4^{n-1}$ additions
			b	Real symmDFT 2 ⁿ	1 real symmetric DFT $2^{n-1} + 1$ inverse real DFT + $3(2^{n-3}-1)+1$ multiplications + $(3n-4) \cdot 2^{n-3}+1$ additions

All transforms use split-radix algorithms Figure by MIT OpenCourseWare.
 For minimum number of operations

Pliř

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006.

MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology.

Downloaded on [DD Month YYYY].

Implementation issues

- General purpose computers
- Digital signal processors
- Vector/multi processors
- VLSI ASICs

Implementation on general purpose computers

- FFT algorithms built by repetitive use of basic building blocks
 - CTFFT and SRFFT butterflies are small easily optimizable
 - PFA/WFTA blocks are larger
- More time is spent on load/store operations
 - Than in actual arithmetic (cache miss and memory access latency problem)
 - Locality is of utmost importance
 - This is the reason why PFA and WFTA do not meet the performance expected from their computation complexity!
 - PFA drawback partially compensated since only a few coefficients have to be stored
- Compilers can optimize the FFT code by loopunrolling (lots of parallelism) and tailoring to cache size (aspect ratio)

Digital Signal Processors

- Built for multiply/accumulate based algorithms
- Not matched by any of the FFT algorithms
 - Sums of products changed to fewer but less regular computations
- Today's DSPs take into account some FFT requirements
 - Modulo counters (a power of 2 for CTFFT and SRFFT)
 - Bit-reversed addressing

Vector and multi-processors

- Must deal with two interconnected problems
 - The vector size of the data that can be processed at the maximal rate
 - Has to be full as often as possible
 - Loading of the data should be made from data available inside the cache memory to save time
- In multi-processors performance dependent on interconnection network
 - Since FFT deterministic, resource allocation can be solved off-line
 - Arithmetic units specialized for butterfly operations
 - Arrays with attached shuffle networks
 - Pipelines of arithmetic units with intermediate storage and reordering
 - Mostly favor CTFFTs

ASICs

- Area and throughput are important
 - A area, T- time between two successive DFT computations
 - Asymptotic lower bound for AT²

$\Omega_{AT2}(\mathrm{DFT}(N)) = N^2 \log^2(N)$

- Achieved by several micro-architectures
 - Shuffle-exchange networks
 - Square grids
- Outperform the more traditional micro-architectures only for very large N
 - Cascade connection with variable delay
- Dedicated chips often based on traditional micro-architectures efficiently mapped to layout
 - Cost dominated by number of multiplies but also by cost of communication
 - Communication cost very hard to estimate
- Dedicated arithmetic units
 - Butterfly unit
 - CORDIC unit
- Still, many heuristics and local tricks to reduce complexity and improve communication

Architectures

- 1, N, N² cell type direct transform
- Cascade (pipelined) FFT
- FFT network
- Perfect-shuffle FFT
- CCC network FFT
- The Mesh FFT

The naive approach

$$\begin{bmatrix} X_0 \\ \cdot X_1 \\ X_2 \\ \vdots \\ X_{N-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & \dots & 1 \\ 1 & W_N & W_N^2 & W_N^3 & \dots & W_N^{N-1} \\ 1 & W_N^2 & W_N^4 & W_N^6 & \dots & W_N^{2(N-1)} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & W_N^{N-1} & W_N^{2(N-1)} & \dots & \dots & W_N^{(N-1)(N-1)} \end{bmatrix} \times \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_3 \\ \vdots \\ x_{N-1} \end{bmatrix}$$

Compute all terms in the matrix-vector product

- N² multiplications required
- Three degrees of parallelism
 - Calculate on one multiply-add cell
 - On N multiply-add cells
 - On N² multiply-add cells

1 multiply-add cell

Performance O(N²logN)

For large FFTs storage of intermediate results is a problem

- N-long FFT requires
 - N/r*log_rN, radix-r butterfly operations
 - 2N*log_rN read or write RAM accesses
 - E.g. to do the 8K FFT in 1ms, need to access internal RAM every 9ns, using radix-4

To speed up

- Either use higher radix (to reduce the overall number of memory accesses at the price of increase in arithmetic complexity)
- Or partition the memory to r banks accessed simultaneously (more complex addressing and higher area)
- Need a very high rate clock

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006.

MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology.

Downloaded on [DD Month YYYY].

Cascade FFT

- Cascade of logN multiply-add cells
 - Nicely suited for decimation in frequency FFT

Figure by MIT OpenCourseWare.

E.g. 8pt DIF FFT

Figure by MIT OpenCourseWare.

Produces the output values in bit-reversed order

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

FFT network

- One of the most obvious implementations
 - Provide a multiply-add cell for each execution statement
 - Each cell also has a register holding a particular value of z^j (twiddle factor)
 - How many such cells do we need for length-N (radix-2 DIT)?
- One possible layout
 - logN rows, N/2 cells each row
- Pipelined performance O(logN)
 - A new problem instance can enter the network as soon as the previous one has left the first row
 - Delay limited by cell's multiply-add and long-wire driver to the next row O(logN)
 - Total network delay is O(log²N)

Figure by MIT OpenCourseWare.

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

FFT network

- Inputs are in "bit-shuffled" order (decimated)
- Outputs are in "bit-reversed" order
 - Minimizes the amount of interconnects
- General scheme for interconnections
 - Number the cells naturally
 - 0 to N/2-1, from left to right
 - Cell i in the first row is connected to two cells in the second row
 - Cell i and (i+N/4) mod N/2
 - Cell i in the second row is connected to cells
 - i and floor(i/(N/4))+((i+N/8) mod N/4) in the third row
 - Cell i in the k-th row (k=1,...logN-1) is connected to (k+1)-th row

Figure by MIT OpenCourseWare.

25

Cell i and cell floor(i/(N/2^k))+((i+N/2^{k+1}) mod N/2^k)

The perfect-shuffle network

N/2 element network perfectly suited for FFT, radix-2 DIT

- Each multiply-add cell associated with x_k and x_{k+1} (k- even number between 0 and N-1)
- A connection from cell with x_k to cell with x_j when j=2k mod N-1 (this mapping is one-to-one)
 - Represents "circular left shift" of the logN-bit binary representation of k
- First the x_k values are loaded into cells
- In each iteration, output values are shuffled among cells
- At the end of logN steps, final data is in cell registers in bitreversed order

Cube-Connected-Cycles (CCC) network

Figure by MIT OpenCourseWare.

- N cells capable of performing N-element FFT in O(logN) steps
- Closely related to the FFT network
 - Just has circular connections between first and last rows (and uses N instead of N/2logN cells)
 - Does not exist for all N (only for N=(K/2)*logK for integer K

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

The Mesh implementation

Approximately sqrt(N) rows and columns
 N-long FFT in logN steps

Figure by MIT OpenCourseWare.

- View as time-multiplexed version of the FFT network
 - In each step, N/2 nodes take the role of N/2 cells in FFT network
 - Other half routes the data other nodes

Performance summary

Design	Area	Time	Area*Time ²	Delay
1-cell DFT N-cell DFT N^2 -cell DFT 1-proc FFT Cascade FFT Network Perfect Shuffle CCC	$\frac{N \log N}{N \log N}$ $\frac{N^2 \log N}{N \log N}$ $\frac{N \log N}{N^2}$ $\frac{N^2}{N^2} / \log^2 N$ $\frac{N^2}{N^2} / \log^2 N$	$N^{2}\log N$ $N \log N$ $\log N$ $\log N$ $\log N$ $\log N$ $\log^{2} N$ $\log^{2} N$ $\log^{2} N$	$N^{5}\log^{3}N$ $N^{3}\log^{3}N$ $N^{2}\log^{3}N$ $N^{3}\log^{5}N$ $N^{3}\log^{3}N$ $N^{2}\log^{2}N$ $N^{2}\log^{2}N$ $N^{2}\log^{2}N$	$N^{2}\log N$ $N^{2}\log N$ $N^{2}\log N$ $N \log^{2}N$ $\log^{2}N$ $\log^{2}N$ $\log^{2}N$ $\log^{2}N$
Mesh	$N \log^2 N$	\sqrt{N}	$N^2 \log^2 N$	\sqrt{N}

Figure by MIT OpenCourseWare.

- Cascade FFT has the best trade-off
 - Less complicated wiring and NlogN delay
- FFT network is as fast as N² cell FFT but much less area (only N/2logN cells)
- Perfect-Shuffle and CCC use less cells than FFT network, but take a bit more time

Readings

- [1] C.D. Thompson "Fourier Transforms in VLSI," no. UCB/CSD-82-105, 1982.
 - Same, but hard to find publication
 - [2] C.D. Thompson "Fourier Transforms in VLSI," *IEEE Trans. Computers* vol. 32, no. 11, pp. 1047-1057, 1983.
- [3] P. Duhamel and M. Vetterli "Fast fourier transforms: a tutorial review and a state of the art," *Signal Process.* vol. 19, no. 4, pp. 259-299, 1990.

