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Bandlimited communication systems

Lecture 3
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Passband channel example
Two-ray wireless channel (multi-path – 1+0.9D)

Multi-path creates notching in frequency domain
Just slide the frequency window to bb

Add single-sided noise
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Bandlimited channel example
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Low-pass channel causes pulse attenuation and dispersion
Notches cause ripples in time domain
Makes it hard to transmit successive messages
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Inter-Symbol Interference (ISI)
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Error!

Middle sample is corrupted by 0.2 trailing ISI (from the previous 
symbol), and 0.1 leading ISI (from the next symbol) resulting in 
0.3 total ISI
As a result middle symbol is detected in error
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Bandlimited communication systems
Block detector vs. symbol-by-symbol

Block of K symbols – MK messages
MAP/ML detector complexity grows exponentially

MK basis functions (branches in the matched filter)
Sequence detection can bound that growth

Simpler detector is “Symbol-By-Symbol”
Optimal for AWGN channel
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Symbol-by-symbol detection

Suffers significantly from Intersymbol-interference (channel memory), 
so need to remove ISI to get almost AWGN channel
Need to adapt basis functions to the particular channel, to avoid ISI
Alternatively, use equalization to remove ISI
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Vector channel - revisited
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Mean-distortion
Treat ISI as noise

Peak-distortion
Treat worst-case ISI as constellation offset
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Matched Filter Bound
You can’t do better with successive 
transmissions than with one-shot
Matched filter collects the pulse energy ||p||2
Then calculate performance as on AWGN

Example – binary transmission

Will use MFB to compare different ISI 
compensation techniques
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Nyquist criterion – 6.011 revisited
A channel specified by pulse response p(t) is 
ISI free if

Nyquist frequency: w=pi/T or f=1/2T
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Raised-cosine pulses
Can have “excess” bandwidth as long as 
there is symmetry that “fills” the aliased 
spectrum flat
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Basic equalization concepts

Zero-forcing equalization
Flattens equalized channel transfer function

H(D)=Q(D)*W(D) Wzfe(D)=1/(Q(D)||p||)

X =

Channel Q(w) Equalizer W(w) Equalized 

=>

Q(D) W(D)kx ˆkxky
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Linear equalization
Zero-forcing not good on channels with nulls

Equalizer enhances noise
Remember, Pe depends on both noise and ISI
Balance noise and ISI in the mean-square sense

Minimizing MMSE wrt. Wk
Same as using the orthogonality principle
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ZFE vs. MMSE - LE
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Example: ZFE vs. MMSE LE
1+0.9D channel

Equalizer response

zfe
mmse
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Fractional equalizers

Oversampling in the receiver
Can merge matched filter and equalizer

Can reconstruct original signal from oversampled signal 
(as long as original is band-limited)
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ISI channel model
Oversampled channel representation (3x e.g)
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Finite length equalizer formulation

Write convolution as multiply with Toeplitz matrix

yk zkxk p w

k kz wPx=
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ZFE and MMSE solution
Zero forcing equalizer (ZFE)

Minimum-mean square error (MMSE) equalizer

=>

( ) 1
1 1 , 1 [00...1...00]T T T T

k k k zfe zfez x wPx w P w P PP
−

−∆ ∆ ∆ ∆= = ⇒ = ⇒ = =
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Decision feedback equalizer

Feed-forward equalizer
Matched + whitening filter + remove pre-cursor ISI

Feed-back equalizer
Removes trailing ISI
To get w, first puncture the channel matrix to emulate the effect of 
feedback on the equalized pulse response wP
Then, get b from the causal taps of equalized pulse response wP

yk zkxk p w

b
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MMSE DFE
Selects the feedback taps
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Basic multitone modulation

Best performance if basis functions are tailored to the 
channel

Use each tone as a basis function
Each tone transmits narrow QAM signal and satisfies Nyquist
criterion – i.e. no ISI per tone
Put less energy where channel is bad or where there is more noise
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A bit of history
1948 Shannon constructs capacity bounds

AWGN channel with linear ISI – effectively uses multi-tone 
modulation

Analog multi-tone
1958 Collins Kineplex modem (first voiceband modem) – analog 
multitone
1964 Holsinger’s MIT thesis – modem that approximates 
Shannon’s “water-filling”
1967 Saltzberg, 1973 Bell Labs, 1980 IBM …

Digital multi-tone ~ 1990s
DMT for DSL - Major push by prof. Cioffi’s group at Stanford
Use DSP power to improve the robustness and algorithms for 
discrete multi-tone modulation
We will mostly focus on this type of modulation
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Basic multitone transmission

Each tone sees AWGN channel (no ISI)
N QAM-like symbols (complex)
1 PAM symbol
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The effect of the channel

Each channel can be treated as AWGN
With only one basis function – hence simple 
symbol-by-symbol detector is optimal
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Gap review
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Example – simplified multitone
1+0.9D channel

With gap 4.4 dB

Put unit energy per dimension (simply guessed)
Same as baseband DFE

Data rate 1bit/dimension
Re-calculate the necessary SNR – margin

SNRmfb=10dB
SNRmultitone=8.8dB (with more tones to better approx no-ISI case)
SNRdfe=7.1dB
Can do even better with multitone, if allocated energy properly
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Find optimum energy allocation that 
maximizes b for given total energy constraint

b is a convex function in energy/dimension

Use Lagrange multipliers to solve for εn 

=>

d
dεn
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Water-filling derivation



Water-filling spectrum
Flip the channel and pour in energy like water

Channel

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006.
MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology.

 Downloaded on [DD Month YYYY].

6.973 Communication System Design 29

E0 E1 E2 E3

L

g0

L

g1

L

g3

L

g2
L

g4

L

g5

Energy

constant

0 1 2 3 4 5

Subchannel
index

+ =
σ2

H 2 constant.n+ = constantn
n

nng

Figure by MIT OpenCourseWare.



Water-fill loading algorithms

Rate maximization

Margin maximization
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Rate-adaptive loading
Solve through 
matrix inversion

Solve iteratively
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Water-filling example (rate-adaptive)
1+0.9D again (Gap=1, so calculating capacity)

Try 8 dim first

Try 7 dim next
Capacity=1.55bits/dim

=>
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Summary
Bandlimited communication

Block vs. symbol-by-symbol detector
Try to make bandlimited channel look AWGN

Use complex block detectors to orthogonalize basis functions 
(MAP)
Simplify with equalization+sbs detector
Generate basis functions that don’t loose orthogonality when 
passing through frequency selective channle (multitone modulation)

Equalization
ZFE removes ISI but enhances noise
Trade-off by designing MMSE equalizer
DFE removes trailing ISI without noise enhancement

Multitone
Optimal transmission with proper allocation of energy/dimension 
(waterfilling)

Next – practical loading algorithms and DMT/OFDM, Vector 
coding
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