Viterbi Algorithm Advanced Architectures

Lecture 15 Vladimir Stojanović

6.973 Communication System Design – Spring 2006 Massachusetts Institute of Technology

Radix 2 ACS

Figure by MIT OpenCourseWare.

Radix-2 trellis 2-way ACS Radix-2 ACS Unit

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Radix-4 trellis

Figure by MIT OpenCourseWare.

8-state Radix-2 trellis 4-state subtrellis 8-state Radix-4 trellis

Radix - 2 ^k complexity speed measures			
k	Ideal speedup	Complexity increase	Area efficiency
1	1	1	1
2	2	2	1
3	3	4	0.75
4	4	8	0.5
	k 1 2 3 4	Ideal k Ideal 1 1 2 2 3 3 4 4	Ideal speedupComplexity increase11223344

Figure by MIT OpenCourseWare.

Radix-4 ACS

4-way ACS

Radix-4 ACS unit

Figure by MIT OpenCourseWare.

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Radix-4 trellis

Radix-4 ACS implementation

- Use ripple carry adders and comparators
 - Take advantage of the ripple profile to hide the compare
 - Delay 17% longer than 2-way ACS due to
 - Increased adder fanout
 - 4:1 mux instead of 2:1 mux
 - Overall, results in 1.7x speedup compared to 2-way ACS

Image removed due to copyright restrictions.

Figure from from Black, P. J., and T. H. Meng. "A 140-Mb/s, 32-state, Radix-4 Viterbi Decoder." *IEEE Journal of Solid-State Circuits* 27 (1992): 1877-1885. Copyright 1992 IEEE. Used with permission.

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Radix-4 placement and routing

 Paths given as Hamiltonian cycles (visit each node in the graph once)

Images removed due to copyright restrictions.

Modulo arithmetic for ACS

• Viterbi algorithm inherently bounds the maximum dynamic range Δ_{max} of state metrics

 $\Delta_{max} \le \lambda_{max} \log_2 N$ (N-number of states, λ_{max} maximum branch metric of the radix-2 trellis)

- Number theory
 - Given two numbers a and b such that $|a-b| < \Delta$
 - Comparison |a-b| can be evaluated as |a-b| mod 2∆ without ambiguity
- Hence state metrics can be updated and compared modulo $2\Delta_{max}$
 - Choose state metric precision to implement modulo by ignoring the state metric overflow
 - Required state metric precision equal to twice the maximum dynamic range of the updated state metrics
 - Required number of bits is $\Gamma_{bits} = ceil[log_2(\Delta_{max} + k\lambda_{max})] + 1$
 - k accounts for branch metric addition
 - Example values (for the 32-state radix-4 decoder)

• k=2,
$$\lambda_{max}$$
=14, Δ_{max} =70, Γ_{bits} =8

Branch metric unit

Example (8-level soft input, R=1/2, K=6 (32 state)

- $\lambda(S_1S_2)=|G_1-S_1|+|G_2-S_2|$ (G-received sample, S-expected sample) ($\lambda_{max}=14$)
 - 4 bits required for radix-2 branch metrics
 - 5 bits for the radix-4 branch metrics

Images removed due to copyright restrictions.

State-metric initialization

- Need to start from right state metrics for dynamic range bound to hold (and for modulo arithmetic to be valid)
- This is b/c there are constraints on the state metric values imposed by the trellis structure
 - For example state-0 and state-1 have a common ancestor state one iteration back
 - This constrains the state metrics to differ at most by the λ_{max}
- Find the right initial metric through simulation (with all zero inputs) until steady state is reached

Figure removed due to copyright restriction.

Decoder block diagram

Figure by MIT OpenCourseWare.

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Decision memory organization

Survivor paths always merge L=5K steps back

Figure by MIT OpenCourseWare.

Advanced algorithmic transformations

- Sliding block Viterbi decoder (SBVD)
 - Based on two important observations (µ+1=constraint length of the code)
 - 1. Survivor paths merge L=5µ iterations back into the trellis
 - 2. After K=5µ steps, state metrics independent on the initial value of state metrics
- Unknown state at time n can be decoded using only information from the block [n-K, n+L]
- Cannot store all the values in the memory
 - Have to obtain them "on-the-fly"

SBVD implementation

Can find shortest path by running forward or backward

Concatenated

- At step m
 - Forward processing
 - 4 survivors
 - Backward processing
 - 4 shortest paths
 - Combined
 - Smallest concatenated state metri
 - Starting state for trace-back of the shortest path

Figure from Black, P. J., and T. Y. Meng. "A 1-Gb/s, Four-state, Sliding Block Viterbi Decoder." IEEE Journal of Solid-State Circuits 32 (1997): 797-805. Copyright 1992 IEEE. Used with permission.

Continue fw and backw operation

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. 6.973 Communication System Design

Forward

Backward

13

Forward vs. Forward-Backward

Figure from Black, P. J., and T. Y. Meng. "A 1-Gb/s, Four-state, Sliding Block Viterbi Decoder." *IEEE Journal of Solid-State Circuits* 32 (1997): 797-805. Copyright 1992 IEEE. Used with permission.

Can decode more than one state (M – states)

Fw-Bw has reduced decoding delay and skew buffer memory

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Continuous stream processing

Figure from Black, P. J., and T. Y. Meng. "A 1-Gb/s, Four-state, Sliding Block Viterbi Decoder." *IEEE Journal of Solid-State Circuits* 32 (1997): 797-805. Copyright 1992 IEEE. Used with permission.

- Cut the incoming stream in overlapping chunks
- Process in parallel
- Outputs are non-overlapping

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Systolic SBVD architecture

Figure from Black, P. J., and T. Y. Meng. "A 1-Gb/s, Four-state, Sliding Block Viterbi Decoder." *IEEE Journal of Solid-State Circuits* 32 (1997): 797-805. Copyright 1992 IEEE. Used with permission.

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology.

Downloaded on [DD Month YYYY].

Example for L=2

Figure from Black, P. J., and T. Y. Meng. "A 1-Gb/s, Four-state, Sliding Block Viterbi Decoder." *IEEE Journal of Solid-State Circuits* 32 (1997): 797-805. Copyright 1992 IEEE. Used with permission.

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

ACS units

Figures from Black, P. J., and T. Y. Meng. "A 1-Gb/s, Four-state, Sliding Block Viterbi Decoder." *IEEE Journal of Solid-State Circuits* 32 (1997): 797-805. Copyright 1992 IEEE. Used with permission.

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

A 64-state example

- Not fully parallel (8 radix-4 ACS units)
 - 2 radix-4 butterflies in each cycle
 - 8 cycles for 64 states radix-4 (i.e. two radix-2 steps)

Images removed due to copyright restrictions.

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Readings

- [1] A.P. Hekstra "An alternative to metric rescaling in Viterbi decoders," *Communications, IEEE Transactions on* vol. 37, no. 11, pp. 1220-1222, 1989.
- [2] P.J. Black and T.H. Meng "A 140-Mb/s, 32-state, radix-4 Viterbi decoder," *Solid-State Circuits, IEEE Journal of* vol. 27, no. 12, pp. 1877-1885, 1992.
- [3] P.J. Black and T.Y. Meng "A 1-Gb/s, four-state, sliding block Viterbi decoder," Solid-State Circuits, IEEE Journal of vol. 32, no. 6, pp. 797-805, 1997.
- [4] M. Anders, S. Mathew, R. Krishnamurthy and S. Borkar "A 64-state 2GHz 500Mbps 40mW Viterbi accelerator in 90nm CMOS," VLSI Circuits, 2004. Digest of Technical Papers. 2004 Symposium on, pp. 174-175, 2004.

