Trellis Codes

Lecture 12

Vladimir Stojanović

6.973 Communication System Design - Spring 2006

 Massachusetts Institute of Technology
Trellis codes

- Invented by Gottfried Ungerboeck of IBM in 1982
- [1] G. Ungerboeck "Channel coding with multilevel/phase signals," IEEE Transactions on Information Theory, vol. 28, no. 1, pp. 55-67, 1982.
- [2] G. Ungerboeck "Trellis-coded modulation with redundant signal sets Part II: State of the art," IEEE Communications Magazine, vol. 25, no. 2, pp. 12-21, 1987.
- [3] G. Ungerboeck "Trellis-coded modulation with redundant signal sets Part I: Introduction," IEEE Communications Magazine, vol. 25, no. 2, pp. 5-11, 1987.

4-state Ungeroboeck Trellis code

- 1 bit controls the subset (input to conv. encoder)
- 2 bits choose a point in a subset
- Two minimum distance scenarios
- Distance between two points in a subset (2 times greater than uncoded 8SQ QAM)
- When two sequences differ in more than one symbol period
- Symbol points either chosen from even or odd subsets
- Within the odds or evens distance the same as 8SQ QAM
- Diverging at one state and merging at another sate forces the squared distance to be doubled $d_{8 S Q}{ }^{2}+d_{8 S Q}{ }^{2}=2 d_{8 S Q}{ }^{2}$
- So, this code 3dB better than uncoded 8SQ QAM transmission

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006.
MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology.
Downloaded on [DD Month YYYY].

Trellis codes - Motivation

- In multi-level modulations
- Trellis codes allow code design directly for maximization of Euclidean distance
- Hamming distance maximizes Euclidean distance only in binary modulation

General coset (subset) encoder

- $x_{m}-N$ dimensional vector sequence of points
- Each N -dimensional symbol chosen from N -dim constellation
- Sequences of x_{m} are the codewords $x(D)=\operatorname{sum}_{m}\left(x_{m} D^{m}\right)$
- Signal constellation has $2^{b+r g}$ signal points in some coset of N dimensional real lattice \wedge
- Signal constellation contains $2^{k+r g}$ cosets, each with 2^{b-k} points
- rg_bar=rg/N - normalized redundancy
- kg_bar=k/N - informativity of the coset code

Coset partitioning

- Coset partitioning $\Lambda \mid \Lambda^{\prime}$
- Partition of the lattice Λ into $|\Lambda| \Lambda^{\prime} \mid$ (called the "order" of the partition) cosets of a sublattice Λ^{\prime} such that each point in the original lattice Λ is contained in one, and only one, coset of the sublattice Λ^{\prime}
- If the encoder G is
- Convolutional encoder
- The set of all possible transmitted sequences $\{x(\mathrm{D})\}$ is a Trellis Code
- Block encoder
- The set of N -dimensional vectors is a Lattice Code
- Both trellis codes and lattice codes are coset codes

Gain of coset codes

- The fundamental gain always with respect to the uncoded system (x_tilda)
- Latice redundancy $\quad \mathcal{V}(\Lambda)=2^{r_{\Lambda}}=2^{N_{\Gamma_{A}}}$

$$
\begin{gathered}
\gamma_{f}=\frac{d_{\min }^{2}(C)}{2^{2\left(\bar{r}_{G}+\bar{r}_{\Lambda}\right)}}=\frac{d_{\min }^{2}(C)}{2^{2 \bar{r}_{C}}} \\
\bar{r}_{C}=\bar{r}_{G}+\bar{r}_{\Lambda}
\end{gathered}
$$

- Coding gain between 3 and 6dB
- Shaping gain $\sim 1.5 \mathrm{~dB}$ (fixed by constellation geometry)

$$
\gamma_{s}=\frac{\mathcal{V}^{2 / N}(\Lambda) \cdot 2^{2 \bar{r}_{G}}}{\overline{\mathcal{E}}(\Lambda)} / \frac{1}{\left(2^{2 \bar{b}}-1\right) / 12}=\frac{2^{2 \bar{r}_{C}}}{12 \overline{\mathcal{E}}}\left(2^{2 \bar{b}}-1\right)
$$

Coset partitioning example (D_{2} lattice)

- Ungerboeck rate $1 / 23$ dB trellis code
- 8AMPM (or $8 C R$) constellation is a subset of $\Lambda=D_{2}$ lattice that contains $|\Lambda|=8$ points
- Average energy per symbol is $\mathrm{E}=10$ ($\mathrm{E} _$bar=5)
- Sublattice Λ^{\prime} has a coset Λ_{0} with two points $\left|\Lambda_{0}\right|=2$ so that $\left|\Lambda^{\prime}\right| \Lambda^{\prime} \mid=4$ cosets of Λ^{\prime} in \wedge
- $\Lambda_{0}=\{0.4\} \Lambda_{1}=\{1,5\} \wedge_{2}=\{2,6\} \wedge_{3}=\{3,7\}$
- These cosets selected by two bit, rate $1 / 2$ convolutional encoder output

$$
G(D)=\left[\begin{array}{ll}
1+D^{2} & D
\end{array}\right]
$$

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology.

Example, continued

\square Min. distance in cosets $\mathrm{d}_{\text {min }}\left(\Lambda^{\prime}\right)=2 \mathrm{~d}_{\text {min }}(\Lambda)=4 \mathrm{sqrt}(2)$

- Sequence distance (any two paths that start and terminate in the same pair of states must have a distance that is d'=sqrt(16+8+16) >= 4 sqrt(2)
- So, the parallel transition distance is the minimum distance for this code
- This is still sqrt(2) better than distance corresponding to no extra bit (or just transmitting uncoded 4QAM)

$$
\gamma=\frac{\left(d_{\text {min }}^{2} / \mathcal{E}_{x_{p}}\right)_{\text {coded }}}{\left(d_{\text {min }}^{2} / \mathcal{E}_{x_{p}}\right)_{\text {uncoded }}} \quad \gamma=\frac{\frac{16 \cdot 2}{10}}{\frac{1}{1 / 2}}=1.6=2 \mathrm{~dB}
$$

The fundamental coding gain is (realizing that $\bar{r}_{C}=\bar{r}_{A}+\bar{r}_{G}=1.5+.5=2$)

$$
\begin{gathered}
\gamma_{f}=\left(\frac{d_{\min }^{2}}{2^{2 \bar{r}_{C}}}\right)=\frac{32}{2^{2 \cdot 2}}=2(3 \mathrm{~dB}) \\
\gamma_{s}=\frac{2^{2 \cdot 2}}{12 \cdot 5}\left(2^{2}-1\right)=\frac{4}{5}=-1 \mathrm{~dB}
\end{gathered}
$$

Mapping by set partitioning

- Basic partitioning can be extended systematically to larger values of b (i.e. constellation sizes)

Image removed due to copyright restrictions.

- Ungerboeck labeling in two dimensions
- The LSB v_{0} of the encoder output is used to specify which of the first 2 partitions (B_{0}, $\mathrm{v}_{0}=0$ or $\mathrm{B}_{1}, \mathrm{v}_{0}=1$) contains the selected coset of the sublattice Λ^{\prime}, and then uses v 1 to specify which of the next level parititions $\left(\mathrm{C}_{0}, \mathrm{C}_{2}, \mathrm{C}_{1}, \mathrm{C}_{3}\right)$ contains the selected coset of the sublattice, etc.
- The remaining bits $v_{k+r}, \ldots, v_{b+r-1}$ are used to select points within the coset
- In practice, this mapping is often used for $\mathrm{N}=1,2,4$ and 8
- One dimensional partitioning halves PAM constellation into sets of "every other point", realizing 6dB increase in intra-partition distance for each such halving
- In 4 and 8 dimensions the distance is 1.5 dB and 0.75 dB per partition, respectively)

8PSK mapping by set partitioning

Figure by MIT OpenCourseWare.

- Ungerboeck

PSK example from Ungerboeck

Images removed due to copyright restrictions.

- Path distance greater than internal coset distance $\Delta_{2}=2$, so
- $d_{\text {free }}=\min ($ path distance, internal coset distance $)=2$

Benefiting from larger number of states

Images removed due to copyright restrictions.

BER improvement

Figure by MIT OpenCourseWare.

6.973 Communication System Design

QAM example

Image removed due to copyright restrictions.

- For m information bits need 2^{m+1} points
- Extra bit chooses even or odd cosets
- Coding gain of approx 4dB over uncoded modulation

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006.
MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology.

Trellis for QAM example

- Error paths with distance $5 \mathrm{~d}_{0}^{2}$ from sequence D0-D0-D3-D6
- All error paths start and re-emerge in one node

Coding gain vs. state

- Significant gains
- With as few as 4,8,16 states
- 3dB (4 states)
- 4dB (8 states)
- 5dB (16 states)
- up to 6dB (128 or more)
- Doubling of states does not always increase dfree
- Can get big increase in
- Num. nearest neighbors
- Num. next-nearest neighbors

Another example

Image removed due to copyright restrictions.

- Rate 2/3 trellis code
- Increase fundamental gain beyond 3dB (which was the parallel transition distance in the rate $1 / 2$ code)
- Need constellation partitioning by one additional level/step to ensure that the parallel transition distance will now be 6dB

Min. distance

- Now, min distance occurs between two longer length sequences through the trellis, instead of between parallel transitions

One-dimensional TCM

- Up to 6dB of fundamental gain $\gamma_{f} \leq 16 /\left(2^{2.1}\right)=6 \mathrm{~dB}$
- Only need to partition twice $\Lambda^{\prime}=\Lambda_{(2)}$ to realize min separation between any two parallel transitions that is 6 dB higher than uncoded PAM
- The partition chain for the one-dimensional trellis codes is, with $\Lambda=Z, Z|2 Z| 4 Z$, with corresponding min distances between points $d_{\text {min }}(Z)=1$, $d_{\text {min }}(2 Z)=2, d_{\text {min }}(4 Z)=4$, and $r_{G}=1$
- The parallel separation is never more than $\mathrm{d}^{2}=16$
- $G(D)$ must then be a rate $1 / 2$ code

One-dimensional Trellis code tables

2^{v}	h_{1}	h_{0}	$d_{\text {min }}^{2}$	γf	$(\mathrm{~dB})$	\bar{N}_{e}	\bar{N}_{1}	\bar{N}_{2}	\bar{N}_{3}	\bar{N}_{4}	$\tilde{\gamma} f$	\bar{N}_{D}
4	2	5	9	2.25	3.52	4	8	16	32	64	3.32	12
8	04	13	10	2.50	3.98	4	8	16	40	72	3.78	24
16	04	23	11	2.75	4.39	8	8	16	48	80	3.99	48
16	10	23	11	2.75	4.39	4	8	24	48	80	4.19	48
32	10	45	13	3.25	5.12	12	28	56	126	236	4.60	96
64	024	103	14	3.50	5.44	36	0	90	0	420	4.61	192
64	054	161	14	3.50	5.44	8	$\underline{32}$	66	84	236	4.94	192
128	126	235	16	4.00	6.02	66	0	256	0	1060	5.01	384
128	160	267	15	3.75	5.74	8	34	$\underline{100}$	164	344	5.16	384
128	124	207	14	3.50	5.44	4	8	14	56	136	5.24	384
256	362	515	16	4.00	6.02	2	32	$\underline{80}$	132	268	5.47	768
256	370	515	15	3.75	5.74	4	6	$\underline{40}$	68	140	5.42	768
512	0342	1017	16	4.00	6.02	2	0	56	0	$\underline{332}$	5.51	1536

	A_{1}^{0}			
$d_{\min }$ w.r.t. A_{1}^{0}	1			
N_{e} w.r.t. A_{1}^{0}	2			
	B_{1}^{0}		B_{1}^{1}	
	2		1	
$d_{\min }$ w.r.t. B_{1}^{0}	2		2	
N_{e} w.r.t. B_{1}^{0}	2			
	C_{1}^{0}	C_{1}^{2}	C_{1}^{1}	C_{1}^{3}
$d_{\min }$ w.r.t. C_{1}^{0}	4	2	1	1
N_{e} w.r.t. C_{1}^{0}	2	2	1	1

Figure by MIT OpenCourseWare.

- $\mathrm{Ne}-$ number of nearest neighbors
- $N_{1,2,3,4}$ numbers of next-to-near neighbors

Two dimensional codes

- Use 3-level partitioning so that $\Lambda^{\prime}=\Lambda_{(3)}$
- To realize min separation between any two parallel transitions that is 6dB higher than uncoded twodimensional QAM
- The partition chain is with $\Lambda=Z^{2}, Z^{2}\left|D_{2}\right| 2 Z^{2} \mid 2 D_{2}$
- Corresponding min distance $\mathrm{d}_{\text {min }}\left(Z^{2}\right)=1$, $\mathrm{d}_{\text {min }}\left(\mathrm{D}_{2}\right)=\operatorname{sqrt}(2), \mathrm{d}_{\text {min }}\left(2 Z^{2}\right)=2, \mathrm{~d}_{\text {min }}\left(2 \mathrm{D}_{2}\right)=2 \operatorname{sqrt}(2)$ and $r_{G}=1$
- $r_{G}=1$ implies doubling of the two-dimensional constellation size $|\wedge|$ with respect to uncoded transmission. the maximum fundamental gain is limited to $\quad \gamma_{f} \leq 8 / 2=6 \mathrm{~dB}$

Two-dimensional partitioning

2^{ν}	h_{2}	h_{1}	h_{0}	$d_{\text {min }}^{2}$	γf	$(\mathrm{~dB})$	\bar{N}_{e}	\bar{N}_{1}	\bar{N}_{2}	\bar{N}_{3}	\bar{N}_{4}	$\widetilde{\gamma} f$	\bar{N}_{D}
4	-	2	5	4	2	3.01	2	16	64	256	1024	3.01	8
8	04	02	11	5	2.5	3.98	8	36	160	714	3144	3.58	32
16	16	04	23	6	3	4.77	28	80	410	1952	8616	4.01	60
32	10	06	41	6	3	4.77	8	52	202	984	4712	4.37	116
32	34	16	45	6	3	4.77	4	$\underline{64}$	202	800	4848	4.44	116
64	064	016	101	7	3.5	5.44	28	130	504	2484	12236	4.68	228
64	060	004	143	7	3.5	5.44	24	146	592	2480	12264	4.72	228
64	036	052	115	7	3.5	5.44	20	126	496	2204	10756	4.78	228
128	042	014	203	8	4	6.02	172	0	2950	0	73492	4.74	451
128	056	150	223	8	4	6.02	86	312	1284	6028	29320	4.94	451
128	024	100	245	7	3.5	5.44	4	$\underline{94}$	484	1684	8200	4.91	451
128	164	142	263	7	3.5	5.44	4	$\underline{66}$	376	1292	6624	5.01	451
256	304	056	401	8	4	6.02	22	152	658	2816	$\underline{13926}$	5.23	900
256	370	272	417	8	4	6.02	18	154	612	2736	$\underline{13182}$	5.24	900
256	274	162	401	7	3.5	5.44	2	$\underline{32}$	124	522	2732	5.22	900
512	0510	0346	1001	8	4	6.02	2	64	350	1530	$\underline{6768}$	5.33	1796

	A_{2}^{0}			
$d_{\min }$ w.r.t. A_{2}^{0}	1			
N_{e} w.r.t. A_{2}^{0}	4			
	B_{2}^{0}		B_{2}^{1}	
$d_{\min }$ w.r.t. B_{2}^{0}	$\sqrt{2}$		1	
N_{e} w.r.t. B_{2}^{0}	4		4	
	C_{2}^{0}	C_{2}^{2}	C_{2}^{1}	C_{2}^{3}
$d_{\min }$ w.r.t. C_{2}^{0}	2	$\sqrt{2}$	1	1
N_{e} w.r.t. C_{2}^{0}	4	4	2	2
	D_{2}^{0}	D_{2}^{2}	D_{2}^{1}	D_{2}^{3}
$d_{\min }$ w.r.t. D_{2}^{0}	$\sqrt{8}$	$\sqrt{2}$	1	1
N_{e} w.r.t. D_{2}^{0}	4	2	1	1
	D_{2}^{4}	D_{2}^{6}	D_{2}^{5}	D_{2}^{7}
$d_{\min }$ w.r.t. D_{2}^{0}	2	$\sqrt{2}$	1	1
N_{e} w.r.t. D_{2}^{0}	4	2	1	1

Figure by MIT OpenCourseWare.

- Notice larger number of Ne and $\mathrm{N}_{1,2,3,4}$

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology.

Downloaded on [DD Month YYYY].

