Trellis Codes

Lecture 12 Vladimir Stojanović

6.973 Communication System Design – Spring 2006 Massachusetts Institute of Technology

Trellis codes

- Invented by Gottfried Ungerboeck of IBM in 1982
- [1] G. Ungerboeck "Channel coding with multilevel/phase signals," *IEEE Transactions on Information Theory*, vol. 28, no. 1, pp. 55-67, 1982.
- [2] G. Ungerboeck "Trellis-coded modulation with redundant signal sets Part II: State of the art," *IEEE Communications Magazine*, vol. 25, no. 2, pp. 12-21, 1987.
- [3] G. Ungerboeck "Trellis-coded modulation with redundant signal sets Part I: Introduction," *IEEE Communications Magazine*, vol. 25, no. 2, pp. 5-11, 1987.

4-state Ungeroboeck Trellis code

- 1 bit controls the subset (input to conv. encoder)
 - 2 bits choose a point in a subset
- Two minimum distance scenarios
 - Distance between two points in a subset (2 times greater than uncoded 8SQ QAM)
 - When two sequences differ in more than one symbol period
 - Symbol points either chosen from even or odd subsets
 - Within the odds or evens distance the same as 8SQ QAM
 - Diverging at one state and merging at another sate forces the squared distance to be doubled d_{8SQ}²+ d_{8SQ}²=2 d_{8SQ}²
- So, this code 3dB better than uncoded 8SQ QAM transmission

Trellis codes – Motivation

In multi-level modulations

- Trellis codes allow code design directly for maximization of Euclidean distance
- Hamming distance maximizes Euclidean distance only in binary modulation

General coset (subset) encoder

- x_m N dimensional vector sequence of points
 - Each N-dimensional symbol chosen from N-dim constellation
 - Sequences of x_m are the codewords x(D)=sum_m(x_mD^m)
- Signal constellation has 2^{b+rg} signal points in some coset of Ndimensional real lattice Λ
- □ Signal constellation contains 2^{k+rg} cosets, each with 2^{b-k} points
- rg_bar=rg/N normalized redundancy
- kg_bar=k/N informativity of the coset code

Coset partitioning

- Coset partitioning $\Lambda | \Lambda'$
 - Partition of the lattice Λ into | Λ| Λ'| (called the "order" of the partition) cosets of a sublattice Λ' such that each point in the original lattice Λ is contained in one, and only one, coset of the sublattice Λ'
- If the encoder G is
 - Convolutional encoder
 - The set of all possible transmitted sequences {x(D)} is a Trellis Code
 - Block encoder
 - The set of N-dimensional vectors is a Lattice Code
- Both trellis codes and lattice codes are coset codes

Gain of coset codes

 The fundamental gain always with respect to the uncoded system (x_tilda)

$$\gamma_f = \frac{\frac{d_{min}^2(\hat{x})}{\mathcal{V}_{\hat{x}}^{2/N}}}{\frac{d_{min}^2(\tilde{x})}{\mathcal{V}_{\hat{x}}^{2/N}}} = \frac{\frac{d_{min}^2(\hat{x})}{\frac{2^{2(\bar{b}+\bar{r}_G)}\mathcal{V}^{2/N}(\Lambda)}}}{\frac{d_{min}^2(\tilde{x})}{2^{2\bar{b}}\cdot\mathcal{V}^{2/N}(\Lambda)}} = \frac{\frac{d_{min}^2(C)}{2^{2\bar{r}_G}\cdot\mathcal{V}^{2/N}(\Lambda)}}{\frac{1}{1}} = \frac{d_{min}^2(C)}{\mathcal{V}(\Lambda)^{2/N}2^{2\bar{r}_G}}$$

• Latice redundancy $\mathcal{V}(\Lambda) = 2^{r_{\Lambda}} = 2^{N \bar{r}_{\Lambda}}$

$$\gamma_f = \frac{d_{min}^2(C)}{2^{2(\bar{r}_G + \bar{r}_\Lambda)}} = \frac{d_{min}^2(C)}{2^{2\bar{r}_C}}$$

$$\bar{r}_{C} = \bar{r}_{G} + \bar{r}_{\Lambda}$$

- Coding gain between 3 and 6dB
- Shaping gain ~1.5dB (fixed by constellation geometry)

$$\gamma_s = \frac{\mathcal{V}^{2/N}(\Lambda) \cdot 2^{2\bar{r}_G}}{\bar{\mathcal{E}}(\Lambda)} / \frac{1}{(2^{2\bar{b}} - 1)/12} = \frac{2^{2\bar{r}_C}}{12\bar{\mathcal{E}}} (2^{2\bar{b}} - 1)$$

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Coset partitioning example (D₂ lattice)

- Ungerboeck rate ½ 3dB trellis code
 - 8AMPM (or 8CR) constellation is a subset of Λ=D₂ lattice that contains |Λ|=8 points
 - Average energy per symbol is E=10 (E_bar=5)
 - Sublattice Λ' has a coset Λ₀ with two points |Λ₀|=2 so that |Λ| Λ'|=4 cosets of Λ' in Λ
 - $\Lambda_0 = \{0.4\} \Lambda_1 = \{1,5\} \Lambda_2 = \{2,6\} \Lambda_3 = \{3,7\}$
 - These cosets selected by two bit, rate ½ convolutional encoder output

$$G(D) = \begin{bmatrix} 1 + D^2 & D \end{bmatrix}$$

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

1417

Example, continued

- □ Min. distance in cosets $d_{min}(\Lambda)=2d_{min}(\Lambda)=4sqrt(2)$
- Sequence distance (any two paths that start and terminate in the same pair of states must have a distance that is d'=sqrt(16+8+16) >= 4sqrt(2)
- So, the parallel transition distance is the minimum distance for this code
 - This is still sqrt(2) better than distance corresponding to no extra bit (or just transmitting uncoded 4QAM)

$$\gamma = \frac{\left(\frac{d_{min}^2}{\mathcal{E}x_p}\right)_{\text{coded}}}{\left(\frac{d_{min}^2}{\mathcal{E}x_p}\right)_{\text{uncoded}}} \qquad \gamma = \frac{\frac{16\cdot 2}{10}}{\frac{1}{1/2}} = 1.6 = 2 \text{ dB}$$

The fundamental coding gain is (realizing that $\bar{r}_C = \bar{r}_\Lambda + \bar{r}_G = 1.5 + .5 = 2$)

$$\gamma_f = \left(\frac{d_{min}^2}{2^{2\bar{r}_C}}\right) = \frac{32}{2^{2\cdot 2}} = 2 \ (3 \text{ dB}) \quad .$$

$$\gamma_s = \frac{2^{2 \cdot 2}}{12 \cdot 5} \left(2^2 - 1\right) = \frac{4}{5} = -1 \text{ dB}$$

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Mapping by set partitioning

Basic partitioning can be extended systematically to larger values of b (i.e. constellation sizes)

Image removed due to copyright restrictions.

Ungerboeck labeling in two dimensions

- The LSB v₀ of the encoder output is used to specify which of the first 2 partitions (B₀, v₀=0 or B₁, v₀=1) contains the selected coset of the sublattice Λ', and then uses v1 to specify which of the next level parititions (C₀,C₂,C₁,C₃) contains the selected coset of the sublattice, etc.
- The remaining bits v_{k+r} , ..., v_{b+r-1} are used to select points within the coset
- In practice, this mapping is often used for N=1,2,4 and 8
 - One dimensional partitioning halves PAM constellation into sets of "every other point", realizing 6dB increase in intra-partition distance for each such halving
 - In 4 and 8 dimensions the distance is 1.5dB and 0.75dB per partition, respectively)

8PSK mapping by set partitioning

Figure by MIT OpenCourseWare.

Ungerboeck

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

PSK example from Ungerboeck

Images removed due to copyright restrictions.

- Path distance greater than internal coset distance $\Delta_2=2$, so
 - d_{free}=min(path distance, internal coset distance)=2

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Benefiting from larger number of states

Images removed due to copyright restrictions.

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

BER improvement

Figure by MIT OpenCourseWare.

6.973 Communication System Design

QAM example

Image removed due to copyright restrictions.

□ For m information bits need 2^{m+1} points

- Extra bit chooses even or odd cosets
- Coding gain of approx 4dB over uncoded modulation

Trellis for QAM example

Image removed due to copyright restrictions.

Error paths with distance 5d₀² from sequence D0-D0-D3-D6

All error paths start and re-emerge in one node

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Coding gain vs. state

Significant gains

- With as few as 4,8,16 states
- 3dB (4 states)
- 4dB (8 states)
- 5dB (16 states)
- up to 6dB (128 or more)
- Doubling of states does not always increase dfree
 - Can get big increase in
 - Num. nearest neighbors
 - Num. next-nearest neighbors

Image removed due to copyright restrictions.

Another example

Image removed due to copyright restrictions.

Rate 2/3 trellis code

- Increase fundamental gain beyond 3dB (which was the parallel transition distance in the rate ½ code)
- Need constellation partitioning by one additional level/step to ensure that the parallel transition distance will now be 6dB

Min. distance

Now, min distance occurs between two longer length sequences through the trellis, instead of between parallel transitions

Images removed due to copyright restrictions.

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

One-dimensional TCM

u Up to 6dB of fundamental gain $\gamma_f \leq 16/(2^{2 \cdot 1}) = 6 \text{ dB}$

- Only need to partition twice Λ'= Λ₍₂₎ to realize min separation between any two parallel transitions that is 6dB higher than uncoded PAM
- The partition chain for the one-dimensional trellis codes is, with Λ=Z, Z|2Z|4Z, with corresponding min distances between points d_{min}(Z)=1, d_{min}(2Z)=2, d_{min}(4Z)=4, and r_G=1
- The parallel separation is never more than d²=16
- G(D) must then be a rate 1/2 code

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

One-dimensional Trellis code tables

2 ^v	<i>h</i> ₁	h_0	d ² min	γf	(dB)	$ar{N}_{ m e}$	\bar{N}_1	\bar{N}_2	\bar{N}_3	$ar{N}_4$	γ̃f	\bar{N}_{D}
4	2	5	9	2.25	3.52	4	8	16	32	64	3.32	12
8	04	13	10	2.50	3.98	4	8	16	40	72	3.78	24
16	04	23	11	2.75	4.39	8	8	16	48	80	3.99	48
16	10	23	11	2.75	4.39	4	8	24	48	80	4.19	48
32	10	45	13	3.25	5.12	12	28	56	126	236	4.60	96
64	024	103	14	3.50	5.44	36	0	90	0	420	4.61	192
64	054	161	14	3.50	5.44	8	32	66	84	236	4.94	192
128	126	235	16	4.00	6.02	66	0	256	0	1060	5.01	384
128	160	267	15	3.75	5.74	8	34	<u>100</u>	164	344	5.16	384
128	124	207	14	3.50	5.44	4	8	14	56	136	5.24	384
256	362	515	16	4.00	6.02	2	32	80	132	268	5.47	768
256	370	515	15	3.75	5.74	4	6	40	68	140	5.42	768
512	0342	1017	16	4.00	6.02	2	0	56	0	332	5.51	1536

Figure by MIT OpenCourseWare.

 B_1^1

1

2

 C_1^1

1

 C_{1}^{3}

1

 A_{1}^{0}

 $\frac{1}{2}$

 B_{1}^{0}

2

2

 C_{1}^{0}

4

2

 C_{1}^{2}

2

2

Ne – number of nearest neighbors N_{1,2,3,4} numbers of next-to-near neighbors

Two dimensional codes

• Use 3-level partitioning so that $\Lambda' = \Lambda_{(3)}$

- To realize min separation between any two parallel transitions that is 6dB higher than uncoded twodimensional QAM
- The partition chain is with $\Lambda = Z^2$, $Z^2 |D_2| 2Z^2 |2D_2|$
- Corresponding min distance d_{min}(Z²)=1, d_{min}(D₂)=sqrt(2), d_{min}(2Z²)=2, d_{min}(2D₂)=2sqrt(2) and r_G=1
- r_G=1 implies doubling of the two-dimensional constellation size |Λ| with respect to uncoded transmission. the maximum fundamental gain is limited to γ_f ≤ 8/2 = 6dB

Two-dimensional partitioning

- 11				2			_	_	_	_	_	~ ^	_		A_2^{0}			
2 ^{<i>v</i>}	<i>h</i> ₂	h_1	h_0	d ² min	γf	(dB)	\bar{N}_{e}	\bar{N}_1	\bar{N}_2	\bar{N}_3	\bar{N}_4	$\widetilde{\gamma} f$	$ar{N}_{\mathbf{D}}$	d_{min} w.r.t. A_2^0	1			
4	-	2	5	4	2	3.01	2	16	64	256	1024	3.01	8	N_e w.r.t. A_2^0	4			
8	04	02	11	5	2.5	3.98	8	36	160	714	3144	3.58	32		B_{2}^{0}		1 م	
16	16	04	23	6	3	4.77	28	80	410	1952	8616	4.01	60		<i>D</i> ₂		B_{2}^{1}	
32	10	06	41	6	3	4.77	8	52	202	984	4712	4.37	116	d_{min} w.r.t. B_2^0	$\sqrt{2}$		1	
32	34	16	45	6	3	4.77	4	<u>_64</u>	202	800	4848	4.44	116	N_e w.r.t. B_2^0	4		4	
64	064	016	101	7	3.5	5.44	28	130	504	2484	12236	4.68	228	<u>e</u> 2				
64	060	004	143	7	3.5	5.44	24	146	592	2480	12264	4.72	228		C_{2}^{0}	C_{2}^{2}	C_{2}^{1}	C_2^2
64	036	052	115	7	3.5	5.44	20	126	496	2204	10756	4.78	228	d_{min} w.r.t. C_2^0	2	$\sqrt{2}$	1	1
128	042	014	203	8	4	6.02	172	0	2950	0	73492	4.74	451	N_e w.r.t. C_2^0	4	4	2	2
128	056	150	223	8	4	6.02	86	312	1284	6028	29320	4.94	451		D_2^0	D_2^2	D_2^1	D^{2}
128	024	100	245	7	3.5	5.44	4	<u>94</u>	484	1684	8200	4.91	451	d_{min} w.r.t. D_2^0	$\sqrt{8}$	$\sqrt{2}$	1	1
128	164	142	263	7	3.5	5.44	4	<u>66</u>	376	1292	6624	5.01	451	N_e w.r.t. D_2^0	4	2	1	1
256	304	056	401	8	4	6.02	22	152	658	2816	13926	5.23	900				1	1
256	370	272	417	8	4	6.02	18	154	612	2736	<u>13182</u>	5.24	900		D_{2}^{4}	D_{2}^{6}	D_{2}^{5}	D_2^7
256	274	162	401	7	3.5	5.44	2	<u>32</u>	124	522	2732	5.22	900	d_{min} w.r.t. D_2^0	2	$\sqrt{2}$	1	1
512	0510	0346	1001	8	4	6.02	2	64	350	1530	6768	5.33	1796	N_e w.r.t. D_2^0	4	2	1	1

Figure by MIT OpenCourseWare.

Notice larger number of Ne and N_{1,2,3,4}

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

