Intro to Practical Digital Communications

Lecture 2
 Vladimir Stojanović

6.973 Communication System Design - Spring 2006 Massachusetts Institute of Technology

Discrete data transmission

- Messages are encoded into signal points

 signal points

- Signal points are mapped to signal waveforms
- Modulation

Modulation and de-modulation

- e.g. Binary Phase-Shift Keying (BPSK) $x_{0}(t)$

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology.

Vector signal representation

- Maps continuous signals to discrete vectors
- Significantly simplifies system analysis
signal waveforms
signal points

$P_{\boldsymbol{x}} \triangleq \frac{\mathcal{E}_{\boldsymbol{x}}}{T}$
$\mathcal{E}_{\boldsymbol{x}} \triangleq E\left[\|x\|^{2}\right]=\sum_{i=0}^{M-1}\left\|x_{i}\right\|^{2} p_{\boldsymbol{x}}(i)$

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology.

BPSK example

- What is the information rate (R) of this modulation?

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006.

Manchester modulation example (Ethernet)

- Different waveforms can have same vector representations

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006.
MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology.
Downloaded on [DD Month YYYY].

More constellations

Quadrature Amplitude Modulation

(QAM)

Pulse Amplitude Modulation (PAM)

e.g. PAM4

e.g. 16-QAM

PAM and QAM have pulses as basis functions

How do we choose basis functions?

- Need to be orthonormal - (b/c of demodulation)

$$
\int_{-\infty}^{\infty} \varphi_{m}(t) \varphi_{n}(t) d t=\delta_{m n}= \begin{cases}1 & m=n \\ 0 & m \neq n\end{cases}
$$

- Inner products

$$
\langle u(t), v(t)\rangle \triangleq \int_{-\infty}^{\infty} u(t) v(t) d t
$$

- Continuous
- Discrete

$$
\langle u, v\rangle \triangleq u^{*} v=\sum_{n=1}^{N} u_{n} v_{n}
$$

- Invariant to choice of basis functions

$$
\begin{aligned}
& u(t)=\sum_{n=1}^{N} u_{n} \varphi_{n}(t) \text { and } v(t)=\sum_{n=1}^{N} v_{n} \varphi_{n}(t) \\
&\langle u(t), v(t)\rangle=\int_{-\infty}^{\infty} u(t) v(t) d t=\int_{-\infty}^{\infty} \sum_{n=1}^{N} \sum_{m=1}^{N} u_{n} v_{m} \varphi_{n}(t) \varphi_{m}(t) d t \\
&=\sum_{n=1}^{N} \sum_{m=1}^{N} u_{n} v_{m} \int_{-\infty}^{\infty} \varphi_{n}(t) \varphi_{m}(t) d t=\sum_{m=1}^{N} \sum_{n=1}^{N} u_{n} v_{m} \delta_{n m}=\sum_{n=1}^{N} u_{n} v_{n} \\
&=\langle u, v\rangle \mathbf{Q E D}
\end{aligned}
$$

- Average energy of the constellation
, Invariant to the choice of basis functions

Constellation energy

- Implications of the inner product invariance to basis functions

$$
\langle u(t), v(t)\rangle=\langle\boldsymbol{u}, \boldsymbol{v}\rangle
$$

- If energy is a signal, it is the same regardless of the mod waveform used
- As long as basis functions are orthogonal
- Parseval's identity

$$
\begin{aligned}
\mathcal{E}_{\boldsymbol{x}}=E\left[\|x\|^{2}\right] & =E\left[\int_{-\infty}^{\infty} x^{2}(t) d t\right] \\
E[\langle u(t), v(t)\rangle] & =E[\langle\boldsymbol{x}, \boldsymbol{x}\rangle] \\
& =E\left[\sum_{n=1}^{N} x_{n} x_{n}\right] \\
& =E\left[\|x\|^{2}\right] \\
& =\mathcal{E}_{\boldsymbol{x}} \mathrm{QED}
\end{aligned}
$$

Correlative demodulator

$$
\int_{-\infty}^{\infty} \varphi_{m}(t) \varphi_{n}(t) d t=\delta_{m n}= \begin{cases}1 & m=n \\ 0 & m \neq n\end{cases}
$$

Modulator

- Straightforward demodulator implementation
- Use the fact that basis functions are orthogonal
- Collect the signal energy
- Hard to build in practice

Practical implementation

Correlative demodulator

Matched-filter demodulator

- Note $x_{n}=\int_{0}^{T} x(t) \varphi_{n}(t) d t$ equivalent to $\left.x(t) * \varphi_{n}(T-t)\right|_{t=T}$
- Can implement with an "integrate-and-dump"

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006.
MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology.
Downloaded on [DD Month YYYY].

Summary

- In this course you'll be able to learn
- Practical digital communication techniques
- Hands-on, little math
- Hardware implementations
- Algorithmic transformations
- Micro-architectures
- ASIC flow and behavioral modeling
- In other words, everything you'll need to start building cutting-edge digital communication systems
- Started intro to digital communications
- Modulation - signal constellation, basis functions
- Demodulation - basis function invariance, matched-filter
- Next - basics of detection, signalling on band-limited channels

Sources

- VppSim/CppSim is a tool developed by prof. Michael Perrott
- Digital communications material is adapted from prof. John Cioffi's Stanford Course readers
- http://www.stanford.edu/class/ee379a,b,c/

