Intro to coding and convolutional codes

Lecture 11 Vladimir Stojanović

6.973 Communication System Design – Spring 2006 Massachusetts Institute of Technology

802.11a Convolutional Encoder

Rate 1/2 convolutional encoder

- Punctured to obtain 2/3 and 3/4 rate
 - Omit some of the coded bits

Figure by MIT OpenCourseWare.

64-state (constraint length K=7) code Viterbi algorithm applied in the decoder

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006.

MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

What we'll cover today

- What are convolutional codes?
- How they help
- How to encode/decode them

Channel coding

- To enhance robustness, tie bits into sequences, then decide on sequences rather than individual received bits
- Encoder
 - Memory-less: translates incoming message m_k at time k into a symbol vector x_k (modulator later converts x_k to x_k(t))
 - Sequential: map message bits into larger dimensionality symbols that can also depend on previous message bits through the state of the encoder $m(D) = \sum_k m_k \cdot D^k$
- Codewords
 - Finite (block code)
 - Semi-Infinite (tree/convolutional code)
- Example
 - Block code Majority repetition binary code (0->-1-1-1, 1->+1+1+1)
 - ML decoder computes the majority polarity for the received signal
 - 1/3 bits per symbol with min.distance 2*sqrt(3)
 - Tree code Transmit -1-1-1 if the bit has not changed, transmit +1+1+1 otherwise

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.973 Communication System Design

codeword $x(D) = \sum_k x_k \cdot D^k$

 $\{m(D)\} \xrightarrow{\mathsf{code}} \{x(D)\}$

Sequential encoder

Image removed due to copyright restrictions.

- v bits determine "state" s_k at time k
- There are 2^{ν} states
 - Encoding of bits into symbols can vary with encoder state
 - For each state encoder accepts b bits of input (m_k) and outputs a corresponding N-dimensional output vector (this is repeated once every symbol period T)
- Data rate of the encoder is $R \stackrel{\Delta}{=} \frac{\log_2(M)}{T} = \frac{b}{T}$
- Block code if there is only one state (tree code otherwise)

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

5

Examples

QAM is a block code

- There is only one state in QAM $\nu = 0$
 - Let 1/T=2.4kHz and
 - For 4 QAM, R=2/T=2*2400=4800bps, $\overline{b} = 2/2 = 1$ bit/dimension
 - For 16 QAM, R=4/T=9600bps, $\overline{b} = 4/2 = 2$
 - For 256 QAM, R=8/T=19200bps, $\overline{b} = 8/2 = 4$

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6

Example: Binary PAM differential encoder

- 2-states (corresponding to the possible values of the previous single-bit message)
- Example of a sequential encoder with
- Differential encoder encodes the difference modulo-M between successive message inputs to the sequential encoder
 - In binary case it only transmits a 1 on a change of a bit in a message

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.973 Communication System Design

7

The Trellis

Describes the progression of symbols within a code

Example – binary PAM differential encoder trellis

- Two states in each time corresponding to the value of previously transmitted message
- Time-invariant encoder only requires trellis representation at k and k+1
- A trellis branch connects two states and corresponds to a possible input (always 2^b branches emanating from any state)
 - Each branch labeled with a channel symbol and corresponding input x_k/m_k

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006.

MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology.

Downloaded on [DD Month YYYY].

Image removed due to copyright restrictions.

- Semi-infinite series of branches starting from a known state
- To determine dmin of a code, need only find the two sequences through the trellis that have minimum separation
 - Would be the same for long period before and after the short period of divergence
 - For example, min distance between a sequence of no-changes and a single bit change would be d_{min}²=4=(+1-(-1))²
 - No gain when compared to uncoded PAM2, but that is o.k. in this case since differential encoder's purpose is to make the decoder insensitive to a sign ambiguity in transmission

A simple convolutional code

G(D) – generator matrix

- Two output bits are successively transmitted through the channel (in this case binary symmetric channel with parameter p-probability of bit-error)
- Two states
- Number of dimensions is 2, thus bits/dimension=1/2

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Trellis for convolutional code example

- The branches are not labeled the convention is that the upper branch from each state corresponds to input bit of "0" while lower branch corresponds to input "1"
- The outputs transmitted for each state are listed in modulo-4 notation to the left of each state (leftmost – upper branch, rightmost – lower branch)

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006.

MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Distance between sequences

- The ML detector simply chooses the sequence of transitions through the trellis that **differs** least in the trellis-path bits [v2(D), v1(D)], from the received 2-dimensional sequence y(D)
- Term "differs" depends on the definition of "distance" between sequences
- Hamming distance number of bit positions in which two sequences differ
- Euclidean distance physical distance in which the received signal differs from the "expected" level for that bit/symbol

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Hamming distance

Minimum Hamming distance illustration for the convolutional code example

Two sequences above differ in 5 bit positions

- At least 3 bit errors must occur in the BSC before these two sequences could be confused
- Thus the probability of detecting the erroneous sequence ~p³, which for p<0.5 means convolutional code has improved the probability of error significantly (at the cost of half the bit-rate of uncoded transmission)
- Hamming weight is defined as Hamming distance between a codeword and the zero sequence $w_H(v(D))=d_H(v(d),0)$ (i.e. the number of "ones" in the codeword)

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Trellis codes – Euclidean distance example

- Also use sequential encoding
 - Expand the constellation instead of reducing the data rate

- Example 4-state Ungerboeck trellis code
 - b=3 bits per symbol (redundant, extra pointsin the constellation over the minimum needed for transmission)
 - 16 points (for 16 QAM) is double the 8points needed for uncoded 8SQ QAM transmission)
 - Intra subset minimum distance increases by 3dB
 - Two input bits select one of 4 pts in a subset
 - One input bit enters the encoder to choose a branch

Channel as encoder

- Sometimes, can use channel with memory as a sequential encoder
 - Example is 1+D partial response channel
 - The closest two sequences are d_{min}²=8 apart, not d_{min}²=4 as with symbol-by-symbol detection (for PAM2)

k k+1 k+2 k+3

 Still need the sequence decoder (e.g. Viterbi decoder) to obtain the ML estimate of the received sequence

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Generator and Parity matrices

- G(D) can be any k x n matrix with entries in Fr(D) and rank k
- H(D) is parity matrix (n-k x n matrix with rank n-k)
 - When used as a generator, describes a dual code (all codewords in dual code orthogonal to codewords in original code)
- Code rate r=k/n

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Constraint length (ν)

- Log₂ of the number of states of a convolutional encoder
- The number of D flip-flops in the obvious realization
- Often used as a measure of complexity of a convolutional code
- The complexity of a convolutional code is the minimum constraint length over all equivalent encoders
- An encoder is said to be minimal if the complexity equals the constraint length

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Example, repeated

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

8-state Ungerboeck encoder example

Image removed due to copyright restrictions.

$$G(D)H^{*}(D) = 0$$

$$0 = h_{3} + h_{2} \cdot D$$

$$0 = h_{3} \cdot D^{2} + h_{2} + D \cdot h_{1}$$

$$h_{3} = D^{2}, h_{2} = D, \text{ and } h_{1} = 1 + D^{3}$$

$$H(D) = \begin{bmatrix} D^{2} & D & 1 + D^{3} \end{bmatrix}$$

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Trellis diagram for 8-state code

Image removed due to copyright restrictions.

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

8-state Ungerboeck code with feedback

Image removed due to copyright restrictions.

MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Implementations/Systematic encoders

- Two kinds of implementations most used
 - Feedback-free implementations
 - Often enumerated in code tables
 - Systematic (possibly with feedback)

- All inputs directly passed to the output, with remaining n-k outputs being reserved as "parity" bits (v_{n-i}(D)=u_{k-i}(D) for i=0,...,k-1)
- When feedback is used, always possible to determine a systematic implementation

Conversion to a systematic encoder

$$u'(D) = \frac{1}{1+D+D^2} \cdot u(D)$$

u'(D) can take on all possible causal sequences, just as can u(D), so this is simply a relabeling of the relationship of input to output sequences

$$v'(D) = u'(D)G(D) = u(D)\frac{1}{1+D+D^2}G(D) = u(D)\left[1 \ \frac{1+D^2}{1+D+D^2}\right] \qquad G_{sys} = G_{1:k}^{-1}G = \left[I \ G_{1:k}^{-1}G_{k+1:n}\right]$$

 $G_{sys} = [I_k \ h(D)] \qquad H_{sys} = [h^T(D) \ I_{n-k}] \qquad G(D) = [G_{1:k}(D) \ G_{k+1:n}(D)]$

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006.

MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology.

Downloaded on [DD Month YYYY].

Catastrophic encoder

- Catastrophic encoder is the one for which at least one codeword with finite Hamming weight corresponds to an input of infinite Hamming weight
 - Since the set of all possible codewords is also a set of all possible error events, this is the same as saying a finite number of decoding errors in a sequence could lead to an infinite number of input bit errors – clearly a catastrophic event
- Catastrophic encoder test
 - An encoder is non-catastrophic if an only if the GCD of the determinants of all the k x k submatrices of G(D) is a nonnegative power of D (i.e. D^{delta} delta>=0)
- A non-catastrophic encoder always exists for any code
 - A systematic encoder can never be catastrophic (why?)
 - Also possible to find first a minimal, non-catastrophic encoder and then convert it to systematic encoder

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology.

Downloaded on [DD Month YYYY].

Coding gain – comparison

- Method one Bandwidth expansion
 - R=b/T, P=Ex/T (fix, R, P and T while allow W (bandwidth) to increase with n)
 - Simply compare d_{min} values of convolutionally coded systems with PAM2 at the same data rate R
 - Convolutional code system has 1/b_bar more W than uncoded system, and at fixed P and T this means that Ex_bar is reduced to b_bar*Ex_bar
 - Hence coded minimum distance is then dfree*b_bar*Ex_bar and coding gain is gamma=10log₁₀(b_bar*d_{free}) – listed in coding tables
 - Somewhat unfair since assumes more bandwidth is available for free

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Coding gain – comparison

- Method two Data-Rate (Energy) Reduction
 - Fix P and W (positive frequencies bandwidth)
 - For the coded system fixed W leads to fixed value 1/(b_bar*T)
 - Leads to data rate reduction by a factor b_bar (R_{code}=b_bar*2W)
 - The squared distance increases to d_{free}*Ex
 - But could have used a lower-speed uncoded system with 1/b_bar more energy per dimension for PAM2 transmission
 - Thus, the ratio of squared distance improvement is still b_bar*dfree (i.e. the coding gain)
 - This method of comparison is more fair since we don't assume any bandwidth expansion

Codes from tables

Example r=1/2 table

- **[**17 13]
- G(D)=[D³+D²+D+1 D³+D+1]

Figure removed due to copyright restrictions.

Cite as: Vladimir Stojanovic, course materials for 6.973 Communication System Design, Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Readings

- Chapters 8,10 (parts related to convolutional codes)
- [1] G. Forney, Jr. "Convolutional codes I: Algebraic structure," *IEEE Transactions on Information Theory*, vol. 16, no. 6, pp. 720-738, 1970.
- [2] A. Viterbi "Convolutional Codes and Their Performance in Communication Systems," *IEEE Transactions on Communications,* vol. 19, no. 5, pp. 751-772, 1971.

