5.8 The Harmonic Oscillator

To illustrate the beauty and efficiency in describing the dynamics of a quantum system using the dirac notation and operator algebra, we reconsider the one-dimensional harmonic oscillator discussed in section 4.4.2 and described by the Hamiltonian operator

$$
\begin{equation*}
\mathbf{H}=\frac{\mathbf{p}^{2}}{2 m}+\frac{1}{2} K \mathbf{x}^{2}, \tag{5.127}
\end{equation*}
$$

with

$$
\begin{equation*}
[\mathbf{x}, \mathbf{p}]=\mathrm{j} \hbar . \tag{5.128}
\end{equation*}
$$

5.8.1 Energy Eigenstates, Creation and Annihilation Operators

It is advantageous to introduce the following normalized position and momentum operators

$$
\begin{align*}
\mathbf{X} & =\sqrt{\frac{K}{\hbar \omega_{0}}} \mathbf{x} \tag{5.129}\\
\mathbf{P} & =\sqrt{m \hbar \omega_{0}} \mathbf{p} \tag{5.130}
\end{align*}
$$

with $\omega_{0}=\sqrt{\frac{K}{m}}$. The Hamiltonian operator and the commutation relationship of the normalized position and momentum operator resume the simpler forms

$$
\begin{align*}
\mathbf{H} & =\frac{\hbar \omega_{0}}{2}\left(\mathbf{P}^{2}+\mathbf{X}^{2}\right) \tag{5.131}\\
{[\mathbf{X}, \mathbf{P}] } & =\mathrm{j} \tag{5.132}
\end{align*}
$$

Algebraically, it is very useful to introduce the nonhermitian operators

$$
\begin{align*}
\mathbf{a} & =\frac{1}{\sqrt{2}}(\mathbf{X}+\mathrm{j} \mathbf{P}), \tag{5.133}\\
\mathbf{a}^{+} & =\frac{1}{\sqrt{2}}(\mathbf{X}-\mathrm{j} \mathbf{P}), \tag{5.134}
\end{align*}
$$

which satisfy the commutation relation

$$
\begin{equation*}
\left[\mathbf{a}, \mathbf{a}^{+}\right]=1 \tag{5.135}
\end{equation*}
$$

We find

$$
\begin{align*}
& \mathbf{a a}^{+}=\frac{1}{2}\left(\mathbf{X}^{2}+\mathbf{P}^{2}\right)-\frac{j}{2}[\mathbf{X}, \mathbf{P}]=\frac{1}{2}\left(\mathbf{X}^{2}+\mathbf{P}^{2}+1\right), \tag{5.136}\\
& \mathbf{a}^{+} \mathbf{a}=\frac{1}{2}\left(\mathbf{X}^{2}+\mathbf{P}^{2}\right)+\frac{j}{2}[\mathbf{X}, \mathbf{P}]=\frac{1}{2}\left(\mathbf{X}^{2}+\mathbf{P}^{2}-1\right), \tag{5.137}
\end{align*}
$$

and the Hamiltonian operator can be rewritten in terms of the new operators \mathbf{a} and \mathbf{a}^{+}as

$$
\begin{align*}
\mathbf{H} & =\frac{\hbar \omega_{0}}{2}\left(\mathbf{a}^{+} \mathbf{a}+\mathbf{a a}^{+}\right) \tag{5.138}\\
& =\hbar \omega_{0}\left(\mathbf{a}^{+} \mathbf{a}+\frac{1}{2}\right) \tag{5.139}
\end{align*}
$$

We introduce the operator

$$
\begin{equation*}
\mathbf{N}=\mathbf{a}^{+} \mathbf{a} \tag{5.140}
\end{equation*}
$$

which is a hermitian operator. Up to an additive constant $1 / 2$ and a scaling factor $\hbar \omega_{0}$ equal to the energy of one quantum of the harmonic oscillator it is equal to the Hamiltonian operator of the harmonic oscillator. Obviously, \mathbf{N} is the number operator counting the number of energy quanta excited in a
harmonic oscillator. We assume that the number operator \mathbf{N} has eigenvectors denoted by $|n\rangle$ and corresponding eigenvalues N_{n}

$$
\begin{equation*}
\mathbf{N}|n\rangle=\mathbf{a}^{+} \mathbf{a}|n\rangle=N_{n}|n\rangle . \tag{5.141}
\end{equation*}
$$

We also assume that these eigenvectors are normalized and since \mathbf{N} is hermitian they are also orthogonal to each other

$$
\begin{equation*}
\langle m \mid n\rangle=\delta_{m n} . \tag{5.142}
\end{equation*}
$$

Multiplication of this equation with the operator a and use of the commutation relation (5.135) leads to

$$
\begin{align*}
\mathbf{a ~ a}^{+} \mathbf{a}|n\rangle & =N_{n} \mathbf{a}|n\rangle \tag{5.143}\\
\left(\mathbf{a}^{+} \mathbf{a}+\mathbf{1}\right) \mathbf{a}|n\rangle & =N_{n} \mathbf{a}|n\rangle \tag{5.144}\\
\mathbf{N} \mathbf{a}|n\rangle & =\left(N_{n}-1\right) \mathbf{a}|n\rangle \tag{5.145}
\end{align*}
$$

Eq.(5.143) indicates that if $|n\rangle$ is an eigenstate to the number operator \mathbf{N} then the state $\mathbf{a}|n\rangle$ is a new eigenstate to \mathbf{N} with eigenvalue $N_{n}-1$. Because of this property, the operator a is called a lowering operator or annihilation operator, since application of the annihilation operator to an eigenstate with N_{n} quanta leads to a new eigenstate that contains one less quantum

$$
\begin{equation*}
\mathbf{a}|n\rangle=C|n-1\rangle \tag{5.146}
\end{equation*}
$$

where C is a yet undetermined constant. This constant follows from the normalization of this state and being an eigenvector to the number operator.

$$
\begin{align*}
\langle n| \mathbf{a}^{+} \mathbf{a}|n\rangle & =|C|^{2}, \tag{5.147}\\
C & =\sqrt{n} . \tag{5.148}
\end{align*}
$$

Thus

$$
\begin{equation*}
\mathbf{a}|n\rangle=\sqrt{n}|n-1\rangle, \tag{5.149}
\end{equation*}
$$

Clearly, if there is a state with $n=0$ application of the annihilation operator leads to the null-vector in this Hilbert space, i.e.

$$
\begin{equation*}
\mathbf{a}|0\rangle=0 \tag{5.150}
\end{equation*}
$$

and there is no other state with a lower number of quanta, i.e. $N_{0}=0$ and $N_{n}=n$. This is the ground state of the harmonic oscillator, the state with the lowest energy.

If \mathbf{a} is an annihilation operator for energy quanta, \mathbf{a}^{+}must be a creation operator for energy quanta, otherwise the state $|n\rangle$ would not fulfill the eigenvalue equation Eq.(5.141)

$$
\begin{align*}
\mathbf{a}^{+} \mathbf{a}|n\rangle & =n|n\rangle \tag{5.151}\\
\mathbf{a}^{+} \sqrt{n}|n-1\rangle & =n|n\rangle \tag{5.152}\\
\mathbf{a}^{+}|n-1\rangle & =\sqrt{n}|n\rangle \tag{5.153}
\end{align*}
$$

or

$$
\begin{equation*}
\mathbf{a}^{+}|n\rangle=\sqrt{n+1}|n+1\rangle . \tag{5.154}
\end{equation*}
$$

Starting from the energy ground state of the harmonic oscillator $|0\rangle$ with energy $\hbar \omega_{0} / 2$ we can generate the n-th energy eigenstate by n-fold application of the creation operator \mathbf{a}^{+}and proper normalization

$$
\begin{equation*}
|n\rangle=\frac{1}{\sqrt{(n+1)!}}\left(\mathbf{a}^{+}\right)^{n}|0\rangle \tag{5.155}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathbf{H}|n\rangle=E_{n}|n\rangle, \tag{5.156}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{n}=\hbar \omega_{0}\left(n+\frac{1}{2}\right) . \tag{5.157}
\end{equation*}
$$

5.8.2 Matrix Representation

We can express the normalized position and momentum operators as functions of the creation and annihilation operators

$$
\begin{align*}
\mathbf{X} & =\frac{1}{\sqrt{2}}\left(\mathbf{a}^{+}+\mathbf{a}\right) \tag{5.158}\\
\mathbf{P} & =\frac{\mathrm{j}}{\sqrt{2}}\left(\mathbf{a}^{+}-\mathbf{a}\right) \tag{5.159}
\end{align*}
$$

These operators do have the following matrix representations

$$
\begin{align*}
\langle m| \mathbf{a}|n\rangle & =\sqrt{n} \delta_{m, n-1}, \quad\langle m| \mathbf{a}^{+}|n\rangle=\sqrt{n+1} \delta_{m, n+1}, \tag{5.160}\\
\langle m| \mathbf{a}^{+} \mathbf{a}|n\rangle & =n \delta_{m, n}, \quad\langle m| \mathbf{a a}^{+}|n\rangle=(n+1) \delta_{m, n}, \tag{5.161}\\
\langle m| \mathbf{X}|n\rangle & =\frac{1}{\sqrt{2}}\left(\sqrt{n+1} \delta_{m, n+1}+\sqrt{n} \delta_{m, n-1}\right), \tag{5.162}\\
\langle m| \mathbf{P}|n\rangle & =\frac{\mathrm{j}}{\sqrt{2}}\left(\sqrt{n+1} \delta_{m, n+1}-\sqrt{n} \delta_{m, n-1}\right), \tag{5.163}
\end{align*}
$$

$$
\begin{align*}
\langle m| \mathbf{a}^{2}|n\rangle & =\sqrt{n(n-1)} \delta_{m, n-2}, \tag{5.164}\\
\langle m| \mathbf{a}^{+2}|n\rangle & =\sqrt{(n+1)(n+2)} \delta_{m, n+2}, \tag{5.165}\\
\langle m| \mathbf{X}^{2}|n\rangle & =\frac{1}{2}\binom{(2 n+1) \delta_{m, n}+\sqrt{n(n-1)}}{+\sqrt{(n+1)(n+2)} \delta_{m, n+2}}, \tag{5.166}\\
\langle m| \mathbf{P}^{2}|n\rangle & =\frac{1}{2}\left(\begin{array}{c}
(2 n+1) \delta_{m, n}-\sqrt{n(n-1)} \\
\delta_{m, n-2} \\
-\sqrt{(n+1)(n+2)} \delta_{m, n+2}
\end{array}\right) . \tag{5.167}
\end{align*}
$$

