
7.3.6 Homogeneous and Inhomogeneous Broadening

Laser media are also distinguished by the line broadening mechanisms in-
volved. Very often it is the case that the linewidth observed in the absorption
or emission spectrum is not only due to dephasing process that are acting on
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Laser Medium
Wave-
length
λ0(nm)

Cross
Section
σ (cm2)

Upper-St.
Lifetime
τL (μs)

Linewidth
∆fFWHM =
2
T2
(THz)

Typ
Refr.
index
n

Nd3+:YAG 1,064 4.1 · 10−19 1,200 0.210 H 1.82
Nd3+:LSB 1,062 1.3 · 10−19 87 1.2 H 1.47 (ne)
Nd3+:YLF 1,047 1.8 · 10−19 450 0.390 H 1.82 (ne)
Nd3+:YVO4 1,064 2.5 · 10−19 50 0.300 H 2.19 (ne)
Nd3+:glass 1,054 4 · 10−20 350 3 H/I 1.5
Er3+:glass 1,55 6 · 10−21 10,000 4 H/I 1.46
Ruby 694.3 2 · 10−20 1,000 0.06 H 1.76
Ti3+:Al2O3 660-1180 3 · 10−19 3 100 H 1.76
Cr3+:LiSAF 760-960 4.8 · 10−20 67 80 H 1.4
Cr3+:LiCAF 710-840 1.3 · 10−20 170 65 H 1.4
Cr3+:LiSGAF 740-930 3.3 · 10−20 88 80 H 1.4
He-Ne 632.8 1 · 10−13 0.7 0.0015 I ∼1
Ar+ 515 3 · 10−12 0.07 0.0035 I ∼1
CO2 10,600 3 · 10−18 2,900,000 0.000060 H ∼1
Rhodamin-6G 560-640 3 · 10−16 0.0033 5 H 1.33
semiconductors 450-30,000 ∼ 10−14 ∼ 0.002 25 H/I 3 - 4

Table 7.1: Wavelength range, cross-section for stimulated emission, upper-
state lifetime, linewidth, typ of lineshape (H=homogeneously broadened,
I=inhomogeneously broadened) and index for some often used solid-state
laser materials, and in comparison with semiconductor and dye lasers.

all atoms in the same, i.e. homogenous way. Lattice vibrations that lead to
a line broadening of electronic transisitions of laser ions in the crystal act in
the same way on all atoms in the crystal. Such mechanisms are called homo-
geneous broadening. However, It can be that in an atomic ensemble there
are groups of atoms with a different center frequency of the atomic tran-
sistion. The overall ensemble therefore may eventually show a very broad
linewidth but it is not related to actual dephasing mechanism that acts upon
each atom in the ensemble. This is partially the case in Nd:silicate glass
lasers, see table 7.1 and the linewidth is said to be inhomogeneously broad-
ened. Wether a transistion is homogenously or inhomogeneously broadened
can be tested by using a laser to saturate the medium. In a homogenously
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Figure 7.18: Laser with inhomogenously broaden laser medium (Nd:silicate
glass) and homogenously broadened laser medium (Nd:phosphate glass), [14]

broadened medium the loss or gain saturates homogenously, i.e. the whole
line is reduced. In an inhomogenously broadened medium a spectral hole
burning occurs, i.e. only that sub-group of atoms that are sufficiently in
resonance with the driving field saturate and the others not, which leads to a
hole in the spectral distribution of the atoms. Figure 7.18 shows the impact
of an inhomogeneously broadened gain medium on the continous wave out-
put spectrum of a laser. In homogenous broadening leads to lasing of many
longitudinal laser modes because inhomogenous saturation of the gain. In
the homogenously broadened medium the gain saturates homogenously and
only one or a few modes can lase. An important inhomogenous broadening
mechanism in gases is doppler broadening. Due to the motion of the atoms
in a gas relative to an incident electromagnetic beam, the center frequency
of each atomic transistion is doppler shifted according to its velocity by

f =
³
1± v

c

´
f0, (7.5)

where the plus sign is correct for an atom moving towards the beam and the
minus sign for a atom moving with the beam. The velocity distribution of an
ideal gas with atoms or molecules of mass m in thermal equilibrium is given
by the Maxwell-Boltzman distribution

p(v) =

r
m

2πkT
exp

µ
−mv2

2kT

¶
. (7.6)
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This means that p(v)dv is equal to the brobability that the atom or molecule
has a velocity in the interval [v, v + dv]. Here, v is the component of the
velocity that is in the direction of the beam. If the homogenous linewidth of
the atoms is small compared to the doppler broading, we obtain the lineshape
of the inhomogenously broadened gas simply by substituting the velocity by
the induced frequency shift due to the motion

v = c
f − f0
f0

(7.7)

Then the lineshape is a Gaussian

g(f) =

r
mc

2πkTf0
exp

"
−mc2

2kT

µ
f − f0
f0

¶2#
. (7.8)

The full width at half maximum of the line is

∆f = 8 ln(2)

r
kT

mc2
f0. (7.9)

7.4 Laser Dynamics (Single Mode)

In this section we want study the single mode laser dynamics. The laser
typically starts to lase in a few closely spaced longitudinal modes, which are
incoherent with each other and the dynamics is to a large extent similar to
the dynamics of a single mode that carries the power of all lasing modes. To
do so, we complement the rate equations for the populations in the atomic
medium, that can be reduced to the population of the upper laser level
Eq.(7.4) as discussed before with a rate equation for the photon population
in the laser mode.

There are two different kinds of laser cavities, linear and ring cavities, see
Figure 7.19
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Figure 7.19: Possible cavity configurations. (a) Schematic of a linear cavity
laser. (b) Schematic of a ring laser.

The laser resonators can be modelled as Fabry Perots as discussed in
section . Typically the techniques are used to avoid lasing of transverse modes
and only the longitudinal modes are of interest. The resonance frequencies
of the longitudinal modes are determined by the round trip phase to be a
multiple of 2π

φ(ωm) = 2mπ. (7.10)

neighboring modes are space in frequency by the inverse roundtrip time

φ(ω0 +∆ω) = φ(ω0) + TR∆ω = 2mπ. (7.11)

TR is the round trip time in the resonator, which is

TR =
2∗L

νg
, (7.12)
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Figure 7.20: Laser gain and cavity loss spectra, longitudinal mode location,
and laser output for multimode laser operation.

where νg is the group velocity in the cavity in the frequency range considered,
and L is the cavity length of the linear or ring cavity and 2∗ = 1 for the ring
cavity and 2∗ = 2 for the linear cavity. In the case of no dispersion, the
longitudinal modes of the resonator are multiples of the inverse roundtrip
timeand

fm = m
1

TR
. (7.13)

The mode spacing of the longitudinal modes is

∆f = fm − fm−1 =
1

TR
(7.14)

If we assume frequency independent cavity loss and Lorentzian shaped gain
(see Fig. 7.20). Initially when the laser gain is larger then the cavity loss,
many modes will start to lase. To assure single frequency operation a filter
(etalon) can be inserted into the laser resonator, see Figure 7.21. If the laser
is homogenously broadened the laser gain will satured to the loss level and
only the mode at the maximum of the gain will lase. If the gain is not
homogenously broadend and in the absence of a filter many modes will lase.
For the following we assume a homogenously broadend laser medium and

only one cavity mode is able to lase. We want to derive the equations of
motion for th population inversion, or population in the upper laser level and
the photon number in that mode, see Figure 7.22.
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Figure 7.21: Gain and loss spectra, longitudinal mode locations, and laser
output for single mode laser operation.

Figure 7.22: Rate equations for a laser with two-level atoms and a resonator.

The intensity I in a mode propagating at group velocity vg with a mode
volume V is related to the number of photons NL or the number density
nL = NL/V stored in the mode with volume V by

I = hfL
NL

2∗V
vg =

1

2∗
hfLnLvg, (7.15)

where hfL is the photon energy. 2∗ = 2 for a linear laser resonator (then
only half of the photons are going in one direction), and 2∗ = 1 for a ring
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laser. In this first treatment we consider the case of space-independent rate
equations, i.e. we assume that the laser is oscillating on a single mode and
pumping and mode energy densities are uniform within the laser material.
With the interaction cross section σ for stimulated emission defined as

σ =
hfL
IsT1

, (7.16)

and Eq. (7.4) with the number of atoms in the mode, we obtain

d

dt
N2 = −

N2

τL
− 2∗σN2vgnL +Rp. (7.17)

Here, vgnL is the photon flux, σ is the stimulated emission cross section,
τL = γ21 the upper state lifetime and Rp is the pumping rate into the upper
laser level. A similar rate equation can be derived for the photon density

d

dt
nL = −

nL
τ p
+ 2∗

σvg
V

N2

µ
nL +

1

V

¶
. (7.18)

Here, τ p is the photon lifetime in the cavity or cavity decay time. The 1/V
-term in Eq.(7.18) accounts for spontaneous emission which is equivalent to
stimulated emission by one photon occupying the mode with mode volume V .
For a laser cavity with a semi-transparent mirror with amplitude transmission
T , see section 2.3.8, producing a power loss 2l = 2T per round-trip in the
cavity, the cavity decay time is τ p = 2l/TR , if TR = 2∗L/c0 is the roundtrip-
time in linear cavity with optical length 2L or a ring cavity with optical length
L. Eventual internal losses can be treated in a similar way and contribute to
the cavity decay time. Note, the decay rate for the inversion in the absence of
a field, 1/τL, is not only due to spontaneous emission, but is also a result of
non radiative decay processes. See for example the four level system shown
in Fig. 7.6.
So the two rate equations are

d

dt
N2 = −N2

τL
− 2∗σvgN2nL +Rp (7.19)

d

dt
nL = −nL

τ p
+ 2∗

σvg
V

N2

µ
nL +

1

V

¶
. (7.20)

Experimentally, the photon number and the inversion in a laser resonator
are not very convenient quantities, therefore, we normalize both equations to
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the round-trip amplitude gain g = 2∗ σvg
2V

N2TR experienced by the light and
the circulating intracavity power P = I ·Aeff

d

dt
g = −g − g0

τL
− gP

Esat
(7.21)

d

dt
P = − 1

τ p
P +

2g

TR
(P + Pvac) , (7.22)

with

Esat =
hfL
2∗σ

Aeff =
1

2∗
IsAeffτL (7.23)

Psat = Es/τL (7.24)

Pvac = hfLvg/2
∗L = hfL/TR (7.25)

g0 = 2∗
Rp

2Aeff
στL, (7.26)

the small signal round-trip gain of the laser. Note, the factor of two in front
of gain and loss is due to the fact, that we defined g and l as gain and loss
with respect to amplitude. Eq.(7.26) elucidates that the figure of merit that
characterizes the small signal gain achievable with a certain laser material is
the στL-product.

7.5 Continuous Wave Operation

If Pvac ¿ P ¿ Psat = Esat/τL, than g = g0 and we obtain from Eq.(7.22),
neglecting Pvac

dP

P
= 2 (g0 − l)

dt

TR
(7.27)

or
P (t) = P (0)e

2(g0−l) t
TR . (7.28)

The laser power builts up from vaccum fluctuations, see Figure 7.23 until it
reaches the saturation power, when saturation of the gain sets in within the
built-up time

TB =
TR

2 (g0 − l)
ln

Psat

Pvac
=

TR
2 (g0 − l)

ln
AeffTR
στL

. (7.29)
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Figure 7.23: Built-up of laser power from spontaneous emission noise.

Some time after the built-up phase the laser reaches steady state, with
the saturated gain and steady state power resulting from Eqs.(7.21-7.22),
neglecting in the following the spontaneous emission, Pvac = 0, and for d

dt
=

0 :

gs =
g0

1 + Ps
Psat

= l (7.30)

Ps = Psat

³g0
l
− 1
´
, (7.31)

Figure 7.24 shows output power and gain as a function of small signal gain
g0, which is proportional to the pump rate. Below threshold, the output
power is zero and the gain increases linearly with in crease pumping. After
reaching threshold the gain stays clamped at the threshold value determined
by gain equal loss and the output power increases linearly.

7.6 Stability and Relaxation Oscillations

How does the laser reach steady state, once a perturbation has occured?

g = gs +∆g (7.32)

P = Ps +∆P (7.33)
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Figure 7.24: Output power and gain of a laser as a function of pump power.

Substitution into Eqs.(7.21-7.22) and linearization leads to

d∆P

dt
= +2

Ps

TR
∆g (7.34)

d∆g

dt
= − gs

Esat
∆P − 1

τ stim
∆g (7.35)

where 1
τstim

= 1
τL

¡
1 + Ps

Psat

¢
is the inverse stimulated lifetime. The stimulated

lifetime is the lifetime of the upper laser state in the presence of the optical
field. The perturbations decay or grow likeµ

∆P
∆g

¶
=

µ
∆P0
∆g0

¶
est. (7.36)

which leads to the system of equations (using gs = l)

A

µ
∆P0
∆g0

¶
=

Ã
−s 2 Ps

TR

− TR
Esat2τp

− 1
τstim

− s

!µ
∆P0
∆g0

¶
= 0. (7.37)

There is only a solution, if the determinante of the coefficient matrix vanishes,
i.e.

s

µ
1

τ stim
+ s

¶
+

Ps

Esatτ p
= 0, (7.38)

which determines the relaxation rates or eigen frequencies of the linearized
system

s1/2 = −
1

2τ stim
±

sµ
1

2τ stim

¶2
− Ps

Esatτ p
. (7.39)
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Introducing the pump parameter r = 1 + Ps
Psat

, which tells us how often we
pump the laser over threshold, the eigen frequencies can be rewritten as

s1/2 = − 1

2τ stim

Ã
1± j

s
4 (r − 1)

r

τ stim
τ p
− 1
!
, (7.40)

= − r

2τL
± j

s
(r − 1)
τLτ p

−
µ

r

2τL

¶2
(7.41)

There are several conclusions to draw:

• (i): The stationary state (0, g0) for g0 < l and (Ps, gs) for g0 > l are
always stable, i.e. Re{si} < 0.

• (ii): For lasers pumped above threshold, r > 1, and long upper state
lifetimes, i.e. r

4τL
< 1

τp
,

the relaxation rate becomes complex, i.e. there are relaxation oscilla-
tions

s1/2 = −
1

2τ stim
± jωR. (7.42)

with a frequency ωR approximately equal to the geometric mean of
inverse stimulated lifetime and photon life time

ωR ≈
s

1

τ stimτ p
. (7.43)

• If the laser can be pumped strong enough, i.e. r can be made large
enough so that the stimulated lifetime becomes as short as the cavity
decay time, relaxation oscillations vanish.

The physical reason for relaxation oscillations and instabilities related to
it is, that the gain reacts to slow on the light field, i.e. the stimulated lifetime
is long in comparison with the cavity decay time.

Example: diode-pumped Nd:YAG-Laser

λ0 = 1064 nm, σ = 4 · 10−20cm2, Aeff = π (100μm× 150μm) , r = 50
τL = 1.2 ms, l = 1%, TR = 10ns
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From Eq.(7.16) we obtain:

Isat =
hfL
στL

= 3.9
kW

cm2
, Psat = IsatAeff = 1.8 W, Ps = 91.5W

τ stim =
τL
r
= 24μs, τ p = 1μs, ωR =

s
1

τ stimτ p
= 2 · 105s−1.

Figure 7.25 shows the typically observed fluctuations of the output of a solid-

Figure 7.25: Relaxation oscillations in the time and frequency domain.

state laser in the time and frequency domain. Note, that this laser has a long
upperstate lifetime of several 100 μs
One can also define a quality factor for the relaxation oscillations by the

ratio of the imaginary to the real part of the complex eigen frequencies 7.41

Q =

s
4τL
τ p

(r − 1)
r2

. (7.44)

The quality factor can be as large a several thousand for solid-state lasers
with long upper-state lifetimes in the millisecond range.
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7.7 Laser Efficiency

An important measure for a laser is the efficiency with which pump power
is converted into laser output power. To determine the efficiency we must
review the important parameters of a laser and the limitations these param-
eters impose.
From Eq.(7.31) we found that the steady state intracavity power Ps of a

laser is

Ps = Psat

µ
2g0
2l
− 1
¶
, (7.45)

where 2g0 is the small signal round-trip power gain, Psat the gain saturation
power and 2l is the power loss per round-trip. Both parameters are expressed
in Eqs.(7.23)-(7.26) in terms of the fundamental pump parameter Rp, στL-
product and mode cross section Aeff of the gain medium. For this derivation
it was asummed that all pumped atoms are in the laser mode with constant
intensity over the beam cross section

2g0 = 2∗
Rp

Aeff
στL, (7.46)

Psat =
hfL
2∗στL

Aeff (7.47)

The power losses of lasers are due to the internal losses 2lint and the trans-
mission T through the output coupling mirror. The internal losses can be a
significant fraction of the total losses. The output power of the laser is

Pout = T · Psat

µ
2g0

2lint + T
− 1
¶

(7.48)

The pump power of a laser is minimized given

Pp = RphfP , (7.49)

where hfP is the energy of the pump photons. In discussing the efficiency of
a laser, we consider the overall efficiency

η =
Pout

Pp
(7.50)
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which approaches the differential efficiency ηD if the laser is pumped many
times over threshold, i.e. r = 2g0/2l→∞

ηD =
∂Pout

∂Pp
= η(r →∞) (7.51)

=
T

2lint + T
Psat

2∗

AeffhfP
στL (7.52)

=
T

2lint + T
· hfL
hfP

. (7.53)

Thus the efficiency of a laser is fundamentally limited by the ratio of output
coupling to total losses and the quantum defect in pumping. Therefore,
one would expect that the optimum output coupling is achieved with the
largest output coupler, however, this is not true as we considered the case of
operating many times above threshold.

7.8 "Thresholdless" Lasing

So far we neglected the spontaneous emission into the laser mode. This is
justified for large lasers where the density of radiation modes in the laser
medium is essentially the free space mode density and effects very close to
threshold are not of interest. For lasers with small mode volume, or a laser
operating very close to threshold, the spontaneous emission into the laser
mode can no longer be neglected and we should use the full rate equations
(7.21) and (7.22)

d

dt
g = −g − g0

τL
− gP

Esat
(7.54)

d

dt
P = − 1

τ p
P +

2g

TR
(P + Pvac) , (7.55)

where Pvac is the power of a single photon in the mode. The steady state
conditions are

gs =
g0

(1 + Ps/Psat)
, (7.56)

0 = (2gs − 2l)P + 2gsPvac. (7.57)
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Substitution of the saturated gain condition (7.56) into (7.57) and using the
pump parameter r = 2g0/2l, leads to a quadratic equation for the normalized
intracavity steady state power p=Ps/Psat in terms of normalized vacuum
power pv = Pvac/Psat = στLvg/V. This equation has the solutions

p =
r − 1 + rpv

2
±

sµ
r − 1 + rpv

2

¶2
+ (rpv)

2. (7.58)

where only the solution with the plus sign is of physical significance. Note,
the typical value for the στL-product of the laser materials in table 7.1 is
στL = 10−23cm2s. If the volume is measured in units of wavelength cubed
we obtain pv = 0.3/β forλ = 1μm, V = βλ3 and vg = c. Figure 7.26 shows
the behavior of the intracavity power as a function of the pump parameter
for various values of the normalized vacuum power.
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Figure 7.26: Intracavity power as a function of pump parameter r on a linear
scale (a) and a logarithmic scale (b) for various values of the normalized
vacuum power.




