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2.7 Waveguides and Integrated Optics

As with electronics, miniaturization and integration of optics is desired to
reduce cost while increasing functionality and reliability. One essential el-
ement is the guiding of the optical radiation in waveguides for integrated
optical devices and optical fibers for long distance transmission. Waveguides
can be as short as a few millimeters. Guiding of light with exceptionally low
loss in fiber (0.1dB/km) can be achieved by using total internal reflection.
Figure 2.83 shows different optical waveguides with a high index core mate-
rial and low index cladding. The light will be guided in the high index core.
Similar to the Gaussian beam the guided mode is made up of mostly paraxial
plane waves that hit the high/low-index interface at grazing incidence and
therefore undergo total internal reflections. The concomittant lensing effect
overcomes the diffraction of the beam that would happen in free space and
leads to stationary mode profiles fof the radiation.
Depending on the index profile and geometry one distinguishes between

different waveguide types. Figure 2.83 (a) is a planar slab waveguide, which
guides light only in one direction. This case is analyzed in more detail,
as it has simple analytical solutions that show all phenomena associated
with waveguiding such as cutoff, dispersion, single and multimode operation,
coupling of modes and more, which are used later in devices and to achieve
certain device properties. The other two cases show complete waveguiding
in the transverse direction; (b) planar strip waveguide and (c) optical fiber.

Saleh 239

Figure 2.83: Dark shaded area constitute the high index regions. (a) planar
slab waveguide; (b) strip waveguide; (c) optical fiber [6], p. 239.

In integrated optics many components are fabricated on a single sub-
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strate, see Figure 2.84 with fabrication processes similar to those in micro-
electronics.

Figure 2.84: Integrated optical device resembling an optical transmit-
ter/receiver, [6], p. 2.83.

As this example shows, the most important passive component to under-
stand in an integrated optical circuit are waveguides and couplers.

2.7.1 Planar Waveguides

To understand the basic physics and phenomena in waveguides, we look at
a few examples of guiding in one transverse dimension. These simple cases
can be treated analytically.

Planar-Mirror Waveguides

The planar mirror waveguide is composed of two ideal metal mirrors a dis-
tance d apart, see Figure 2.85
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Figure 2.85: Planar mirror waveguide, [6], p. 240.

We consider a TE-wave, whose electric field is polarized in the y−direction
and that propagates in the z−direction. The reflections of the light at the
ideal lossless mirrors will guide or confine the light in the x−direction. The
field will be homogenous in the y−direction, i.e. will not depend on y. There-
fore, we make the following trial solution for the electric field of a monochro-
matic complex TE-wave

�E(x, z, t) = Ey(x, z) e
jωt �ey. (2.304)

Note, this trial solution also satisfies the condition ∇ · �E = 0, see (2.12)

Modes of the planar waveguide Furthermore, we are looking for solu-
tions that do not change their field distribution transverse to the direction
of propagation and experience only a phase shift during propagation. We
call such solutions modes of the waveguide, because they don’t change its
transverse field profile. The modes of the above planar waveguide can be
expressed as

�Ey(x, z) = u(x) e−jβz �ey, (2.305)

where β is the propagation constant of the mode. This solution has to obey
the Helmholtz Eq.(2.18) in the free space section between the mirrors

d2

dx2
uy(x) =

¡
β2 − k2

¢
uy(x) with k2 =

ω2

c2
. (2.306)

The presence of the metal mirrors requires that the electric fields vanish at
the metal mirrors, otherwise infinitely strong currents would start to flow to
shorten the electric field.

uy(x = ±d/2) = 0 (2.307)
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.Note, that Eq.(2.306) is an eigenvalue problem to the differential operator
d2

dx2

d2

dx2
u(x) = λu(x) with u(x = ±d/2) = 0. (2.308)

in a space of functions u, that satisfies the boundary conditions (2.307). The
eigenvalues λ are for the moment arbitrary but constant numbers. Depending
on the sign of the eigenvalues the solutions can be sine or cosine functions
(λ < 0) or exponentials with real exponents for (λ > 0). In the latter case, it is
impossible to satiesfy the boundary conditions. Therefore, the eigensolutions
are

um(x) =

⎧⎨⎩
q

2
d
cos (kx,mx) with , kx,m =

π
d
m, m = 1, 3, 5, ..., even modesq

2
d
sin (kx,mx) with , kx,m =

π
d
m, m = 2, 4, 6, ..., odd modes

(2.309)

Propagation Constants The propagation constants for these modes fol-
low from comparing (2.306) with (2.308) to be

β2 = k2 − k2x,m (2.310)

or

β = ±
r

ω2

c2
−
³π
d
m
´2
= ±

sµ
2π

λ

¶2
−
³π
d
m
´2

(2.311)

where λ = λ0/n(λ0) is the wavelength in the medium between the mirrors.
This relationship is shown in Figure 2.86. The lowest order mode with index
m = 1 has the smallest k-vector component in x-direction and therefore the
largest k-vector component into z-direction. The sum of the squares of both
components has to be identical to the magnitude sqaure of the k-vector in
the medium k. Higher order modes have increasingly more nodes in the
x-direction, i.e. largest kx-components and the wave vector component in
z-direction decreases, until there is no real solution anymore to Eq.(??) and
the corresponding propagation constants βm become imaginary. That is, the
corresponding waves become evanescent waves, i..e they can not propagate
in a waveguide with the given dimensions.
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Figure 2.86: Determination of propagation constants for modes

Field Distribution The transverse electric field distributions for the var-
ious TE-modes is shown in Figure 2.87

y
x

Figure 2.87: Field distributions of the TE-modes of the planar mirror waveg-
uide [6], p. 244.

CutoffWavelength/Frequency For a given planar waveguide with sep-
aration d, there is a lowest frequency, i.e. longest wavelength, beyond which
no propagating mode exists. This wavelenth/frequency is refered to as cutoff



122 CHAPTER 2. CLASSICAL ELECTROMAGNETISM AND OPTICS

wavelength/frequency which is

λcutoff = 2d (2.312)

fcutoff =
c

2d
. (2.313)

The physical origin for the existence of a cutoff wavelength or frequency is
that the guided modes in the mirror waveguide are a superposition of two
plane waves, that propagate under a certain angle towards the z-axis, see
Figure 2.88

x

Figure 2.88: (a) Condition for self-consistency: as a wave reflects twice it
needs to be in phase with the previous wave. (b) The angles for which self-
consistency is achieved determine the x-component of the �k-vectors involved.
The corresponding two plane waves setup an interference pattern with an
extended node at the position of the metal mirrors satisfying the boundary
conditions, [6], p. 241.
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In order that the sum of the electric field of the two plane waves fulfills
the boundary conditions, the phase of one of the plane waves after reflection
on both mirrors needs to be inphase with the other plane wave, i.e. the
x-component of the �k-vectors involved, kx, must be a multiple of 2π

2kxd = ±2πm.

If we superimpose two plane waves with kx,m = ±πm/d, we obtain an in-
terference pattern which has nodes along the location of the metal mirrors,
which obviously fulfills the boundary conditions. It is clear that the mini-
mum distance between these lines of nodes for waves of a given wavelength λ
is λ/2, hence the separation dmust be greater than λ/2 otherwise no solution
is possible.

Single-Mode Operation For a given separation d, there is a wavelength
range over which only a single mode can propagate, we call this wavelength
range single-mode operation. From Figure 2.86 it follows for the planar
mirror waveguide

π

d
< k <

π

d
2 (2.314)

or
d < λ < 2d (2.315)

Waveguide Dispersion Due to the waveguiding, the relationship between
frequency and propagation constant is no longer linear. This does not imply
that the waveguide core, i.e. here the medium between the plan parallel
mirrors, has dispersion. For example, even for n = 1, we find for phase and
group velocity of the m-th mode

1

vp
=

β(ω)

ω
=
1

c

r
1−

³ cπ
dω

m
´2

(2.316)

=
1

c

s
1−

µ
λ

2d
m

¶2
(2.317)

and
1

vg
=

dβ(ω)

dω
=

1

2
q

ω2

c2
−
¡
π
d
m
¢22ωc2 (2.318)
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or
vg · vp = c2. (2.319)

Thus different modes have different group and phase velocities. Figure 2.89
shows group and phase velocity for the different modes as a function of the
normalized wave number kd/π.
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Figure 2.89: Group and phase velocity of propagating modes with index m
as a function of normailzed wave number.

TM-Modes The planar mirror waveguide does not only allow for TE-
waves to propagate. There are also TM-waves, which have only a magnetic
field component transverse to the propagation direction and parallel to the
mirrors, i.e. in y-direction

�H(x, z, t) = Hy(x, z) e
jωt �ey, (2.320)

and now H(x, z) has to obey the Helmholtz equation for the magnetic field.
The corresponding electric field can be derived from Ampere’s law

�E(x, z) =
−1
jωε
∇×

¡
Hy(x, z) �ey

¢
(2.321)

=
1

jωε

∂Hy(x, z)

∂z
�ex +

−1
jωε

∂Hy(x, z)

∂x
�ez. (2.322)
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The electric field tangential to the metal mirrors has to vanish again, which
leads to the boundary condition

∂Hy(x, z)

∂x
(x = ±d/2) = 0. (2.323)

After an analysis very similar to the discussion of the TE-waves we find for
the TM-modes with

Hy(x, z) = u(x) e−jβz �ey, (2.324)

the transverse mode shapes

um(x) =

⎧⎨⎩
q

2
d
cos (kx,mx) with , kx,m =

π
d
m, m = 2, 4, 6, ..., even modesq

2
d
sin (kx,mx) with , kx,m =

π
d
m, m = 1, 3, 5, ..., odd modes

(2.325)
Note, that in contrast to the electric field of the TE-waves being zero at the
metal surface, the transverse magnetic field of theTM-waves is at a maxi-
mum at the metal surface. We will not consider this case further, because
the discussion of cutoff frequencies and dispersion can be worked out very
analogous to the case for TE-modes.

Multimode Propagation Depending on the boundary conditions at the
input of the waveguide at z = 0 many modes may be excited. Eventually
there are even excitations with such high transverse wavevectors kx present,
that are below cutoff. Depending on the excitation amplitudes of each mode,
the total field in the waveguide will be the superposition of all modes. Lets
assume that there are only TE-modes excited, then the total field is

�E(x, z, t) =
∞X

m=1

¡
am e−jβmz + bm ejβmz

¢
um(x) e

jωt �ey, (2.326)

where the amplitudes am and bm are the excitations of the m-th mode in
forward and backward direction, respectively. It is easy to show that these
excitation amplitudes are determined by the transverse electric and magnetic
fields at z = 0 and t = 0. In many cases, the excitation of the waveguide will
be such that only the forward propagating modes are excited.

�E(x, z, t) =
∞X

m=1

am um(x) e
−jβmz ejωt �ey, (2.327)
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When many modes are excited, the transverse field distribution will change
during propagation, see Figure 2.90

x

x

x

Figure 2.90: Variation of the intensity distribution in the transverse direction
x at different distances z. Intensity profile of (a) the fundamental mode
m = 1, (b) the second mode with m = 2 and (c) a linear combination of the
fundamental and second mode, [6], p. 247.

Modes which are excited below cutoff will decay rapidly as evanescent
waves. The other modes will propagate, but due to the different propaga-
tion constants these modes superimpose differently at different propagation
distances along the waveguide. This dynamic can be used to build many
kinds of important integrated optical devices, such as multimode interfer-
ence couplers (see problem set 5). Depending on the application, undesired
multimode excitation may be very disturbing due to the large group delay
difference between the different modes. This effect is called modal dispersion.
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Mode Orthogonality

It turns out that the transverse modes determined by the functions um(x)
build an orthogonal set of basis functions into which any function in a cer-
tain function space can be decomposed. This is obvious for the case of the
planar-mirror waveguide, where the um(x) are a subset of the basis functions
for a Fourier series expansion of an arbitrary function f(x) in the interval
[−d/2, 3d/2] which is antisymmetric with respect to x = d/2 and fullfills the
boundary condition f(x = ±d/2) = 0. It is

Z d/2

−d/2
um(x) un(x) dx = δmn, (2.328)

f(x) =
X
m

am um(x) (2.329)

with am =

Z d/2

−d/2
um(x) f(x) dx (2.330)

From our familiarity with Fourier series expansions of periodic functions,
we can accept these relations here without proof. We will return to these
equations later in Quantum Mechanics and discuss in which mathematical
sense Eqs.(2.328) to (2.329) really hold.

Besides illustrating many important concepts, the planar mirror waveg-
uide is not of much practical use. More in use are dielectric waveguides.

Planar Dielectric Slab Waveguide

In the planar dielectric slab waveguide, waveguiding is not achieved by real
reflection on a mirror but rather by total internal reflection at interfaces
between two dielectric materials with refractive indices n1 > n2, see Figure
2.91
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x

y

Figure 2.91: Symmetric planar dielectric slab waveguide with n1 > n2. The
light is guided by total internal reflection. The field is evanescent in the
cladding material and oscillatory in the core, [6], p. 249.

Waveguide Modes As in the case of the planar mirror waveguide, there
are TE and TM-modes and we could find them as a superposition of cor-
respondingly polarized TEM waves propagating with a certain transverse
k-vector such that total internal reflection occurs. We do not want to follow
this procedure here, but rather use immediately the Helmholtz Equation. We
again write the electric field

�Ey(x, z) = u(x) e−jβz �ey. (2.331)

The field has to obey the Helmholtz Eq.(2.18) both in the core and in the
cladding

core :
d2

dx2
u(x) =

¡
β2 − k21

¢
u(x) with k21 =

ω2

c20
n21, (2.332)

cladding :
d2

dx2
u(x) =

¡
β2 − k22

¢
u(x) with k22 =

ω2

c20
n22 (2.333)

The boundary conditions are given by the continuity of electric and magnetic
field components tangential to the core/cladding interfaces as in section 2.2.
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Since the guided fields must be evanescent in the cladding and oscillatory in
the core, we rewrite the Helmholtz Equation as

core :
d2

dx2
u(x) = −k2xu(x) with k2x =

¡
k21 − β2

¢
, (2.334)

cladding :
d2

dx2
u(x) = κ2xu(x) with κ2x =

¡
β2 − k22

¢
(2.335)

where κx is the decay constant of the evanescent waves in the cladding. It
is obvious that for obtaining guided modes, the propagation constant of the
mode must be between the two propagation constants for core and cladding

k22 < β2 < k21. (2.336)

Or by defining an effective index for the mode

β = k0neff , with k0 =
ω

c0
(2.337)

we find

n1 > neff > n2, (2.338)

and Eqs.(2.334), (2.335) can be rewritten as

core : − d2

dx2
u(x)− k20

¡
n21 − n2eff

¢
u(x) = 0 (2.339)

cladding : − d2

dx2
u(x) + κ20

¡
n2eff − n22

¢
u(x) = 0 (2.340)

For reasons, which will become more obvious later, we draw in Figure 2.92
the negative refractive index profile of the waveguide.
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Figure 2.92: Negative refractive index profile and shape of electric field for
the fundamental and first higher order transverse TE-mode

From Eq.(2.339) we find that the solution has the general form

u(x) =

⎧⎨⎩ A exp (−κxx) + B exp (κxx) , for x < −d/2
C cos (kxx) + D sin (kxx) , for |x| < d/2

E exp (−κxx) + F exp (κxx) , for |x| > d/2
(2.341)

For a guided wave, i.e. um(x → ±∞) = 0 the coefficients A and F must
be zero. It can be also shown from the symmetry of the problem, that the
solutons are either even or odd (proof later)

u(e)(x) =

⎧⎨⎩ B exp (κxx) , for x < −d/2
C cos (kxx) , for |x| < d/2
E exp (−κxx) , for |x| > d/2

, (2.342)

u(o)(x) =

⎧⎨⎩ B exp (κxx) , for x < −d/2
D sin (kxx) , for |x| < d/2
E exp (−κxx) , for |x| > d/2

. (2.343)

The coefficients B and E in each case have to be determined from the bound-
ary conditions. From the continuity of the tangential electric field Ey, and
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the tangential magnetic field Hz, which follows from Faraday’s Law to be

Hz(x) =
1

−jωμ0
∂Ey

∂x
∼ du

dx
(2.344)

we obtain the boundary conditions for u(x)

u(x = ±d/2 + �) = u(x = ±d/2− �), (2.345)
du

dx
(x = ±d/2 + �) =

du

dx
(x = ±d/2− �). (2.346)

Note, these are four conditions determining the coefficients B,D,E and the
propagation constant β or refractive index neff . These conditions solve for
the parameters of even and odd modes separately. For the case of the even
modes, where B = E, we obtain

B exp

µ
−κx

d

2

¶
= C cos

µ
kx
d

2

¶
(2.347)

B κx exp

µ
−κx

d

2

¶
= Ckx sin

µ
kx
d

2

¶
(2.348)

or by division of the both equations

κx = kx tan

µ
kx
d

2

¶
. (2.349)

Eqs.(2.334) and (2.335) can be rewritten as one equation

k2x + κ2x =
¡
k21 − k22

¢
= k20

¡
n21 − n22

¢
(2.350)

Eq.(2.349) together with Eq.(2.350) determine the propagation constant β
via the two relations.

κx
d

2
= kx

d

2
tan

µ
kx
d

2

¶
, and (2.351)µ

kx
d

2

¶2
+

µ
κx

d

2

¶2
=

µ
k0
d

2
NA

¶2
(2.352)

where
NA =

q
(n21 − n22) (2.353)
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is called the numerical apperture of the waveguide. We will discuss the
physical significance of the numerical apperture shortly. A graphical solution
of these two equations can be found by showing both relations in one plot,
see Figure 2.93.
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Figure 2.93: Graphical solution of Eqs.(2.351) and ( 2.352), solid line for
even modes and Eq.(2.354) for the odd modes. The dash dotted line shows
(2.352) for different values of the product

¡
k0

d
2

¢
NA

Each crossing in Figure 2.93 of a solid line (2.351) with a circle (2.352)
with radius k0 d2NA represents an even guided mode. Similarly one finds for
the odd modes from the boundary conditions the relation

κx
d

2
= −kx

d

2
cot

µ
kx
d

2

¶
, (2.354)

which is shown in Figure 2.93 as dotted line. The corresponding crossings
with the circle indicate the existence of an odd mode.
There are also TM-modes, which we don’t want to discuss for the sake of

brevity.

Numerical Aperture Figure 2.93 shows that the number of modes guided
is determined by he product k0 d2NA, where NA is the numerical apperture
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defined in Eq.(2.353)

M = Int

∙
k0
d

2
NA/(π/2)

¸
+ 1, (2.355)

= Int

∙
2
d

λ0
NA

¸
+ 1, (2.356)

where the function Int[x]means the largest integer not greater than x. Note,
that there is always at least one guided mode no matter how small the sized
and the refractive index contrast between core and cladding of the waveguide
is. However, for small size and index contrast the mode may extend very far
into the cladding and the confinement in the core is low.
The numberical apperture also has an additional physical meaning that

becomes obvious from Figure 2.94.

Figure 2.94: Maximum angle of incoming wave guided by a waveguide with
numerical apperture NA, [6], p. 262.

The maximum angle of an incoming ray that can still be guided in the
waveguide is given by the numerical apperture, because according to Snell’s
Law

n0sin (θa) = n1sin (θ) , (2.357)

where n0 is the refractive index of the medium outside the waveguide. The
maximum internal angle θ where light is still guided in the waveguide by
total internal reflection is determined by the critical angle for total internal
reflection (2.126) , i.e. θmax = π/2− θtot with

sin (θtot) =
n2
n1

. (2.358)
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Thus for the maximum angle of an incoming ray that can still be guided we
find

n0sin (θa,max) = n1sin (θmax) = n1

s
1−

µ
n2
n1

¶2
= NA. (2.359)

Most often the external medium is air with n0 ≈ 1 and the refractive index
contrast is week, so that θa,max ¿ 1 and we can replace the sinusoid with its
argument, which leads to

θa,max = NA. (2.360)

Field Distributions Figure 2.95 shows the field distribution for the TE
guided modes in a dielectric waveguide. Note, these are solutions of the
second order differential equations (2.339) and (2.340) for an effective index
neff , that is between the core and cladding index. These guided modes have
a oscillatory behavior in those regions in space where the negative effective
index is larger than the negative local refractive index, see Figure 2.92 and
exponentially decaying solutions where the negative effective index is smaller
than than the negative local refractive index.

x

Figure 2.95: Field distributions for TE guided modes in a dielectric waveg-
uide. These results should be compared with those shown in Figure 2.87 for
the planar-mirror waveguide [6], p. 254.

Figure 2.96 shows a comparison of the guided modes in a waveguide
with a Gaussian beam. In contrast to a the Gaussian beam which diffracts,
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in a waveguide diffraction is balanced by the guiding action of the index
discontinuity, i.e. total internal reflection. Most importantly the cross section
of a waveguide mode stays constant and therefore a waveguide mode can
efficiently interact with the medium constituting the core or a medium that
is incorporated in the core.

Figure 2.96: Comparison of Gaussian beam in free space and a waveguide
mode, [6], p. 255.

Besides integration, this prolong interaction disctance is one of the major
reasons for using waveguides. The interaction lenght can be arbitrarily long,
only limited by the waveguide loss, in contrast to a Gaussian beam, which
stays focused only over the confocal distance or Rayleigh range.
As in the case of a planar-mirror waveguide, one can show that the trans-

verse mode functions are orthogonal to each other. At first, a striking dif-
ference here is that we have only a finite number of guided modes and one
might worry about the completeness of the transverse mode functions. The
answer is that in addition to the guided modes, there are unguided modes
or leaky modes, which together with the guided modes from a complete set.
Each initial field can be decomposed into these modes. The leaky modes
rapidly loose energy because of radiation and after a relatively short propa-
gation distance only the field of guided modes remains in the waveguide. We
will not pursue this further in this introductory class. The interested reader
should consult with [11].
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Confinement Factor

A very important quantity for a waveguide mode is its confinement in the
core, which is called the confinement factor

Γm =

R d/2
0

u2m(x) dxR∞
0

u2m(x) dx
. (2.361)

The confinement factor quantifies the fraction of the mode energy propagat-
ing in the core of the waveguide. This is very important for the interaction
of the mode with the medium of the core, which may be used to amplify the
mode or which may contain nonlinear media for frequency conversion.

Waveguide Dispersion

For the guided modes the effective refractive indices of the modes and there-
fore the dispersion relations must be between the indices or dispersion rela-
tions of core and cladding, see Figure 2.97

Figure 2.97: Dispersion relations for the different guided TE-Modes in the
dielectric slab waveguide.

The different slopes dω/dβ for each mode indicate the difference in group
velocity between the modes. Note, that there is at least always one guided
mode.
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2.7.2 Two-Dimensional Waveguides

Both the planar-mirror waveguide and the planar dielectric slab waveguide
confine light only in one direction. It is straight forward to analyze the modes
of the two-dimensional planar-mirror waveguide, which you have already done
in 6.013. Figure 2.98 shows various waveguides that are used in praxis for
various devices. Here, we do not want to analyze them any further, because
this is only possible by numerical techniques.

Figure 2.98: Various types of waveguide geometries: (a) strip: (b) embedded
strip: (c) rib ro ridge: (d) strip loaded. The darker the shading, the higher
the refractive index [6], p. 261.




