
Chapter 3

Quantum Nature of Light and
Matter

We understand classical mechanical motion of particles governed by New-
ton’s law. In the last chapter we examined in some detail the wave nature
of electromagnetic fields. We understand the occurance of guided traveling
modes and of resonator modes. There are characteristic dispersion relations
or resonance frequencies associated with that. In this chapter, we want to
summarize some experimental findings at the turn of the 19th century that
ultimately lead to the discover of quantum mechanics, which is that matter
has in addition to its particle like properties wave properties and electromag-
netic waves have in addition to its wave properties particle like properties.
As turns out the final theory, which will be developed in subsequent chapters
is much more than just that because the quantum mechanical wave function
has a different physical interpretation than a electromagnetic wave only the
mathematical concepts used is in many cases very similar. However, this is a
tremendous help and guideance in doing and finally understanding quantum
mechanics.

3.1 Black Body Radiation

In 1900 the physicist Max Planck found the law that governs the emission of
electromagnetic radiation from a black body in thermal equilibrium. More
specifically Planck’s law gives the energy stored in the electromagntic field in
a unit volume and unit frequency range, [f, f +df ] with df = 1Hz, when the
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174 CHAPTER 3. QUANTUM NATURE OF LIGHT AND MATTER

electromagnetic field is in thermal equilibrium with its surrounding that is
at temperature T. A black body is simply defined as an object that absorbs
all light. The best implementation of a black body is the Ulbricht sphere,
see Figure 3.1.

Figure 3.1: The Ulbricht sphere, is a sphere with a small opening, where
only a small amount of radiation can escape, so that the interior of the
sphere is in thermal equilibrum with the walls, which are kept at a constant
tremperature. The inside walls are typically made of diffuse material, so that
after multiple scattering of the walls any incoming ray is absorbed, i.e. the
wall opening is black.

Figure 3.2 shows the energy density w(f) of electromagnetic radiation in
a black body at temperature T . Around the turn of the 19th century w(f)
was measured with high precision and one was able to distinguish between
various approximations that were presented by other researchers earlier, like
the Rayleigh-Jeans law and Wien’s law, which turned out to be asymptotic
approximations to Planck’s Law for low and high frequencies.
In order to find the formula describing the graphs shown in Figure 3.2

Planck had to introduce the hypothesis that harmonic oscillators with fre-
quency f can not exchange arbitrary amounts of energy but rather only
in discrete portions, so called quanta. Planck modelled atoms as classical
oscillators with frequency f . Therefore, the energy of an oscillator must be
quantized in energy levels corresponding to these energy quanta, which he
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found to be equal to hf, where h is Planck’s constant

h = 6.62620± 5 · 10−34Js. (3.1)
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Figure 3.2: Spectral energy density of the black body radiation according to
Planck’s Law.

As a model for a black body we use now a cavity with perfectly reflecting
walls, somewhat different from the Ulbricht sphere. In order to tap of a small
but negligible amount of radiation from the inside, a small opening is in the
wall. We can make this opening so small that it does essentially not change
the internal radiation field. Then the radiation in the cavity is the sum over
all possible resonator modes in the cavity. If the cavity is at temperature
T all the modes are thermally excited by emission and absorption of energy
quanta from the atoms of the wall.
For the derivation of Planck’s law we consider a cavity with perfectly

conducting walls, see Figure 3.3.
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Figure 3.3: (a) Cavity resonator with metallic walls. (b) Resonator modes
characterized by a certain k-vector.

If we extend the analysis of the plan parallel mirror waveguide to find the
TE and TM modes of a three-dimensional metalic resonator, the resonator
modes are TEmnp− and THmnp−modes characterized by its wave vector com-
ponents in x−, y−, and z−direction. The resonances are standing waves in
three dimensions

kx =
mπ

Lx
, ky =

nπ

Ly
, kz =

pπ

Lz
, for m,n, p = 0, 1, 2, ... (3.2)

An expression for the number of modes in a frequency interval [f, f + df ]
can be found by recognizing that this is identical to the number of points in
Figure 3.3(b) that are in the first octant of a spherical shell with thickness
dk at k = 2πf/c.The volume occupied by one mode in the space of wave
numbers k is ∆V = π

Lx
· π
Ly
· π
Lz
= π3

V
with the volume V = LxLyLz. Then the

number of modes dN in the frequency interval [f, f + df ] in volume V are

dN = 2 · 4πk
2dk

8π
3

V

= V
k2dk

π2
, (3.3)

where the factor of 2 in front accounts for the two polarizations or TE and
TH-modes of the resonator and the 8 in the denominator accounts for the
fact that only one eighth of the sphere, an octand, is occupied by the positive
wave vectors. With k = 2πf/c and dk = 2πdf/c, we obtain for the number
of modes finally
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dN = V
8π

c3
f2df (3.4)

Note, that the same density of states is obtained using periodic boundary
conditions in all three dimensions, i.e. then we can represent all fields in
terms of a three dimensional Fourier series. The possible wave vectors would
range from negative to positive values

kx =
2mπ

Lx
, ky =

2nπ

Ly
, kz =

2pπ

Lz
f or m, n, p = 0, ±1, ±2. . . . (3.5)

However, these wavevectors fill the whole sphere and not just one 8-th, which
compensates for the 8-times larger volume occupied by one mode. If we imply
periodic boundary conditions, we have forward and backward running waves
that are independent from each other. If we use the boundary conditions of
the resonator, the forward and backward running waves are connected and
not independent and form standing waves. One should not be disturbed by
this fact as all volume properties, such as the energy density, only depends
on the density of states, and not on surface effects, as long as the volume is
reasonably large.

3.1.1 Rayleigh-Jeans-Law

The excitation amplitude of each mode obeys the equation of motion of a
harmonic oscillator. Therefore, classically one expects that each of mode is
in thermal equilibrium excute with a thermal energy kT according to the
equipartition theorem, where k is Boltzmann’s constant with

k = 1.38062± 6 · 10−23J/K. (3.6)

If that is the case the spectral energy density is given by the Rayleigh-Jeans-
Law, see Figure 3.2.

w(f) =
1

V

dN

df
kT =

8π

c3
f2kT. (3.7)

As can be seen from Figure 3.2, this law describes very well the black body
radiation for frequencies hf ¿ kT but there is an arbitrary large deviation
for high frequencies. This formula can not be correct, because it predicts
infinite energy density for the high frequency modes resulting in an "ultravi-
olet catastrophy", i.e. the electromagnetic field contains an infinite amount
of energy at thermal equilibrium.
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3.1.2 Wien’s Law

The high frequency or short wavelength region of the black body radiation
was first empirically described by Wien’s Law

w(f) =
8πhf3

c3
e−hf/kT . (3.8)

Wien’s law is surprisingly close to Planck’s law, however it slightly fails to
correctly predicts the asympthotic behaviour at low frequencies or long wave-
lengths.

3.1.3 Planck’s Law

In the winter of 1900, Max Planck found the correct law for the black body
radiation by assuming that each oscillator can only exchange energy in dis-
crete portions or quanta. We rederive it by assuming that each mode can
only have the discrete energie values

Es = s · hf, for s = 0, 1, 2, ... (3.9)

Thus s is the number of energy quanta stored in the oscillator. If the oscillator
is a mode of the electromagnetic field we call s the number of photons. For the
probability ps, that the oscillator has the energy Es we assume a Boltzmann-
distribution

ps =
1

Z
exp

µ
−Es

kT

¶
=
1

Z
exp

µ
−hf

kT
s

¶
, (3.10)

where Z is a normalization factor such that the total propability of the os-
cillator to have any of the allowed energy values is

∞X
s=0

ps = 1. (3.11)

Note, due to the fact th∠t the oscillator energy is proportional to the number
of photons, the statistics are exponential statistics. From Eqs.(3.10) and
(3.11) we obtain for the normalization factor

Z =
∞X
s=0

exp

µ
−hf

kT
s

¶
=

1

1− exp
¡
− hf

kT

¢ , (3.12)
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which is also called the partition function. The photon statistics are then
given by

ps = exp

µ
−Es

kT

¶ ∙
1− exp

µ
−hf

kT

¶¸
−1 (3.13)

or with β = hf
kT

ps =
1

Z(β)
e−βs , with Z (β) =

∞X
s=0

e−βs =
1

1− e−β
. (3.14)

Given the statistics of the photon number, we can compute moments of the
probability distribution, such as the average number of photons in the mode


s1
®
=

∞X
s=0

s1ps. (3.15)

This first moment of the photon statistics can be computed from the partition
function, using the "trick"

s1
®
=

1

Z(β)

∂1

∂ (−β)1
Z(β) = Z(β) e−β , (3.16)

which is
hsi = 1

exp hf
kT
− 1

. (3.17)

With the average photon number hsi , we obtain for the average energy stored
in the mode

hEsi = hsihf, (3.18)

and the energy density in the frequency intervall [f, f + df ] is then given by

w (f) = hEsi
dN

V df
. (3.19)

With the density of modes from Eq.(3.4) we find Planck’s law for the black
body radiation

w (f) =
8π f 2

c3
hf

exp hf
kT
− 1

, (3.20)

which was used to make the plots shown in Figure 3.2. In the limits of low
and high frequencies, i.e. hf ¿ kT and hf À kT , respectively Planck’s law
asympthotically approaches the Rayleigh-Jeans law and Wien’s law.
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3.1.4 Thermal Photon Statistics

It is interesting to further investigate the intensity fluctuations of the thermal
radiation emitted from a black body. If the wall opening in the Ulbricht
sphere, see Figure 3.1, is small enough very little radiation escapes through
it. If the Ulbricht sphere is kept at constant temperature the radiation inside
the Ulbricht sphere stays in thermal equilibrium and the intensity of the
radiation emitted from the wall opening in a frequency interval [f, f + df ] is

I(f) = c · w (f) . (3.21)

Thus the intensity fluctuations of the emitted black body radiation is directly
related to the photon statistics or quantum statistics of the radiation modes
at freuqency f , i.e. related to the stochastic variable s : the number of
photons in a mode with frequency f . This gives us direclty experimental
access to the photon statistics of an ensemble of modes or even a single mode
when proper spatial and spectral filtering is applied.

Using the expectation value of the photon number 3.17, we can rewrite
the photon statistics for a thermally excited mode in terms of its average
photon number in the mode as

ps =
hsis

(hsi+ 1)s+1
=

1

(hsi+ 1)

µ
hsi

(hsi+ 1)

¶s

, (3.22)

The thermal photon statistics display an exponential distribution, see Figure
3.4. Before we move on, lets see how the average photon number in a given
mode depends on temperature and the frequency range considered. Figure
3.5 shows the relationship between average number of photons in a mode
with frequency f or wavelength λ and temperature T.
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Figure 3.4: Photon statistics of a mode in thermal equilibrium with a mean
photon number < s >= 10 (a) and < s >= 1000 (b).

Figure 3.5: Average photon number in a mode at frequency f or wavelength
λ and temperature.

Figure 3.5 shows that at room temperature and micorwave frequencies
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large numbers of photons are present due to the thermal excitation of the
mode. This is the reason that at room temperature the thermal noise over-
whelms eventual quantum fluctuations. However, quantum fluctuations are
important at high frequencies, which start for room temperature in the far to
mid infrared range, where on average much less than one photon is thermally
excited.
The variance of the photon number distribution is

σ2s =

s2
®
− hsi2 . (3.23)

By generalizing Eq.(3.12) to the m-th moment by replacing the exponent 1
by m

hsmi =
∞X
s=0

smps (3.24)

=
1

Z

∂m

∂ (−β)mZ (β) , (3.25)

we obtain for the second moment
s2
®
= 2Z (β) 2e−2β − Z (β) 2e−2β = 2


s2
®
+ hsi . (3.26)

and therefore for the variance of the photon number using Eq.(3.23) is

σ2s = hsi
2 + hsi . (3.27)

As expected from the wide distribution of photon numbers the variance is
larger than the square of the expectation value. This means that if we look
at the light intensity of a single mode the intensity is subject to extremly
strong fluctuations as large as the mean value. So why don’t we see this rapid
thermal fluctuations when we look at the black body radiation coming, for
example, from the surface of the sun? Well we don’t look at a single mode
but rather at a whole multitude of modes. Even when we restrict us to a
certain narrow frequency range and spatial direction, there is a multitude
of transverse modes presence. We obtain for the average total number of
photons in a group of modes and its variance

hstoti =
NX
i=1

hsii , (3.28)

σ2tot =
NX
i=1

σ2i . (3.29)
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Since these modes are independent identical systems, we have

hstoti = N · hsi . (3.30)

σ2tot = N
¡
hsi2 + hsi

¢
=
1

N
hstoti2 + hstoti .

Due to the averaging over many modes, the photon number fluctuations in
a large number of modes is reduced compared to its mean value

SNR =
σ2tot
hstoti2

=
1

N
+

1

hstoti
. (3.31)

Thus if one averages over many modes and has many photons in these modes
the intensity fluctuations become small.

3.1.5 Mode Counting

It is interested to estimate the number of modes one is averaging over given
a certain emitting surface and a certain measurement time, see Figure 3.6.

x

y
z

Lx

Ly

Lz

As AD
kAcΩc

Figure 3.6: Counting of longitudinal and transverse modes excited from a
radiating surface of size As.

If the area As is emitting light, it will couple to the modes of the free
field. To count the modes we put a large box (universe) over the experi-
mental arrangement under consideration. The emitting surface is one side of
the box. The light from this surface, i.e. specifying the transverse electric
and magnetic fields, couples to the modes of the universe with wave vectors
according to Eq.(3.5).
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Longitudinal Modes

The number of longitudinal modes, that propagate along the positive z-
direction in the frequency interval∆f can be derived from∆k = (2π/Lz)∆N
and ∆k = (2π/c0)∆f

∆N =
Lz

c0
∆f, (3.32)

or using the propagation or measurement time over which the experiment
extends

τ = Lz/c0, (3.33)

we obtain for the number of longitudinal modes that are involved in the
measurement that is carried out over a time intervall τ and a frequency
range ∆f

∆N = τ∆f . (3.34)

Transverse Modes

The free space modes that arrive at the detector area AD will not only have
wave vectors with a z−component, but also transverse components. Lets as-
sume that the detector area is far from the emitting surface, and we consider
only the paraxial plane waves. The wave vectors of these waves at a given
frequency or free space wave number k0 can be approximated by

�kmn =

µ
2πm

Lx
,
2πn

Ly
, k0

¶
with m,n = 0, 1, 2, ... (3.35)

where m and n are transverse mode indices. Then one mode occupies the
volume angle

Ωc =
4π2

LxLy k20
,

= λ20/As . (3.36)

If the modes are thermally excited, the radiation in individual modes is
uncorrelated. Therefore, if there is a detector at a distance r then only
the field within an area

Ac = r2Ωc , (3.37)
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is correlated. If the photodetector has an area Ad, then the number of
transverse modes detected is

Nt = Ad/Ac. (3.38)

The total number of modes detected is

Ntot =
Ad

Ac
τ∆f =

AdAs

r2λ20
τ∆f . (3.39)

Note, that there is perfect symmetry between the area of the emitting and
receiving surface. The emitter and the receiver could both be black bodies.
If one of them is at a higher temperature than the other, there is a net flow of
energy from the warmer body to the colder body until equilibrium is reached.
This would not be possible without interaction over the same number of
modes. Thus the formula which is completely unrelated to thermodynamics
is necessary to fulfill one of the main theorems of thermodynamcis, that is
that energy flows from warmer to colder bodies.

3.2 Photo-electric Effect

Another strong indication for the quantum nature of light was the photoelec-
tric effect by Lenard in 1903. He discovered that when ultra violet light is
radiated on a photo cathode electrons are emitted, see Figure 3.7.

Figure 3.7: Photo-electric effect: (a) Schematic setup and (b) dependence of
the necessary grid voltage to supress the electron current as a funtion of light
frequency.
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Lenard surrounded the photo cathode by a grid, which is charged by the
emitted electrons up to a voltage U, which blocks the emission of further
electrons. Figure 3.7 shows the blocking voltage as a function of the fre-
quency of the incoming light. Depending on the cathode material there is a
cutoff frequency. For lower frequencies no electrons are emitted at all. This
frequency as well as the blocking voltage does not depend on the intensity
of the light. In 1905, this effect was explained by Einstein introducing the
quantum hypothesis for radiation. According to him, each electron emission
is caused by a light quantum, now called photon. This photon has an energy
hf and this quantum energy must be larger than the work functionWe of the
material. The remainder of the energy mev

2/2 is transfered to the electron
in form of kinetic energy. The resulting energy balance is

hf =We +
1

2
mev

2 (3.40)

The kinetic energy of the electron can be used to reach the grid surrounding
the photo cathode until the charging energy due to the grid potential is equal
to the kinetic energy of the electrons

eU =
1

2
mev

2hf =We +
1

2
mev

2 (3.41)

or
−U = 1

e
(hf −We), for hf > We. (3.42)

This equation explains the empirically found law by Lenard explaining the
cutoff frequency and the charge buildup as a function of light frequency.
Einstein was first to introduce the idea that the electromagnetic field contains
light quanta or photons.

3.3 Spontaneous and Induced Emission

The number of photons in a radiation mode may change via emission of
photon into the mode or absorption of a photon from the mode by atoms,
molecules or a solid state material. Einstein introduced a phenomenological
theory of these processes in order to explain how matter may get into thermal
equilibrium by interaction with the modes of the radiation field. He consid-
ered the interaction of a mode with atoms modeled by two energy levels E1
and E2, see Figure 3.8.
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Figure 3.8: Energy levels of a two level atom and populations.

n1 and n2 are the population densities of these two levels considering a
whole ensemble of these atoms. Transitions are possible in the atom between
the two energy levels by emission of a photon at a frequency

f =
E2 −E1

h
(3.43)

Absorption of a photon is only possible if there is energy present in the
radiation field. Einstein wrote for the corresponding transition rates, which
should be proportional to the population densities and the photon density at
the transition frequency

−dn1
dt

¯̄̄̄
Abs

=
dn2
dt

¯̄̄̄
Abs

= B12n1w(f21). (3.44)

The coefficient B12 characterizes the absorption properties of the transition.
Einstein had to allow for two different kind of processes for reasons that be-
come clear a little later. Transitions induced by the already present photons
or radiation energy as well as spontaneous transitions

dn1
dt

¯̄̄̄
Em

= −dn2
dt

¯̄̄̄
Em

=B21 n2w (f21) +A21 n2 . (3.45)

The coefficient B21describes the induced and A21 the spontaneous emissions.
The latter transitions occur even in the absence of any radiation and the
corresponding coefficient determines the lifetime of the excited state

τ sp = A−121 , (3.46)
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in the absence of the radiation field. The total change in the population
densities is due to both absorption and emission processes

dni
dt
=

dni
dt

¯̄̄̄
Em

+
dni
dt

¯̄̄̄
Abs

, for i = 1, 2 (3.47)

Using Eqs.(3.44) and (3.45) we find

−dn1
dt

=
dn2
dt

= (B12 n1 −B21 n2) w (f21)−A21 n2. (3.48)

In thermal equilibrium the energy density of the radiation field must fulfill
the condition

w (f21) =
A21/B12

n1/n2 −B21/B12
, (3.49)

while the atomic ensemble itself should also be in thermal equilibrium which
again should be described by the Boltzmann statistics, i.e. the ratio between
the population densities are determined by the Boltzmann factor

n2/n1 = exp

µ
−E2 −E1

kT

¶
. (3.50)

And with it the energy density of the radiation field must be

w (f21) =
A21/B12

exp
¡
hf21
kT

¢
−B21/B12

. (3.51)

A comparison with Planck’s law, Eq.(3.20), gives

B21 = B12, (3.52)

and

A21 =
8π hf321

c3
B12. (3.53)

Clearly, without the spontaneous emission process it is impossible to arrive
at Planck’s Law in equilibrium. The spectral energy density of the radiation
field can be rewritten with the average photon number in the modes at the
transition frequency f21 as

w (f21) =
8π f221
c3

hf21 hsi , with hsi = hsi = 1

exp hf21
kT
− 1

. (3.54)
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Or we can write

w (f21) =
A21
B12

hsi .

With that relationship Eq.(3.45) can be rewritten as

dn1
dt

¯̄̄̄
Em

= −dn2
dt

¯̄̄̄
Em

=A21 n2 (hsi+ 1) , (3.55)

which indicates that the number of spontaneous emissions is equvalent to in-
duced emissions caused by the presence of a single photon per mode. Having
identified the coefficients describing the transition rates in the atom interact-
ing with the field from equilibrium considerations, we can rewrite the rate
equations also for the non equilibrium situation, because the coefficients are
constants depending only on the transition considered

dn1
dt

= −dn2
dt
=
1

τ sp
[(n2−n1) hsi+ n2] . (3.56)

With each transition from the excited state of the atom to the ground state
an emission of a photon goes along with it. From this, we obtain a change
in the average photon number of the modes

d hsi
dt

= V
dn1
dt

, (3.57)

which is
d hsi
dt

=
V

τ sp
[(n2 − n1) hsi+ n2] . (3.58)

Again the first term describes the stimulated or induced processes and the
second term the spontaneous processes. As we will see later, the stimulated
emission processes are coherent with the already present radiation field that is
inducing the transitions. This is not so for the spontaneous emissions, which
add noise to the already present field. For n1 > n2 the stimulated processes
lead to a decrease in the photon number and the medium is absorbing. In the
case of inversion, n2 > n1, the photon number increases exponentially. Ac-
cording to Eq.(3.50) inversion corresponds to a negative temperature, which
is an indication for a non equilibrium situation that can only be maintained
by additional means. It is impossible to achieve inversion by simple irradia-
tion of the atoms with intense radiation. As we see from Eq.(3.58) in steady
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state the ratio between excited state and ground state population is

n2
n1
=

hsi
hsi+ 1 , (3.59)

which at most approaches equal population for very large photon number.
However, such a process can be exploited in a three or four level system, see
Figure 3.9, to achieve inversion.

Figure 3.9: Three level system: (a) in thermal equilibrium and (b) under
optical pumping at the transition frequency f31.

By optical pumping population from the ground state can be transfered to
the excited level with energy E3. If there is a fast relaxation from this level to
level E2, where level two in contrast has a long lifetime, it is conceivable that
an inversion between level E2 and E1 can build up. If inversion is achieved
radiation at the frequency f21 is amplified.

3.4 Matter Waves and Bohr’s Model of an
Atom

By systematic scattering experiments Ernest Rutherford showed in 1911, that
the negative charges in an atom are homogenously distributed in contrast to
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the positive charge which is concentrated in a small nucleus about 10,000
times smaller than the atom itself. The nucleus also carries almost all of the
atomic mass. Rutherford proposed a model of an atom where the electrons
circle the nucleas similar to the planets circling the sun where the gravita-
tional force is replaced by the Coulomb force between the electrons and the
nucleus.
This model had many short comings. How was it possible that the elec-

trons, which undergo acceleration on their trajectory around the nucleus, do
not radiate according to classical electromagnetism, loose energy and finally
fall into the nucleus? Due to advances in optical instrumentation the light
emitted from thermally excited atomic vapors was known to be in the form
of discrete lines. Balmer found in 1885 that these lines could be expressed
by the rule

1

λ
= RH

µ
1

22
− 1

n2

¶
, with n = 3, 4, 5, ... (3.60)

where λ is the wavelength of light and RH = 10.968 · μm−1 is the Rydberg
constant for hydrogen. For n = 3 this corresponds to the red Hα-line at
λ = 656.3nm, for n→∞ one obtains the wavelength of the limiting line in
this series at λ = 364.6nm, see Figure 3.10.

Figure 3.10: Balmer series on a wave number scale.

.

In the subsequent spectroscopy work further sequences where found:
1. Lyman Series:

1

λ
= RH

µ
1

12
− 1

n2

¶
, with n = 2, 4, 5, ... (3.61)



192 CHAPTER 3. QUANTUM NATURE OF LIGHT AND MATTER

2. Balmer Series:

1

λ
= RH

µ
1

22
− 1

n2

¶
, with n = 3, 4, 5, ... (3.62)

3. Paschen Series:

1

λ
= RH

µ
1

32
− 1

n2

¶
, with n = 4, 5, 6, ... (3.63)

4. Brackett Series:

1

λ
= RH

µ
1

42
− 1

n2

¶
, with n = 5, 6, 7, ... (3.64)

5. Pfund Series:

1

λ
= RH

µ
1

52
− 1

n2

¶
, with n = 6, 7, 8, ... (3.65)

The Lyman series in the UV-region of the spectrum, whereas the Pfund series
is in the far infrared. These sequences can be represented as transitions
between energy levels as shown in Figure 3.11.
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Figure 3.11: Energy level diagram for the hydrogen atom.

.

In 1913, Niels Bohr found the quantization condition for the electron
trajectories in the Hydrogen atom and he was able to derive from that the
spectral series discussed above. He postulated that only those electron tra-
jectories are allowed that within one rountrip around the nucleus have an
action equal to a multiple of Planck’s quantum of action h.I

p · ds = nh, with n = 1, 2, 3.... (3.66)

Second, he postulated that the electron can switch from one energy level or
trajectory to another one by the emission or absorption of a photon with an
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energy equivalent to the energy difference between the two energy levels, see
Figure 3.12.

hf = ∆E. (3.67)

Figure 3.12: Transition between different energy levels in the hydrogen atom.

Assuming a circular trajectory of the electron with radius rn around the
nucleus, the quantization condition for the electron trajectory (3.66) leads to

2πrnmvn = nh, with n = 1, 2, 3... (3.68)

The other condition for radius and velocity of the electron around the nucleus
is given by the equality of Coulomb and centrifugal force at radius rn, which
leads to

e2

4πε0r2n
=

mv2n
rn

, (3.69)

or

v2n =
e2

4πε0rnm
. (3.70)

Substituting this value for the electron velocity in the squared quantization
condition (3.68), we find the radius of the electron trajectories

rn =
ε0h

2

πe2m
n2. (3.71)

The radius of the first trajectory, called Bohr radius is r1 = 0.529 · 10−10m.
The velocities on the individual trajectories are

vn =
e2

2ε0h

1

n
. (3.72)
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The highest velocity is found for the tightest trajectory around the nucleus,
i.e. for n = 1, which can be expressed in terms of the velocity of light as

v1 =
e2

2ε0hc
· c = 1

137
· c, (3.73)

where e2

2ε0hc
= 1

137
is the fine structure constant.

The energy of the electrons on these trajectories with the quantum num-
ber n is due to both potential and kinetic energy

Ekin =
1

2
mv2n =

me4

8ε20h
2n2

, (3.74)

Epot = − e2

4πε0rn
= − me4

4ε20h
2n2

. (3.75)

or

En = Ekin +Epot (3.76)

Epot = − me4

8ε20h
2n2

. (3.77)

Note, the energy of a bound electron is negative. For n→∞, En = 0. The
electron becomes detached from the atom, i.e. the atom becomes ionized.
The lowest and most stable energy state of the electron is for n = 1

En = −
me4

8ε20h
2
= −13.53eV, (3.78)

with correspondes to the ground state in hydrogen. When a transition be-
tween two of this energy eigenstates occurs a photon with the corresponding
energy is released

hf = Ek − En, (3.79)

= − me4

8ε20h
2

µ
1

k2
− 1

n2

¶
. (3.80)

3.5 Wave Particle Duality
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Bohr’s postulates were not able to explain all the intricacies of the observed
spectra and they couldn’t explain satisfactory the structure of the more com-
plex atoms. This was only achieved with the introduction of wave mechanics.
In 1923, de Broglie was the first to argue that matter might also have wave
properties. Starting from the equivalence principle of mass and energy by
Einstein

E0 = m0 c
2
0 (3.81)

he associated a frequency with this energy accordingly

f0 = m0 c
2
0/h. (3.82)

Since energy and frequency are not relativistically invariant quantities but
rather components of a four-vector which has the particle momentum as its
other components (E0/c0, px,py, pz) or (ω0/c0, kx,ky, kz), it was a necessity
that with the energy frequency relationship

E = hf = ~ω, (3.83)

there must also be a wave number associated with the momentum of a particle
according to

p = ~k. (3.84)

In 1927, C. J. Davisson and L. H. Germer experimentally confirmed this
prediction by finding strong diffraction peaks when an electron beam pene-
trated a thin metal film. The pictures were close to the observations of Laue
in 1912 and Bragg in 1913, who studied the structure of crystaline and poly
crystaline materials with x-ray diffraction.
With that finding the duality between waves and particles for both light

and matter was established. Duality means that both light and matter have
simultaneous wave and particle properties and it depends on the experimental
arrangement whether one or the other property manifests itself strongly in
the experimental outcome.
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