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2.4 Paraxial Wave Equation and Gaussian Beams

So far, we have only treated optical systems operating with plane waves,
which is an idealization. In reality plane waves are impossible to generate
because of there infinite amount of energy required to do so. The simplest
(approximate) solution of Maxwell’s equations describing a beam of finite size
is the Gaussian beam. In fact many optical systems are based on Gaussian
beams. Most lasers are designed to generate a Gaussian beam as output.
Gaussian beams stay Gaussian beams when propagating in free space. How-
ever, due to its finite size, diffraction changes the size of the beam and lenses
are imployed to reimage and change the cross section of the beam. In this sec-
tion, we want to study the properties of Gaussian beams and its propagation
and modification in optical systems.

2.4.1 Paraxial Wave Equation

We start from the Helmholtz Equation (2.18)
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∆+ k20

¢ e�E(x, y, z, ω) = 0, (2.214)

with the free space wavenumber k0 = ω/c0. This equation can easily be
solved in the Fourier domain, and one set of solutions are of course the plane
waves with wave vector |�k|2 = k20. We look for solutions which are polarized
in x-direction e�E(x, y, z, ω) = eE(x, y, z) �ex. (2.215)

We want to construct a beam with finite transverse extent into the x-y-plane
and which is mainly propagating into the positive z-direction. As such we
may try a superposition of plane waves with a dominant z-component of the
k-vector, see Figure 2.56. The k-vectors can be written as
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¶
. (2.216)

with kx, ky << k0.
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Figure 2.56: Construction of a paraxial beam by superimposing many plane
waves with a dominante k-component in z-direction.

Then we obtain for the propagating field
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where eE0(kx, ky) is the amplitude for the waves with the corresponding trans-
verse k-component. This function should only be nonzero within a small
range kx, ky ¿ k0. The function
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(2.218)
is a slowly varying function in the transverse directions x and y, and it can
be easily verified that it fulfills the paraxial wave equation
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Note, that this equation is in its structure identical to the dispersive spreading
of an optical pulse. The difference is that this spreading occurs now in the
two transverse dimensions and is called diffraction.
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2.4.2 Gaussian Beams

Since the kernel in Eq.(2.218) is quadratic in the transverse k-components
using a two-dimensional Gaussian for the amplitude distribution leads to a
beam in real space which is also Gaussian in the radial direction because of
the resulting Gaussian integral. By choosing for the transverse amplitude
distribution eE0(kx, ky) = exp ∙−k2x + k2y

2k2T

¸
, (2.220)

Eq.(2.218) can be rewritten as
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(2.221)
with the parameter zR = k0/k

2
T , which we will later identify as the Rayleigh

range. Thus, Gaussian beam solutions with different finite transverse width
in k-space and real space behave as if they propagate along the z-axis with
different imaginary z-component zR. Carrying out the Fourier transformation
results in the Gaussian Beam in real space
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The Gaussian beam is often formulated in terms of the complex beam pa-
rameter or q-parameter.
The propagation of the beam in free space and later even through optical

imaging systems can be efficiently described by a proper transformation of
the q-parameter
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Free space propagation is then described by

q(z) = z + jzR (2.224)

Using the inverse q-parameter, decomposed in real and imagniary parts,
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leads to
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Thus w(z) is the waist of the beam and R(z) is the radius of the phase
fronts. We normalized the beam such that the Gaussian beam intensity

I(z, r) =
¯̄̄ eE0(r, z)¯̄̄2 expressed in terms of the power P carried by the beam

is given by
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i.e. P =

Z ∞

0

Z 2π

0

I(r, z) rdr dϕ. (2.228)

The use of the q-parameter simplifies the description of Gaussian beam prop-
agation. In free space propagation from z1 to z2, the variation of the beam
parameter q is simply governed by

q2 = q1 + z2 − z1. (2.229)

where q2 and q1 are the beam parameters at z1 and z2.
If the beam waist, at which the beam has a minimum spot size w0 and

a planar wavefront (R = ∞), is located at z = 0, the variations of the
beam spot size and the radius of curvature of the phase fronts are explicitly
expressed as

w(z) = wo

"
1 +

µ
z

zR

¶2#1/2
, (2.230)

and
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where zR is called the Rayleigh range. The Rayleigh range is the distance
over which the cross section of the beam doubles. The Rayleigh range is
related to the initial beam waist and the wavelength of light according to

zR =
πw2o
λ

. (2.232)
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Intensity

Figure 2.57 shows the intensity of the Gaussian beam according to Eq.(2.227)
for different propagation distances.

Figure 2.57: The normalized beam intensity I/I0 as a function of the radial
distance r at different axial distances: (a) z=0, (b) z=zR, (c) z=2zR.

The beam intensity can be rewritten as

I(r, z) = I0
w20

w2(z)
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¸
, with I0 =
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. (2.233)

For z > zR the beam radius growth linearly and therefore the area expands
quadratically, which brings down the peak intensity quadratically with prop-
agation distance.
On the beam axis (r = 0) the intensity is given by

I(r, z) = I0
w20

w2(z)
=
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z
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´2 . (2.234)

The normalized beam intensity as a function of propagation distance is shown
in Figure 2.58
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Figure 2.58: The normalized Beam intensity I(r = 0)/I0 on the beam axis
as a function of propagation distance z [6], p. 84.

Power

The fraction of the total power contained in the beam up to a certain radius
is
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Thus, there is a certain fraction of power within a certain radius of the
beam

P (r < w(z))

P
= 0.86, (2.236)

P (r < 1.5w(z))

P
= 0.99. (2.237)

Beam radius

Due to diffraction, the smaller the spot size at the beam waist, the faster the
beam diverges according to 2.230 as illustrated in Figure ??.
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Figure 2.59: Gaussian beam and its characteristics.

Beam divergence

The angular divergence of the beam is inversely proportional to the beam
waist. In the far field, the half angle divergence is given by

θ =
λ

πwo
, (2.238)

see Figure 2.59.

Confocal parameter and depth of focus

In linear microscopy, only a layer which has the thickness over which the
beam is focused, called depth of focus, will contribute to a sharp image. In
nonlinear microscopy (see problem set) only a volume on the order of beam
cross section times depth of focus contributes to the signal. Therefore, the
depth of focus or confocal parameter of the Gaussian beam, is the distance
over which the beam stays focused and is defined as twice the Rayleigh range

b = 2zR =
2πw2o
λ

. (2.239)

The confocal parameter depends linear on the spot size (area) of the beam
and is inverse to the wavelength of light. At a wavelength of 1μm a beam
with a radius of wo = 1cm,.the beam will stay focussed ove distances as long
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600m. However, if the beam is stronlgy focussed down to wo = 10μm the
field of depth is only 600μm.

Phase

The phase delay of the Gaussian beam is

Φ(r, z) = k0z − ζ(z) + k0
r2

2R(z)
(2.240)

ζ(z) = arctan

µ
z

zR

¶
. (2.241)

On beam axis, there is the additional phase ζ(z) when the beam undergoes
focussing as shown in Figure 2.60. This is in addition to the phase shift that
a uniform plane wave already aquires.

Figure 2.60: Phase delay of a Gaussian beam relative to a uniform plane wave
on the beam axis [6], p. 87. This phase shift is known as Guoy-Phase-Shift.

This effect is known as Guoy-Phase-Shift. The third term in the phase
shift is parabolic in the radius and describes the wavefront (planes of constant
phase) bending due to the focusing, i.e. distortion from the uniform plane
wave.
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Figure 2.61: The radius of curvature R(z) of the wavefronts of a Gaussian
beam [6], p. 89.

The surfaces of constant phase are detemined by k0z − ζ(z) + k0
r2

2R(z)
=

const. Since the radius of curvature R(z) and the additional phase ζ(z) are
slowly varying functions of z, i.e. they are constant over the radial variation
of the wavefront, the wavefronts are paraboloidal surfaces with radius R(z),
see Figures 2.61 and 2.62.

Figure 2.62: Wavefronts of a Gaussian beam, [6] p. 88.

For comparison, Figure 2.63 shows the wavefront of (a) a uniform plane
wave, (b) a spherical wave and (c) a Gaussian beam. At points near the
beam center, the Gaussian beam resembles a plane wave. At large z, the
beam behaves like a spherical wave except that the phase fronts are delayed
by a quarter of the wavlength due to the Guoy-Phase-Shift.
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Figure 2.63: Wavefronts of (a) a uniform plane wave;(b) a spherical wave;
(c) a Gaussian beam [5], p. 89.




