
4.5 The Hydrogen Atom

The simplest of all atoms is the Hydrogen atom, which is made up of a
positively charged proton with rest mass mp = 1.6726231 × 10−27 kg, and
a negatively charged electron with rest mass me = 9.1093897 × 10−31 kg.
Therefore, the hydrogen atom is the only atom which consists of only two
particles. This makes an analytical solution of both the classical as well as
the quantum mechanical dynamics of the hydrogen atom possible. All other
atomes are composed of a nucleus and more than one electron. According
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Figure 4.8: Bohr Sommerfeld model of the Hydrogen atom.

to the Bohr-Somerfeld model of hydrogen, the electron circles the proton on
a planetary like orbit, see Figure 4.8.The stationary Schroedinger Equation
for the Hydrogen atom is

∆ψ (r) +
2m0

~2
(E − V (r)) ψ (r) = 0 (4.88)

The potential is a Coulomb potential between the proton and the electron
such that

V (r) = − e20
4π ε0 |r|

(4.89)

and the mass is actually the reduced mass

m0 =
mp · me

mp +me
(4.90)

that arises when we transform the two body problem between electron and
proton into a problem for the center of mass and relative coordinate motion.
Due to the large, but finite, mass of the proton, i.e. the proton mass is 1836
times the electron mass, both bodies circle around a common center of mass.
The center of mass is very close to the position of the proton and the reduced
mass is almost identical to the proton mass. Due to the spherical symmetry
of the potential the use of spherical coordinates is advantageous
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We will derive separate equations for the radial and angular coordinates by
assuming trial solutions which are products of functions only depending on
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one of the coordinates r , ϑ , or ϕ

ψ (r, ϑ, ϕ) = R (r) θ (ϑ) φ (ϕ) . (4.92)

Substituting this trial solution into the stationary Schroedinger Eq.(4.91)
and separating variables leads to radial equation
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R = 0 , (4.93)

the azimuthal equation
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¶
θ = 0 , (4.94)

and the polar equation
d2φ

dϕ2
+m2φ = 0 , (4.95)

where α and m are constants yet to be determined. The polar equation has
the complex solutions

φ (ϕ) = const. ejmϕ, with m = . . .− 2,−1, 0, 1, 2 . . . (4.96)

because of the symmetry of the problem in the polar angle ϕ, i.e. the wave-
function must be periodic in ϕ with period 2π.

4.5.1 Spherical Harmonics

The azimuthal equation is transformed by the substitution

ξ = cosϑ (4.97)

into ¡
1− ξ2

¢ d2θ
dξ2
− 2ξ dθ

dξ
+

µ
α− m2

1− ξ2

¶
θ = 0 . (4.98)

It turns out, that this equation has only bounded solutions on the interval
ξ [−1, 1], if the constant α is a whole number

α = l (l + 1) with, l = 0, 1, 2 . . . (4.99)
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and
m = −l,−l + 1, . . . − 1, 0, 1 . . . l − 1, l (4.100)

For m = 0, Eq.(4.98) is Legendre’s Differential Equation and the solutions
are the Legendre-Polynomialsm [5]
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(4.101)

For m 6= 0, Eq.(4.98) is the associated Legendre’s Differential Equation and
the solutions are the associated Legendre-Polynomials, which can be gener-
ated from the Legendre-Polynomials by

Pm
1 (ξ) =

¡
1− ξ2

¢m/2 dmP1 (ξ)

dξm
. (4.102)

Overall the angular functions can be combined to form the spherical harmon-
ics

Y m
1 (ϑ, ϕ) = (−1)

m

s
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m
1 (cosϑ) e

jm ϕ

, (4.103)

which play an important role whenever a partial differential equation that
contains the Laplace operator is solved in spherical coordinates. The spheri-
cal harmonics form a system of orthogonal functions on the full volume angle
4π, i.e. ϑ [0, π] and ϕ [−π, π]

πZ
0

2πZ
0

Y m
l
∗(ϑ, ϕ)Y m0

l0 (ϑ, ϕ) sinϑ dϑ dϕ = δll0 , δmm0 . (4.104)

Therefore, a function of the angular variable (ϑ, ϕ) can be expanded in spher-
ical harmonics. The spherical harmonics with negative azimuthal number -m
can be expressed in terms of those with positive azimuthal number m.

Y −m1 (ϑ, ϕ) = (−1)m (Y m
l (ϑ, ϕ))

∗ . (4.105)

The lowest order spherical harmonics are listed in Table 4.1. Figure 4.9 shows
a cut through the spherical harmonics Y m

1 (ϑ, ϕ) along the meridional plane.
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Table 4.1: Lowest order spherical harmonics

Figure 4.9: Lowest order spherical harmonics Y m
1 (ϑ, ϕ) , along the meridional

plane, i.e. ϕ = 0.
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4.5.2 Radial Wave Functions

Obviously, the spherical harmonics are related to the angular momentum L
of the particle, because after choosing the spherical harmonic with indices
l,m the radial Equation (4.93) is
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+
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+
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2
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¶
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The radial equation has in addition to the 1/r Coulomb potential the cen-
trifugal potential

Erot =
~2

2m0

l (l + 1)

r2
=

L2

2m0r2
, (4.107)

which is the rotation energy of a particle with angular momentum
¯̄̄
L
¯̄̄
=p

l (l + 1)~ and moment of inertia m0r
2. Thus quantum mechanically, the

particle can no longer access arbitrary values for the angular momentum.
The angular momentum can only have values

¯̄̄
L
¯̄̄
=
p
l (l + 1)~ with l =

0, 1, 2, .... For large radii, the radial equation simplifies to

d2R

dr2
+
2m0E

~2
R = 0, (4.108)

which indicates that the radial wave function must decay exponentially for
large radii. Therefore, we rescale the radius accoring to

ρ = Ar (4.109)

with

A2 = −8m0E

~2
, because E < 0, (4.110)

and form the trial solution

R (ρ) = ρsw (ρ) e−ρ/2. (4.111)

Substitution into Eq.(4.109) leads to the following differential equation for
w (ρ)

ρ2
d2w

dρ2
+ ρ [2 (s+ 1)− ρ]

dw

dρ
+ [ρ (λ− s− 1) + s (s+ 1)− l (l + 1)] w = 0,

(4.112)
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with

λ =
m0e

2

2πε0~2A
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√
m0e
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√
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. (4.113)

Evaluation of this differential equation at ρ = 0 leads to

l = s,

and we are left with the much simpler equation

ρ
d2w

dρ2
+ [2 (l + 1)− ρ]

dw

dρ
+ (λ− l − 1) w = 0 . (4.114)

One way to solve this equation is by using a polynomial trial solution.

w (ρ) = b0 + b1ρ+ b2ρ
2 + . . . bpρ

p (4.115)

Substitution into Eq.(4.114) leads to the following recursion relation for the
coefficients

bk+1 =
k + l + 1− λ

(k + 1) (k + 2l + 2)
bk (4.116)

For
λ = p+ l + 1 (4.117)

the recursion breaks off and we obtain a polynomial of finite order. If λ is
not an integer the polynomial does not stop and the corresponding series
converges against a w (ρ) that has an asymptotic behavior w (ρ) ˜eρ, which
leads to a radial function not normalizable. Thus we have the condition

λ ≡ n, with n > l + 1 (4.118)

and in total
w (ρ) = L21+1n−l+1 (ρ) (4.119)

with the Laguerre Polynomials

Lr
s (x) =

sX
q=0

(−1)q (s+ r)!2

(s−q) ! (r + q)!

xq

q!
. (4.120)

The lowest order Laguerre Polynomials are summarized in Table 4.2 The
radial wave function is then a Laguerre function

Fn1(ρ) = ρ1 L21+1n−l=1 (ρ) e−ρ/2, (4.121)
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L10 (x) = 1 , L11 (x) = 4− 2x , L12 (x) = 18− 18x+ 3x2 ,

L13 (x) = 96− 144x+ 48x2 − 4x3 , L20 (x) = 2 ,

L21 (x) = 18− 6x , L22 (x) = 144− 96 + 12x2 ,

L33 (x) = 6 , L31 (x) = 96− 24x ,

L40 (x) = 24 .

Table 4.2: Lowest order Laguerre Polynomials

and they again form an orthogonal system of functions
∞Z
0

Fnl (ρ)Fn0l (ρ) ρ
2dρ =

2n [(n+ l)!]3

(n− l − 1)! δnn0 . (4.122)

We now reverse the normalization of the radial coordinate and fromEqs.(4.109,4.110)
and (4.113) we find

ρ =
2r

na0
(4.123)

with the Bohr radius

a0 =
4πε0~2

e20m0
, (4.124)

which we found already in the Bohr-Sommerfeld model, see section 3.4. The
radial wave function is then

Rn1 (r) = Nnl Fnl (ρ) . (4.125)

And the normalization factor is determined by
∞Z
0

Rnl (r) Rn0l (r) r
2 dr = δn,n0 , (4.126)

which gives

Nnl =
2

n2

s
(n− l − 1)!
[(n+ l)!]3

a
−3/2
0 . (4.127)
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The radial wave functions of the hydrogen atom are listed in Table 4.3 and
plots of the lowest order radial wave functions are presented in Figure 4.10
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Table 4.3: Lowest order radial wavefunctions Rn,l(r).

Figure 4.10: Radial wavefunctions Rnl(r) of the hydrogen atom.
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4.5.3 Stationary States of Hydrogen

In total we found the stationary states, or the energy eigenfunctions, of the
hydrogen atom. Those are

ψnlm (r, ϑ, ϕ) = Rnl (r) Y m
l (ϑ, ϕ) . (4.128)

The lower order wave functions are listed in Table 4.4 and plots of the re-
sulting probability densities of the lowest order energy eigenstates of the
hydrogen atom are shown in Figure 4.11
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Table 4.4: Lowest order hydrogen wavefunctions ψn,l,m(r, ϑ, ϕ).

4.5.4 Energy Spectrum of Hydrogen

We haven’t yet discussed the energy eigenspectrum of hydrogen. From
Eqs.(4.113) and (4.118) we find this to be

E = − m0e
4

8 ε20h
2

1

n2
, (4.129)

which also agrees with the energy spectrum of the Bohr-Sommerfeld model,
see section 3.4. The lowest energy eigenstate is

E1 = −
m0e

4

8 ε20h
2
= −13.7eV. (4.130)
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Figure 4.11: Probability densities of the lowest order hydrogen wavefunctions.
(The density is presented along the meridial plane).
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ψ310(r, ϑ, ϕ) =
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Table 4.5: Lowest order hydrogen wavefunctions ψn,l,m(r, ϑ, ϕ).continued.

The energy eigenvalues constitute a sequence that converges for large n→∞
towards 0, which corresponds to removing the electron from the atom. The
energy to do so is E∞1 −E1 = 13.7eV.

Figure 4.12 shows the energy levels and the term diagram of the hydrogen
atom and how the Lyman, Balmer, Paschen, Brackett and Pfund series arise
from it. Each wavefunction is uniquely described by the set of quantum
numbers (n,l,m). The first quantum number n specifies the energy eigen
value En. As we will show in problem sets, the second quantum number
l determines the eigenvalue of the squared angular momentum operator L2

with eigenvalues

L2 ψnlm (r, ϑ, ϕ) = l(l + 1)~2 ψnlm (r, ϑ, ϕ) , (4.131)

and the third quantum number m detemines the eigenvalue of the operator
describing the z-component of the angular momentum operator

Lz ψnlm (r, ϑ, ϕ) = m~ ψnlm (r, ϑ, ϕ) . (4.132)
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Figure 4.12: Energy levels and term diagram for the hydrogen atom [3]

In fact, the description of the electron wave functions is not yet complete,
because the electron has an internal degree of freedom, that is its spin. The
spin is an internal angular momentum of the electron that carries a magnetic
moment with it. The Stern-Gerlach experiment shows that this degree of
freedom has two eigenstates, i.e. the spin can be oriented parallel or anti-
parallel to the direction of an applied magnetic field. The values of the
internal angluar mometum with respect to the quantization axis defined by
an external field, that shall be chosen along the z-axis, are s = ±~/2. Thus
the energy eigenstates of an electron in hydrogen are uniquely characterized
by four quantum numbers, n, l, m, and s. As Figure 4.12 shows, the energy

spectrum is degenerate, i.e. for n > 1, there exist to each energy eigenvalue
several eigenfunctions, that are only uniquely characterized by the additional
quantum numbers for angular momentum and spin. This is called degeneracy
because there exist to a given energy eigenvalue several states.




