
Chapter 2 

Classical Electromagnetism and 
Optics 

The classical electromagnetic phenomena are completely described by Maxwell’s 
Equations. The simplest case we may consider is that of electrodynamics of 
isotropic media 

2.1 Maxwell’s Equations of Isotropic Media 

Maxwell’s Equations are 

∂D�∇×H� = 
∂t 
+ J,� (2.1a) 

∂B�∇×E� = − 
∂t 

, (2.1b) 

∇ · D� = ρ, (2.1c) 

∇ · B� = 0. (2.1d) 

The material equations accompanying Maxwell’s equations are: 

� � �D = �0E + P,  (2.2a) 
� � �B = μ0H +M.  (2.2b) 

Here, E� and H� are the electric and magnetic field, D� the dielectric flux, B�

the magnetic flux, J� the current density of free chareges, ρ is  the free charge  
density, P� is the polarization, and M� the magnetization. 
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Note, it is Eqs.(2.2a) and (2.2b) which make electromagnetism an inter­
esting and always a hot topic with never ending possibilities. All advances in 
engineering of artifical materials or finding of new material properties, such 
as superconductivity, bring new life, meaning and possibilities into this field. 
By taking the curl of Eq. (2.1b) and considering ³ ´ ³ ´ 

− ∆ �∇× ∇×E� = ∇ ∇ · E� E, 

where ∇ is the Nabla operator and ∆ the Laplace operator, we obtain Ã ! ³ ´ ∂ ∂E� ∂P� ∂ 
∆E� − μ0 ∂t 

�j + �0 
∂t 
+ 

∂t 
= 

∂t
∇×M� +∇ ∇ · E� (2.3) 

and hence µ ¶ Ã ! ³ ´ 1 ∂2 ∂�j ∂2 ∂ 
∆ − 

c20 ∂t
2 

E� = μ0 ∂t 
+ 

∂t2 
P� + 

∂t
∇×M� +∇ ∇ · E� . (2.4) 

with the vacuum velocity of light s 
1 

c0 = . (2.5) 
μ0�0 

For dielectric non magnetic media, which we often encounter in optics, with 
no free charges and currents due to free charges, there is M� = �0, J� = �0, 
ρ = 0, which greatly simplifies the wave equation to µ ¶ ³ ´ 1 ∂2 ∂2 

∆ − 
c2 ∂t2 

E� = μ0 ∂t2 
P� +∇ ∇ · E� . (2.6) 

0 

2.1.1 Helmholtz Equation 

In general, the polarization in dielectric media may have a nonlinear and 
non local dependence on the field. For linear media the polarizability of the 
medium is described by a dielectric susceptibility χ (�r, t) Z Z  

P� (r, t) = �0 d�r0dt0 χ (�r − �r0, t  − t0)E� (�r0, t0) . (2.7) 
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The polarization in media with a local dielectric suszeptibility can be de­
scribed by Z 

P� (r, t) = �0 dt0 χ (�r, t − t0)E� (�r, t0) . (2.8) 

This relationship further simplifies for homogeneous media, where the sus­
ceptibility does not depend on location Z 

P� (�r, t) = �0 dt0 χ (t − t0)E� (�r, t0) . (2.9) 

which leads to a dielectric response function or permittivity 

� (t) = �0(δ(t) + χ (t)) (2.10) 

and with it to  Z 
D� (r, t) =  dt0 � (t − t0)E� (�r, t0) . (2.11) 

In such a linear homogeneous medium follows from eq.(2.1c) for the case of 
no free charges Z 

dt0 � (t − t0) (∇ · E� (�r, t0)) = 0. (2.12) 

This is certainly fulfilled for � E� = 0, which  simplifies the wave equation ∇ · 
(2.4) further µ ¶

1 ∂2 ∂2 

E = μ0 P.  (2.13) 
2

∆ − 
c0 ∂t

2 
�

∂t2 
�

This is the wave equation driven by the polarization of the medium. If the 
medium is linear and has only an induced polarization, completely described 
in the time domain χ (t) or in the frequency domain by its Fourier transform, 
the complex susceptibility χ̃(ω) = �̃r(ω) − 1 with the relative permittivity 
�̃r(ω) = �̃(ω)/�0, we obtain in the frequency domain with the Fourier trans­
form relationship Z+∞ e�E(z, ω) =  �E(z, t)e−jωtdt, (2.14) 

−∞ 

e�P (ω) = �0 ̃χ(ω)
e�E(ω), (2.15) 
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where, the tildes denote the Fourier transforms in the following. Substituted 
into (2.13) µ	 ¶ 

�	 �∆ + 
ω2	

E
e
(ω) = −ω2μ0�0χ̃(ω)E

e
(ω), (2.16) 

2c0 

we obtain µ	 ¶ 
�∆ + 

ω
2

2 

(1 + χ̃(ω) E
e
(ω) = 0, (2.17) 

c0 

with the refractive index n(ω) and 1+ χ̃(ω) = n(ω)2 results in the Helmholtz 
equation µ ¶

ω2 e
∆ +	 E� (ω) = 0, (2.18) 

c2 

where c(ω) = c0/n(ω) is the velocity of light in the medium. This equation 
is the starting point for finding monochromatic wave solutions to Maxwell’s 
equations in linear media, as we will study for different cases in the following. 
Also, so far we have treated the susceptibility χ̃(ω) as a real quantity, which 
may not always be the case as we will see later in detail. 

2.1.2	 Plane-Wave Solutions (TEM-Waves) and Com-
plex Notation 

The real wave equation (2.13) for a linear medium has real monochromatic 
plane wave solutions  E��k(�r, t),  which  can be be written  most  efficiently in 
terms of the complex plane-wave solutions E��k(�r, t) according to h	 i n o1 

E��k(�r, t) =  E��k(�r, t) +E��k(�r, t)
∗ = <e E��k(�r, t) , (2.19) 

2 

with 
E��k(�r, t) = E�k e

j(ωt−�k·�r) �e(�k). (2.20) 

Note, we explicitly underlined the complex wave to indicate that this is a 
complex quantity. Here, �e(�k) is a unit vector indicating the direction of the 
electric field which is also called the polarization of the wave, and E�k is 
the complex field amplitude of the wave with wave vector �k. Substitution 
of eq.(2.19) into the wave equation results in the dispersion relation, i.e. a 
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relationship between wave vector and frequency necessary to satisfy the wave 
equation 

ω2 

|�k|2 = 
c(ω)

= k(ω)2 . (2.21) 
2 

Thus, the dispersion relation is given by 

ω 
k(ω) = ± n(ω). (2.22) 

c0 

with the wavenumber 
k = 2π/λ, (2.23) 

where λ is the wavelength of the wave in the medium with refractive index 
n, ω the angular frequency, �k the wave vector. Note, the natural frequency 
f = ω/2π. From  ∇ · E� = 0, for all time, we see that �k ⊥ �e. Substitution of 
the electric field 2.19 into Maxwell’s Eqs. (2.1b) results in the magnetic field h i1 

H��k(�r, t) =  H� �k(�r, t) +H� �k(�r, t)
∗ (2.24) 

2 

with 
H� �k(�r, t) = H�k e

j(ωt−�k·�r) �h(�k). (2.25) 

This complex component of the magnetic field can be determined from the 
corresponding complex electric field component using Faraday’s law ³ ´ 

−j�k × E�k e
j(ωt−�k·�r) �e(�k) = −jμ0ωH� �k(�r, t), (2.26) 

or 

H� �k(�r, t) =  
E�k ej(ωt−

�k·�r)�k × �e = H�ke
j(ωt−�k·�r)�h (2.27) 

μ0ω 

with 
�k �h(�k) =  × �e(�k) (2.28) |k|

and 

H�k = 
μ

|k
0ω

| 
E�k = 

Z

1 

F 
E�k. (2.29) 

The characteristic impedance of the TEM-wave is the ratio between electric 
and magnetic field strength r 

ZF = μ0c = 
μ0 =

1 
ZF0 (2.30) 

�0�r n 
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Figure 2.1: Transverse electromagnetic wave (TEM) [6] 

with the refractive index n = 
√
�r and the free space impedance r 

ZF0 = 
μ0 ≈ 377 Ω. (2.31) 
�0 

Note that the vectors �e, �h and �k form an orthogonal trihedral, 

�e ⊥ �h, �k ⊥ �e, �k ⊥ �h. (2.32) 

That is why we call these waves transverse electromagnetic (TEM) waves. 
We consider the electric field of a monochromatic electromagnetic wave with 
frequency ω and electric field amplitude E0, which propagates in vacuum 
along the z-axis, and is polarized along the x-axis, (Fig. 2.1), i.e. |

�k
k| = �ez, 

and �e(�k) =  �ex.  Then we obtain from  Eqs.(2.19) and  (2.20)  

E� (�r, t) =  E0 cos(ωt − kz) �ex, (2.33) 

and similiar for the magnetic field 

H� (�r, t) =  
E0 

cos(ωt − kz) �ey, (2.34) 
ZF0 

see Figure 2.1.Note, that for a backward propagating wave with E� (�r, t) =  
E ejωt+j

�k·�r �ex, and H� (�r, t) =  H ej(ωt+
�k�r) �ey, there is a sign  change  for the  

magnetic field 

H = − 
|k| 

E, (2.35) 
μ0ω 

so that the (�k, � H) always form a right handed orthogonal system. E, �
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2.1.3 Poynting Vectors, Energy Density and Intensity 

The table below summarizes the instantaneous and time averaged energy 
content and energy transport related to an electromagnetic field 

Quantity Real fields Complex fields ¯ ¯ 
Electric and 
magnetic energy 
density 

we =
1 
2 
�E · �D = 1 

2 �0�r 
�E2 

wm = 1 
2 
�H · �B = 1 

2 μ0μr 
�H2 

w = we + wm 

w̄e = 1 
4 �0�r 

¯ ¯�E ̄  ¯ 2 

w̄m = 1 
4 μ0μr 

¯ ¯ ¯ �H ̄
 ¯ ¯ 2 

w̄ = w̄e + w̄m 

Poynting vector �S = �E× �H �T = 1 �E× �H
∗ 

2 

Poynting theorem div�S + �E · �j + ∂w 
∂t = 0  div�T + 1 

2 
�E · �j∗ 

+ 
+2jω(w̄m − w̄e) = 0  

Intensity I = 
¯ ¯ ¯�S ̄

 ¯ ¯ = cw I = Re{�T} = c ̄w 

Table 2.1: Poynting vector and energy density in EM-fields 

For a plane wave  with an electric  field �E(�r, t) = Eej(ωt−kz) �ex we obtain 
for the energy density in units of [J/m3] 

w = 
1 
2 
�r�0|E|2 , (2.36) 

the complex Poynting vector 

�T = 
1 
2ZF 

|E|2 �ez, (2.37) 

and the intensity in units of [W/m2] 

I = 
1 
2ZF 

|E|2 = 
1 
2 
ZF |H|2 . (2.38) 

2.1.4 Classical Permittivity 

In this section we want to get insight into propagation of an electromagnetic 
wavepacket in an isotropic and homogeneous medium, such as a glass optical 
fiber due to the interaction of radiation with the medium. The electromag­
netic properties of a dielectric medium is largely determined by the electric 
polarization induced by an electric field in the medium. The polarization is 
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Figure 2.2: Classical harmonic oscillator model for radiation matter interac­
tion 

defined as the total induced dipole moment per unit volume. We formulate 
this directly in the frequency domain 

e� dipole moment e e�P (ω) =
volume 

= N · hp�(ω)i = �0χe(ω)E(ω), (2.39) 

where N is density of elementary units and hp�i is the average dipole mo­
ment of the unit (atom, molecule, ...). In an isotropic and homogeneous 
medium the induced polarization is proportional to the electric field and the 
proportionality constant, χe(ω), is called the susceptibility of the medium. 
As it turns out (justification later), an electron elastically bound to a 

positively charged rest atom is not a bad model for understanding the inter­
action of light with matter at very low electric fields, i.e. the fields do not 
change the electron distribution in the atom considerably or even ionize the 
atom, see Figure 2.2. This model is called Lorentz model after the famous 
physicist A. H. Lorentz (Dutchman) studying electromagnetic phenomena 
at the turn of the 19th century. He also found the Lorentz Transformation 
and Invariance of Maxwell’s Equations with respect to these transformation, 
which showed the path to Special Relativity. 
The equation of motion for such a unit is the damped harmonic oscillator 

driven by an electric field in one dimension, x. At optical frequencies, the 
distance of elongation, x, is much smaller than an optical wavelength (atoms 
have dimensions on the order of a tenth of a nanometer, whereas optical 
fields have wavelength on the order of microns) and therefore, we can neglect 
the spatial variation of the electric field during the motion of the charges 
within an atom (dipole approximation, i.e. E� (�r, t) = E� (�rA, t) = E(t)�ex). 
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The equation of motion is 

m 
d2x 
dt2 

+ 2  
Ω0 

Q 
m 
dx 
dt 
+mΩ2 

0x = e0E(t), (2.40) 

where E(t) = Ẽejωt . Here, m is the mass of the electron assuming the that 
the rest atom has infinite mass, e0 the charge of the electron, Ω0 is the 
resonance frequency of the undamped oscillator and Q the quality factor of 
the resonance, which determines the damping of the oscillator. By using the 
trial solution x (t) = x̃ejωt, we obtain for the complex amplitude of the dipole 
moment p̃ with the time dependent response p(t) = e0x(t) = p̃ejωt 

0 

e

p̃ = m 

2
0 

0 − ω2) + 2jΩ
Ẽ. (2.41)


(Ω2 ω

Q 

Note, that we included ad hoc a damping term in the harmonic oscillator 
equation. At this point it is not clear what the physical origin of this damp­
ing term is and we will discuss this at length later in chapter 4. For the 
moment, we can view this term simply as a consequence of irreversible in­
teractions of the atom with its environment. We then obtain from (2.39) for 
the susceptibility 

2
0N e
m �0 

1 

χ(ω) = 
 (2.42)

0(Ω20 − ω2) + 2jω Ω
Q 

or 
ω2 
p

χe(ω) =  (2.43)
,

(Ω20 − ω2) + 2jω Ω

Q 
0 

with ωp called the plasma frequency, which is defined as ω2 
p = Ne20/m�0. Fig­

ure 2.3 shows the normalized real and imaginary part, χe(ω) = χer(ω)+jχei(ω) 
of the classical susceptibility (2.43). Note, that there is a small resonance 
shift (almost invisible) due to the loss. Off resonance, the imaginary part ap­
proaches zero very quickly. Not so the real part, which approaches a constant 
value ω2 

p/Ω
2
0 below resonance for ω 0, and approaches zero far above res­→

onance, but much slower than the imaginary part. As we will see later, this 
is the reason why there are low loss, i.e. transparent, media with refractive 
index very much different from 1. 
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Figure 2.3: Real part (dashed line) and imaginary part (solid line) of the 
susceptibility of the classical oscillator model for the dielectric polarizability. 

2.1.5 Optical Pulses 

Optical pulses are wave packets constructed by a continuous superposition 
of monochromatic plane waves. Consider a TEM-wavepacket, i.e. a super­
position of waves with different frequencies, polarized along the x-axis and 
propagating along the z-axis Z ∞ dΩ 

E� (�r, t) =  Ee(Ω)ej(Ωt−K(Ω)z) �ex. (2.44) 
2π0 

Correspondingly, the magnetic field is given by Z 
H� (�r, t) =  

∞ dΩ 
Ee(Ω)ej(Ωt−K(Ω)z) �ey (2.45) 

2πZF (Ω)0 

Again, the physical electric and magnetic fields are real and related to the 
complex fields by ³ ´ 1 

E� (�r, t) =  E� (�r, t) +E� (�r, t)∗ (2.46) 
2 ³ ´ 1 

H� (�r, t) =  H� (�r, t) +H� (�r, t)∗ . (2.47) 
2 

Here, |Ẽ(Ω)|ejϕ(Ω) is the complex wave amplitude of the electromagnetic wave 
at frequency Ω and K(Ω) =  Ω/c(Ω) =  n(Ω)Ω/c0 the wavenumber, where, 
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ω0 

Ω 

|E( )|Ω̃ 

|A( )|ω̃ 

ω 
0 

Figure 2.4: Spectrum of an optical wave packet described in absolute and 
relative frequencies 

n(Ω) is again the refractive index of the medium 

n 2(Ω) = 1 +  χ(Ω), (2.48) 

c and c0 are the velocity of light in the medium and in vacuum, respectively. 
The planes of constant phase propagate with the phase velocity c of the wave. 
The wavepacket consists of a superposition of many frequencies with the 

spectrum shown in Fig. 2.4. 
At a given point in space, for simplicity z = 0, the complex field of a 

pulse is given by (Fig. 2.4) Z 
E(z = 0, t) =  

1 ∞ 

Ẽ(Ω)ejΩtdΩ. (2.49) 
2π 0 

Optical pulses often have relatively small spectral width compared to 
the center frequency of the pulse ω0, as it is illustrated in the upper part 
of Figure 2.4. For example typical pulses used in optical communication 
systems for 10Gb/s transmission speed are on the order of 20ps long and 
have a center wavelength of λ = 1550nm. Thus the spectral with is only on 
the order of 50GHz, whereas the center frequency of the pulse is 200THz, 
i.e. the bandwidth is 4000 smaller than the center frequency. In such cases 
it is useful to separate the complex electric field in Eq.  (2.49)  into a carrier  
frequency ω0 and an envelope  A(t) and represent the absolute frequency as 
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Ω = ω0 + ω. We  can then rewrite  Eq.(2.49)  as  Z
∞1

Ẽ(ω0 + ω)ej(ω0+ω)tdω (2.50) E(z = 0, t) = 


2π −ω0 

= A(t)ejω0t . 

The envelope, see Figure 2.8, is given by Z
Z


∞1

Ã(ω)ejωtdω (2.51) A(t) = 


2π
 −ω0→−∞
∞1

Ã(ω)ejωtdω, (2.52) =


2π −∞ 

where Ã(ω) is the spectrum of the envelope with, Ã(ω) = 0 for ω ≤ −ω0. 
To be physically meaningful, the spectral amplitude Ã(ω) must be zero for 
negative frequencies less than or equal to the carrier frequency, see Figure 
2.8. Note, that waves with zero frequency can not propagate, since the 
corresponding wave vector is zero. The pulse and its envelope are shown in 
Figure 2.5. 

Figure 2.5: Electric field and envelope of an optical pulse. 

Table 2.2 shows pulse shape and spectra of some often used pulses as well 
as the pulse width and time bandwidth products. The pulse width and band­¯̄̄

 
¯̄̄width are usually specified as the Full Width at Half Maximum (FWHM) of 

2the intensity  in  the time domain,  , and the spectral density A(t)
 Ã(ω)
| |
in the frequency domain, respectively. The pulse shapes and corresponding 
spectra to the pulses listed in Table 2.2 are shown in Figs 2.6 and 2.7. 

2 
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Pulse Shape Fourier Transform R Pulse 
Width 

Time-Band­
width Product 

A(t) Ã(ω) =  ∞ 
a(t)e−jωtdt −∞ ∆t ∆t · ∆f 

Gaussian: e− t
2τ2 
2 √

2πτe− 1 
2 τ

2ω2 
2
√
ln 2τ 0.441 

Hyperbolic Secant: 
sech( t 

τ ) 
τ 
2 sech

¡
π 
2 τω  

¢ 
1.7627 τ 0.315 

Rect-function: 

= 

½ 
1, |t| ≤ τ/2 
0, |t| > τ/2 

τ sin(τω/2) 
τω/2 τ 0.886 

Lorentzian: 1 
1+(t/τ)2 2πτe−|τω| 1.287 τ 0.142 

Double-Exp.: e−| t τ | τ 
1+(ωτ)2 ln2 τ 0.142 

Table 2.2: Pulse shapes, corresponding spectra and time bandwidth prod­
ucts. 

Image removed for copyright purposes. 

Figure 2.6: Fourier transforms to pulse shapes listed in table 2.2 [6]. 
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Image removed for copyright purposes. 

Figure 2.7: Fourier transforms to pulse shapes listed in table 2.2 continued 
[6]. 

2.1.6 Pulse Propagation 

Having a basic model for the interaction of light and matter at hand, via 
section 2.1.4, we can investigate what happens if an electromagnetic wave 
packet, i.e. an optical pulse propagates through such a medium. We start 
from Eqs.(2.44) to evaluate the wave packet propagation for an arbitrary 
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propagation distance z Z 
E(z, t) =  

1 ∞ 

Ẽ(Ω)ej(Ωt−K(Ω)z)dΩ. (2.53) 
2π 0 

Analogous to Eq. (2.50) for a pulse at a given position, we can separate an 
optical pulse into a carrier wave at frequency ω0 and a complex envelope 
A(z, t), 

E(z, t) = A(z, t)ej(ω0t−K(ω0)z). (2.54) 

By introducing the offset frequency ω, the  offset wavenumber k(ω) and spec­
trum of the envelope Ã(ω) 

ω = Ω − ω0, (2.55) 

k(ω) =  K(ω0 + ω)− K(ω0), (2.56) 

Ã(ω) =  Ẽ(Ω = ω0 + ω). (2.57) 

the envelope at propagation distance z, see Fig.2.8, is expressed as Z 
A(z, t) =  

1 ∞ 

Ã(ω)ej(ωt−k(ω)z)dω, (2.58) 
2π −∞ 

with the same constraints on the spectrum of the envelope as before, i.e. 
the spectrum of the envelope must be zero for negative frequencies beyond 
the carrier frequency. Depending on the dispersion relation k(ω), (see Fig. 
2.9),.the pulse will be reshaped during propagation as discussed in the fol­
lowing section. 

2.1.7 Dispersion 

The dispersion relation indicates how much phase shift each frequency com­
ponent experiences during propagation. These phase shifts, if not linear with 
respect to frequency, will lead to distortions of the pulse. If the propagation 
constant k(ω) is only slowly varying over the pulse spectrum, it is useful to 
represent the propagation constant, k(ω), or dispersion relation K(Ω) by its 
Taylor expansion, see Fig. 2.9, 

k00 k(3) 
k(ω) = k0ω + ω2 + ω3 +O(ω4). (2.59) 

2 6 
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Figure 2.8: Electric field  and  pulse envelope in  time domain.  

Figure 2.9: Taylor expansion of dispersion relation at the center frequency 
of the wave packet. 

If the refractive index depends on frequency, the dispersion relation is no 
longer linear with respect to frequency, see Fig. 2.9 and the pulse propagation 
according to (2.58) can be understood most easily in the frequency domain 

∂Ã(z, ω)
= −jk(ω)Ã(z, ω). (2.60) 

∂z 

Transformation of Eq.() into the time domain gives 
nX k(n)∂A(z, t) 

∞ µ
∂ 
¶

= −j −j A(z, t). (2.61) 
∂z n! ∂t

n=1 
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If we keep only the first term, the linear term, in Eq.(2.59), then we obtain for 
the pulse envelope from (2.58) by definition of the group velocity at frequency 
ω0 

υg0 = 1/k
0 =


µ

dk(ω)
̄̄̄¯
dω ω=0

¶
−1 

(2.62)


A(z, t) = A(0, t  − z/υg0). (2.63) 

Thus the derivative of the dispersion relation at the carrier frequency deter­
mines the propagation velocity of the envelope of the wave packet or group 
velocity, whereas the ratio between propagation constant and frequency de­
termines the phase velocity of the carrier ¶−1 

To get rid of the trivial motion of the pulse envelope with the group velocity, 
we introduce the retarded time t0 = t − z/vg0. With respect to this retarded 
time the pulse shape is invariant during propagation, if we approximate the 
dispersion relation by the slope at the carrier frequency 

A(z, t) = A(0, t0). (2.65) 

Note, if we approximate the dispersion relation by its slope at the carrier 
frequency, i.e. we retain only the first term in Eq.(2.61), we obtain 

µ

K(ω0)

υp0 = ω0/K(ω0) = (2.64)
.

ω0

∂A(z, t) 1 ∂A(z, t)
+ = 0, (2.66) 

∂z υg0 ∂t 

and (2.63) is its solution. If, we transform this equation to the new coordinate 
system 

z0 = z, (2.67) 

t0 = t − z/υg0, (2.68) 

with 

∂ ∂ 1 ∂ 
∂z 

= 
∂z0 
− 

υg0 ∂t0 
, (2.69) 

∂ ∂ 
= (2.70) 

∂t ∂t0 



30 CHAPTER 2. CLASSICAL ELECTROMAGNETISM AND OPTICS 

the transformed equation is 

∂A(z0, t0)
= 0. (2.71) 

∂z0 

Since z is equal to z0 we keep z in the following. 
If the spectrum of the pulse is broad enough, so that the second order 

term in (2.59) becomes important, the pulse will no longer keep its shape. 
When keeping in the dispersion relation terms up to second order it follows 
from (2.58) and (2.69,2.70) 

∂A(z, t0) k00 ∂2A(z, t0)
= j  . (2.72) 

∂z 2 ∂t02 

This is the first non trivial term in the wave equation for the envelope. 
Because of the superposition principle, the pulse can be thought of to be 
decomposed into wavepackets (sub-pulses) with different center frequencies. 
Now, the group velocity depends on the spectral component of the pulse, see 
Figure 2.10, which will lead to broadening or dispersion of the pulse. 
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Figure 2.10: Decomposition of a pulse into wave packets with different center 
frequency. In a medium with dispersion the wavepackets move at different 
relative group velocity. 

Fortunately, for a Gaussian pulse, the pulse propagation equation 2.72 
can be solved analytically. The initial pulse is then of the form 

E(z = 0, t) = A(z = 0, t)ejω0t (2.73) ∙ ¸
1 t02 

A(z = 0, t  = t0) = A0 exp (2.74) −
2 τ 2 
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Eq.(2.72) is most easily solved in the frequency domain since it transforms 
to 

∂Ã(z, ω)
= −j k

00ω2 

Ã(z, ω), (2.75) 
∂z 2 

with the solution 

k00ω2 

Ã(z, ω) = Ã(z = 0, ω) exp  

∙ 

−j
2 

z

¸ 

. (2.76) 

The pulse spectrum aquires a parabolic phase. Note, that here ω is the 
Fourier Transform variable conjugate to t0 rather than t. The Gaussian pulse 
has the advantage that its Fourier transform is also a Gaussian 

Ã(z = 0, ω) = A0
√
2πτ exp 

∙ 

−
2

1 
τ 2ω2

¸ 

(2.77) 

and, therefore, in the spectral domain the solution at an arbitray propagation 
distance z is 

˜ ω2A(z, ω) = A0
√
2πτ exp 

∙ 

− 
1

2

¡
τ 2 + jk00z 

¢ ¸ 

. (2.78) 

The inverse Fourier transform is analogously 

τ 2 1 t02 

A(z, t0) = A0 

µ
(τ 2 + jk00z)

¶1/2 

exp 

∙ 

−
2 (τ 2 + jk00z)

¸ 

(2.79) 

The exponent can be written as real and imaginary part and we finally obtain 

τ 2 1 τ 2t02 1 t02 

A(z, t0) = A0 

µ ¶1/2 

exp 

" ¡ ¢ + j  k00z ¡ ¢# 

2 2(τ 2 + jk00z)
−
2 τ 4 + (k00z) 2 τ 4 + (k00z)

(2.80) 
As we see from Eq.(2.80) during propagation the FWHM of the Gaussian 
determined by " # 

τ(τ 0 /2)2 

exp ¡ FWHM ¢ = 0.5 (2.81) 2− 
τ 4 + (k00z)

changes from 
τFWHM  = 2

√
ln 2 τ (2.82) 
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at the start to s ¶2 

¶2 

1 + 


µ


= 2
√
ln 2 τ 

k00L 
τ
0FWHM  (2.83)


τ 2 s µ

k00L 
τ 2 

= τFWHM  1 +

at z = L. For large stretching this result simplifies to 

τ 0FWHM  = 2
√
ln 2 

¯̄̄̄



¯̄̄̄

 for 

¯̄̄̄



¯̄̄̄



k00L k00L 
.À 1 (2.84)


τ 2τ


The strongly dispersed pulse has a width equal to the difference in group 
delay over the spectral width of the pulse. 
Figure 2.11 shows the evolution of the magnitude of the Gaussian wave 

packet during propagation in a medium which has no higher order dispersion 
in normalized units. The pulse spreads continuously. 
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Figure 2.11: Magnitude of the complex envelope of a Gaussian pulse, 
|A(z, t0)| , in a dispersive medium. 



33 2.1. MAXWELL’S EQUATIONS OF ISOTROPIC MEDIA 

As discussed before, the origin of this spreading is the group velocity 
dispersion (GVD), k00 = 0. The group velocity varies over the pulse spectrum 6
significantly leading to a group delay dispersion (GDD) after a propagation 
distance z = L of k00L = 0, for the different frequency components. This leads 6
to the build-up of chirp in the pulse during propagation. We can understand 
this chirp by looking at the parabolic phase that develops over the pulse in 
time at a fixed propagation distance. The phase is, see Eq.(2.80) 

1 k00L 1 t02 

φ(z = L, t0) = − arctan 

∙ ¸ 

+ k00L¡ ¢ . (2.85) 
2 τ 2 2 τ 4 + (k00L)2

(a) Phase 

Time t 

k'' < 0 

k'' > 0 

Front Back 

Instantaneous 
Frequency 

Time t 

k'' < 0 

k'' > 0 

(b) 

Figure 2.12: (a) Phase and (b) instantaneous frequency of a Gaussian pulse 
during propagation through a medium with positive or negative dispersion. 

This parabolic phase, see Fig. 2.12 (a), can be understood as a localy 
varying frequency in the pulse, i.e. the derivative of the phase gives the 
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instantaneous frequency shift in the pulse with respect to the center frequency 

∂ k00L 
ω(z = L, t0) =  φ(L, t0) = ¡ ¢t0 (2.86)

∂t0 τ 4 + (k00L)2

see Fig.2.12 (b). The instantaneous frequency indicates that for a medium 
with positive GVD, ie. k00 > 0, the low frequencies are in the front of the 
pulse, whereas the high frequencies are in the back of the pulse, since the 
sub-pulses with lower frequencies travel faster than sub-pulses with higher 
frequencies. The opposite is the case for negative dispersive materials. 
It is instructive for later purposes, that this behaviour can be completely 

understood from the center of mass motion of the sub-pulses, see Figure 2.10. 
Note, we can choose a set of sub-pulses, with such narrow bandwidth, that 
dispersion does not matter. In the time domain, these pulses are of course 
very long, because of the time bandwidth relationship. Nevertheless, since 
they all have different carrier frequencies, they interfere with each other in 
such a way that the superposition is a very narrow pulse. This interference, 
becomes destroyed during propagation, since the sub-pulses propagate at 
different speed, i.e. their center of mass propagates at different speed. 
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Figure 2.13: Pulse spreading by following the center of mass of sub-pulses 
according to Fig. 2.10. For z <  1, the pulses propagate in a medium with 
positive dispersion and for z >  1 in a medium with negative dispersion. 
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The differential group delay ∆Tg(ω) = k00Lω of a sub-pulse with its cen­
ter frequency ω different from 0, is due to its differential group velocity 
∆vg(ω) = −vg0∆Tg(ω)/Tg0 = −vg20k00ω. Note, that Tg0 = L/vg0. This is illus­
trated in Figure 2.13 by ploting the trajectory of the relative motion of the 
center of mass of each sub-pulse as a function of propagation distance, which 
asymptotically approaches the formula for the pulse width of the highly dis­
persed  pulse Eq.(2.84).  If we assume that the  pulse propagates through  a  
negative dispersive medium following the positive dispersive medium, the 
group velocity of each sub-pulse is reversed. The sub-pulses propagate to­
wards each other until they all meet at one point (focus) to produce again 
a short and unchirped initial pulse, see Figure 2.13. This is a very powerful 
technique to understand dispersive wave motion and as we will see in the 
next section is the connection between ray optics and physical optics. 

2.1.8 Loss and Gain 

If the medium considered has loss, described by the imaginary part of the 
dielectric susceptibility, see (2.43) and Fig. 2.3, we can incorporate this loss 
into a complex refractive index 

n(Ω) = nr(Ω) + jni(Ω) (2.87) 

via q
n(Ω) = 1 + χe(Ω). (2.88) 

For an optically thin medium, i.e. χe 1 the following approximation is very ¿
useful 

χe(Ω) 
n(Ω) ≈ 1 +  . (2.89) 

2 

As one can show (in Recitations) the complex susceptibility (2.43) can be 
approximated close to resonance, i.e. Ω ≈ Ω0, by the complex Lorentzian 
lineshape 

χe(Ω) =  
−jχ0 , (2.90) 

1 + jQΩ−Ω0 
Ω0 

pwhere χ0 = Q
2

ω

Ω

2

2 will  turn  out to  be related  to  the peak absorption  of the  
0 

line, which is proportional to the density of atoms, Ω0 is the center frequency 
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and ∆Ω = Ω
Q 
0 is the half width half maximum (HWHM) linewidth of the 

transition. The real and imaginary part of the complex Lorentzian are 

(Ω−Ω0)−χ0 ∆Ωχe (Ω) =  ¡ ¢2 , (2.91) r
1 + Ω−Ω0 

∆Ω 

χei(Ω) =  
−χ0 ¢2 , .  (2.92) 
Ω−Ω01 +
¡

∆Ω 

In the derivation of the wave equation for the pulse envelope (2.61) in 
section 2.1.7, there was no restriction to a real refractive index. Therefore, 
the wave equation (2.61) also treats the case of a complex refractive index. 
If we assume a medium with the complex refractive index (2.89), then the 
wavenumber is given by µ ¶

Ω 1 
K(Ω) =  1 + (χer(Ω) + jχei(Ω)) . (2.93) 

c0 2

Since we introduced a complex wavenumber, we have to redefine the group 
velocity as the inverse derivative of the real part of the wavenumber with 
respect to frequency. At line center, we obtain 

υ−g 
1 = 

∂Kr(Ω) ¯̄̄̄ =
1 
µ
1− 

χ0 Ω0 
¶ 

. (2.94) 
∂Ω Ω0 

c0 2 ∆Ω

Thus, for a narrow absorption line, χ0 > 0 and Ω0 À 1, the absolute value 
∆Ω 

of the group velocity can become much larger than the velocity of light in 
vacuum. The opposite is true for an amplifying medium, χ0 < 0. There  is  
nothing wrong with this finding, since the group velocity only describes the 
motion of the peak of a Gaussian wave packet, which is not a causal wave 
packet. A causal wave packet is identical to zero for some earlier time t < t0, 
in some region of space. A Gaussian wave packet fills the whole space at any 
time and can be reconstructed by a Taylor expansion at any time. Therefore, 
the tachionic motion of the peak of such a signal does not contradict special 
relativity. 
The imaginary part in the wave vector (2.93) leads with K = 

c
Ω 
0 
to ab­

sorption 

α(Ω) = −Kχei(Ω). (2.95) 



37 2.1. MAXWELL’S EQUATIONS OF ISOTROPIC MEDIA 

In  the envelope equation  (2.60) for  a  wavepacket with carrier  frequency  ω0 = 
Ω0 and K0 = Ω0 the loss leads  to  a term  of the  form  

c0 ¯̄̄̄
¯
∂Ã(z, ω)
 −χ0K0 ¢2ω 

In the time domain, we obtain up to second order in the inverse linewidth 

¡= −α(Ω0 + ω)Ã(z, ω) =  Ã(z, ω). (2.96)

∂z
 1 + 


∆Ω(loss) 

∂A(z, t0) ̄̄̄¯
∂z (loss) 

= −χ0K0

µ


1 + 

1
 ∂2 

∆Ω2 ∂t2

¶


A(z, t
0), (2.97) 

which corresponds to a parabolic approximation of the line shape at line 
center, (Fig. 2.3). As we will see later, for an amplifying optical transition 
we obtain a similar equation. We only have to replace the loss by gain ¯̄̄̄




¶
µ
1 +  

where g = −χ0K0 is the peak gain at line center per unit length and Ωg is 
the HWHM linewidth of a transition providing gain. 

2.1.9	 Sellmeier Equation and Kramers-Kroenig Rela-
tions 

The linear susceptibility is the frequency response or impulse response of a 
linear system to an applied electric field, see Eq.(2.41). For a real physical 
system this response is causal, and therefore real and imaginary parts obey 
Kramers-Kroenig Relations Z∞ 

χr(Ω) =  
2 ωχ

− 
i(ω

Ω

) 
2 
dω = nr

2(Ω)− 1, (2.99) 
π ω2 

0 Z∞ 

χi(Ω) =  −
π 
2 

ω

Ω
2 

χ

− 
r(ω

Ω

) 
2 
dω.	 (2.100) 

0 

For optical media these relations have the consequence that the refractive 
index and absorption of a medium are not independent, which can often 
be exploited to compute the index from absorption data or the other way 

∂2∂A(z, t0) 1
 0), (2.98) A(z, t
= g

Ω2 ∂t2g∂z (gain) 
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around. The Kramers-Kroenig Relations also give us a good understanding 
of the index variations in transparent media, which means the media are used 
in a frequency range far away from resonances. Then the imaginary part of 
the susceptibility related to absorption can be approximated by X 

χi(Ω) =  Aiδ (ω − ωi) (2.101) 
i 

and the Kramers-Kroenig relation results in the Sellmeier Equation for the 
refractive index X ωi 

X λ 
n 2(Ω) = 1 +  Ai 

ω2 
i − Ω2 

= 1 +  ai 
λ2 − λi 

2 . (2.102) 
i i 

This formula is very useful in fitting the refractive index of various media 
over a large frequency range with relatively few coefficients. For example 
Table 2.3 shows the sellmeier coefficients for fused quartz and sapphire. 

Fused Quartz Sapphire 
a1 0.6961663 1.023798 
a2 0.4079426 1.058364 
a3 0.8974794 5.280792 
λ2 
1 4.679148·10−3 3.77588·10−3 

λ2 
2 1.3512063·10−2 1.22544·10−2 

λ2 
3 0.9793400·102 3.213616·102 

Table 2.3: Table with Sellmeier coefficients for fused quartz and sapphire. 

In general, each absorption line contributes a corresponding index change 
to the overall optical characteristics of a material, see Fig. 2.14. A typical 
situation for a material having resonances in the UV and IR, such as glass, 
is shown in Fig. 2.15. As Fig. 2.15 shows, due to the Lorentzian line shape, 
that outside of an absorption line the refractive index is always decreasing 
as a function of wavelength. This behavior is called normal dispersion and 
the opposite behavior abnormal dispersion. 

dn 
< 0 :  normal dispersion (blue refracts more than red) 

dλ 
dn 

> 0 :  abnormal dispersion 
dλ 



39 2.1. MAXWELL’S EQUATIONS OF ISOTROPIC MEDIA 

This behavior is also responsible for the mostly positive group delay disper­
sion over the transparency range of a material, as the group velocity or group 

dndelay dispersion is closely related to 
dλ . Fig.2.16 shows the transparency 

range of some often used media. 

Figure 2.14: Each absorption line must contribute to an index change via 
the Kramers-Kroenig relations. 

Figure 2.15: Typcial distribution of absorption lines in a medium transparent 
in the visible. 



Dispersion Characteristic Definition Comp. from n(λ) 

medium wavelength: λn 
λ 
n 

λ 
n(λ) 

wavenumber: k 2π 
λn 

2π 
λ n(λ) 

phase velocity: υp 
ω 
k 

c0 
n(λ) 

group velocity: υg 
dω 
dk ; dλ = −λ

2 

2πc0 
dω c0 

n 

¡
1 − λ 

n 
dn 
dλ 

¢−1 

group velocity dispersion: GV D d2k 
dω2 

λ3 

2πc2 
0 

d2n 
dλ2 

group delay: Tg = L 
υg 
= dφ 

dω 
dφ 
dω = d(kL) 

dω 
n 
c0 

¡
1 − λ 

n 
dn 
dλ 

¢ 
L 

group delay dispersion: GDD dTg 

dω = d
2(kL) 
dω2 

λ3 

2πc2 
0 

d2n 
dλ2 L 
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Figure 2.16: Transparency range of some materials according to [6], p. 175. 

Often the dispersion GVD and GDD needs to be calculated from the 
Sellmeier equation, i.e. n(λ). The corresponding quantities are listed in Table 
2.4. The computations are done by substituting the frequency with the 
wavelength. 

Table 2.4: Table with important dispersion characteristics and how to com­
pute them from the wavelength dependent refractive index n(λ). 
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2.2 Electromagnetic Waves and Interfaces 

Many microwave and optical devices are based on the characteristics of elec­
tromagnetic waves undergoing reflection or transmission at interfaces be­
tween media with different electric or magnetic properties characterized by 
� and μ, see Fig. 2.17. Without restriction we can assume that the interface 
is the (x-y-plane) and the plane of incidence is the (x-z-plane). An arbitrary 
incident plane wave can always be decomposed into two components. One 
component has its electric field parallel to the interface between the media, 
i.e. it is polarized parallel to the interface and it is called the transverse elec­
tric (TE)-wave or also s-polarized wave. The other component is polarized 
in the plane of incidence and its magnetic field is  in the  plane  of  the  interface  
between the media. This wave is called the TM-wave or also p-polarized 
wave. The most general case of an incident monochromatic TEM-wave is a 
linear superposition of a TE and a TM-wave. 

a) Reflection of TE-Wave b) Reflection of TM-Wave 

ε μ, ε μ1 1 1, 1 

x 
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H

kr 

Hi 
ki 
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kr 

Hi 
ki 
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Θt 

z Et 
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Hr 

ε μ2 2, 
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Ht Ht 

Figure 2.17: a) Reflection of a TE-wave at an interface, b) Reflection of 
aTM-wave at an interface 

The fields for both cases are summarized in table 2.5 
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TE-wave TM-wave 
�Ei =Ei e

j(ωt−�ki·�r)�ey 
�Ei = −Ei e

j(ωt−�ki·�r)�ei 
�Hi =Hi e

j(ωt−�ki·�r)�hi �Hi =Hi e
j(ωt−�ki·�r)�ey 

�Er =Er e
j(ωt−�kr ·�r)�ey 

�Er =Er e
j(ωt−�kr ·�r) 
r �er 

�Hr =Hr e
j(ωt−�kr ·�r)�hr 

�Hr =Er e
j(ωt−�kr·�r)�ey 

�Et =Et e
j(ωt−�kt·�r)�ey 

�Et =Et e
j(ωt−�kt·�r)�et 

�Ht =Ht e
j(ωt−�kt·�r)�ht �Ht =Ht e

j(ωt−�kt·�r)�ey 

Table 2.5: Electric and magnetic fields for TE- and TM-waves. 

with wave vectors of the waves given by 

ki = kr = k0
√
�1μ1, 

kt = k0
√
�2μ2, 

�ki,t = ki,t (sin θi,t �ex + cos  θi,t �ez) , 
�kr = ki (sin θr �ex − cos θr �ez) , 

and unit vectors given by 

�hi,t = − cos θi,t �ex + sin  θi,t �ez, 
�hr = cos  θr �ex + sin  θr �ez, 

�ei,t = −�hi,t = cos  θi,t �ex − sin θi,t �ez, 

�er = −�hr = − cos θr �ex − sin θr �ez. 

2.2.1 Boundary Conditions and Snell’s law 

From 6.013, we know that Stoke’s and Gauss’ Law for the electric and mag­
netic fields require constraints on some of the field components at media 
boundaries. In the absence of surface currents and charges, the tangential 
electric and magnetic fields as well as the normal dielectric and magnetic 
fluxes have to be continuous when going from medium 1 into medium 2 for 
all times at each point along the surface, i.e. z = 0  

E/Hi,x/ye
j(ωt−ki,xx) + E/Hr,x/ye

j(ωt−kr,xx) = E/Hi,x/ye
j(ωt−kt,xx). (2.103) 

This equation can only be fulfilled at all times if and only if the x-component 
of the k-vectors for the reflected and transmitted wave are equal to (match) 
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the corresponding component of the incident wave 

ki,x = kr,x = kt,x (2.104) 

This phase matching condition is shown in Fig. 2.18 for the case 
√
�2μ2 > √

�1μ1 or kt > ki. 

ε1,μ1 

x 

krki 
Θi Θr 

Θt 

z 

kt

ε μ2 2, 

Figure 2.18: Phase matching condition for reflected and transmitted wave 

The phase matching condition Eq(2.104) results in θr = θi = θ1 and 
Snell’s law for the angle θt = θ2 of the transmitted wave 

√
�1μ1

sin θt = sin θi (2.105) √
�2μ2 

or for the case of non magnetic media with μ1 = μ2 = μ0 

sin θt = 
n1 
sin θi (2.106) 

n2 
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2.2.2	 Measuring Refractive Index with Minimum De-
viation 

Snell’s law can be used for measuring the refractive index of materials. Con­
sider a prism prepared from a material with unknown refractive index n(λ), 
see Fig. 2.19 (a). 

Image removed for copyright purposes. 

Figure 2.19: (a) Beam propagating through a prism. (b) For the case of 
minimum deviation [3] p. 65. 

The prism is mounted on a rotation stage as shown in Fig. 2.20. The 
angle of incidence α is then varied with a fixed incident beam path and 
the transmitted light is observed on a screen. If one starts of with normal 
incidence on the first prism surface one notices that after turning the prism 
one goes through  a minium  for  the deflection angle of the beam. This becomes 
obvious from Fig. 2.19 (b). There is an angle of incidence α where the beam 
path through the prism is symmetric. If the input angle is varied around this 
point, it would be identical to exchange the input and output beams. From 
that we conclude that the deviation δ must  go through an extremum  at the  
symmetry point, see Figure 2.21. It can be shown (Recitations), that the 
refractive index is then determined by 

sin α(δmin)+δmin 

n = 2 .	 (2.107) 
sin α(δmin) 

2 

If the measurement is repeated for various wavelength of the incident radi­
ation the complete wavelength dependent refractive index is characterized, 
see for example, Fig. 2.22. 
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Figure 2.20: Refraction of a Prism with n=1.731 for different angles of in­
cidence alpha. The angle of incidence is stepwise increased by rotating the 
prism clockwise. The angle of transmission first increases. After the angle 
for minimum deviation is reached the transmission angle starts to decrease 
[3] p67. 

Image removed for copyright purposes. 
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Image removed for copyright purposes. 

Figure 2.21: Deviation versus incident angel [1] 

Figure 2.22: Refractive index as a function of wavelength for various media 
transmissive in the visible [1], p42. 

Image removed for copyright purposes. 
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2.2.3 Fresnel Reflection 

After understanding the direction of the reflected and transmitted light, for­
mulas for how much light is reflected and transmitted are derived by eval­
uating the boundary conditions for the TE and TM-wave. According to 
Eqs.(2.103) and (2.104) we obtain for the continuity of the tangential E and 
H fields: 

TE-wave (s-pol.) TM-wave (p-pol.) 
Ei+Er = Et Ei cos θi−Er cos θr =Et cos θt 
Hi cos θi−Hr cos θr =Ht cos θt Hi + Hr = Ht 

(2.108)


q
Introducing the characteristic impedances in both half spaces Z1/2 = 

μ0μ1/2 ,
�0�1/2 

and the impedances that relate the tangential electric and magnetic field 
components ZTE/TM  in both half spaces the boundary conditions can be 1/2 
rewritten in terms of the electric or magnetic field components. 

TE-wave (s-pol.) TM-wave (p-pol.) 

ZTE  
1/2 = 

Ei/t 

Hi/t cos θi/t 
= 

Z1/2 

cos θ1/2 
ZTM  
1/2 = 

Ei/t cos θi/t 
Hi/t 

= Z1/2 cos θ1/2 

Ei+Er = Et H i−Hr = Z
TM  
2 

ZTM  
1 

Ht 

Ei−Er = Z
TE  
1 

ZTE  
2 
Et H i + Hr = Ht 

(2.109)


Amplitude Reflection  and Transmission coefficients 

From these equations we can easily solve for the reflected and transmitted 
wave amplitudes in terms of the incident wave amplitudes. By dividing 
both equations by the incident wave amplitudes we obtain for the amplitude 
reflection and transmission coeffcients. Note, that reflection and transmission 
coefficients are defined in terms of the electric fields for the TE-wave and in 
terms of the magnetic fields for the TM-wave. 

TE-wave (s-pol.) TM-wave (p-pol.) 

rTE  = Er 
Ei 
; tTE  = Et 

Ei 
rTM  = Hr 

Hi 
; tTM  = Ht 

Hi 

1 +  rTE  = tTE  1 − rTM  = Z
TM  
2 

ZTM  
1 

tTM  

1 − rTE  = Z
TE  
1 

ZTE  
2 
tTE  1 +  rTM  = tTM  

(2.110)
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or in both cases the amplitude transmission and reflection coefficients are 

2 2Z
TE/TM  

tTE/TM  = 
Z
TE/TM  = 

TE/TM  

2/1 

TE/TM  
(2.111) 

1/2 Z1 + Z21 +  TE/TM  
Z
2/1 

TE/TM  TE/TM  

rTE/TM  = 
Z2/1 − Z1/2 (2.112) 
TE/TM  TE/TM  

Z1 + Z2 

Despite the simplicity of these formulas, they describe already an enormous 
wealth of phenomena. To get some insight, consider the case of purely di­
electric and lossless media characterized by its real refractive indices n1 and 
n2. Then Eqs.(2.111) and (2.112) simplify for the TE and TM case to 

TE-wave (s-pol.) TM-wave (p-pol.) 

ZTE  
1/2 = 

Z1/2 

cos θ1/2 
= Z0 

n1/2 cos θ1/2 

rTE  = n1 cos θ1−n2 cos θ2 
n1 cos θ1+n2 cos θ2 

ZTM  
1/2 = Z1/2 cos θ1/2 

rTM  = 
n2 

cos θ2 
− n1 
cos θ1 

n2 
cos θ2 

+ n1 
cos θ1 

= Z0 
n1/2 

cos θ1/2 

tTE  = 2n1 cos θ1 
n1 cos θ1+n2 cos θ2 

tTM  = 
2 n2 
cos θ2 

n2 
cos θ2 

+ n1 
cos θ1 

(2.113)


Figure 2.23 shows the evaluation of Eqs.(2.113) for the case of a reflection at 
the interface of air and glass with n2 > n1 and (n1 = 1, n2 = 1.5). 
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Figure 2.23: The amplitude coefficients of reflection and transmission as a 
function of incident angle. These correspond to external reflection n2 > n1 

at an air-glas interface (n1 = 1, n2 = 1.5). 
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For TE-polarized light the reflected light changes sign with respect to the 
incident light (reflection at the optically more dense medium). This is not 
so for TM-polarized light under close to normal incidence. It occurs only 
for angles larger than θB, which is called the Brewster angle. So for TM-
polarized light the amplitude reflection coefficient is zero at the Brewster 
angle. This phenomena will be discussed in more detail later. 
This behavior changes drastically if we consider the opposite arrange­

ment of media, i.e. we consider the glass-air interface with n1 > n2, see 
Figure 2.24. Then the TM-polarized light experiences a π-phase shift upon 
reflection close to normal incidence. For increasing angle of incidence this 
reflection coefficient goes through zero at the Brewster angle θB 

0 
different 

from before. However, for large enough angle of incidence the reflection coef­
ficient reaches magnitude 1 and stays there. This phenomenon is called total 
internal reflection and the angle where this occurs first is the critical angle 
for total internal reflection, θtot. Total internal reflection will be discussed in 
more detail later. 
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Figure 2.24: The amplitude coefficients of reflection and transmission as a 
function of incident angle. These correspond to internal reflection n1 > n2 

at a glas-air interface (n1 = 1.5, n2 = 1). 

Power reflection and transmission coefficients 

Often we are not interested in the amplitude but rather in the optical power 
reflected or transmitted in a beam of finite size, see Figure 2.25. 
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Figure 2.25: Reflection and transmission of an incident beam of finite size 
[1]. 

Note, that to get the power in a beam of finite size, we need to integrated 
the corresponding Poynting vector over the beam area, which means multi­
plication by the beam crosssectional area for a homogenous beam. Since the 
angle of incidence and reflection are equal, θi = θr = θ1 this beam crosssec­
tional area drops out in reflection ¯̄̄̄

¯

¯̄̄̄
¯


2TE/TM  TE/TM  TE/TM  

)

¯̄2 

However, due to the different angles for  the incident and  the transmitted  
beam θt = θ2 = θ1, we arrive at 6

TE/TM  

T TE/TM  = 
It
TE/TM  

A cos θt (2.115) 
Ii A cos θr 

−1 

¯̄

Ir A cos θi − Z
Z2 1RTE/TM  TE/TM  (2.114)
= = r
 =


TE/TM  TE/TM  TE/TM  
I
 A cos θr Z1 + Z
2i 

)
 (
(
 ¯̄



¯̄

cos θ2 1
 1
 2 

tTE/TM  Re Re=
 .

cos θ1 Z2/1 Z1/2

Image removed for copyright purposes. 
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Using in the case of TE-polarization 
Z1/2 = ZTE  and analogously for TM-
cos θ1/2 1/2 

= ZTMpolarization Z1/2 cos θ1/2 1/2 , we obtain 

−1 ¯̄̄) ⎧ ⎪⎨

⎫ ⎪⎬
(


4Z
TE/TM  

1
 2/1
T TE/TM  = Re (2.116)
Re ¯̄̄



2TE/TM  ⎪⎩
 ⎪⎭
Z
 TE/TM  TE/TM  

Z1 + Z
1/2 2

Note, for the case where the characteristic impedances are complex this can 
not be further  simplified. If the characteristic impedances are real, i.e. the 
media are lossless, the transmission coefficient simplifies to 

4Z
TE/TM  

Z
TE/TM  

1/2 2/1
T TE/TM  ´ 2 (2.117) ³
=


Z1 
TE/TM  

+ Z2 
TE/TM  

.


To summarize for lossless media the power reflection and transmission coef­
ficients are 

TE-wave (s-pol.) TM-wave (p-pol.) 

ZTE  
1/2 = 

Z1/2 

cos θ1/2 
= Z0 

n1/2 cos θ1/2 
ZTM  
1/2 = Z1/2 cos θ1/2 = Z0 

n1/2 
cos θ1/2 ¯ ¯ 

RTE  = 
¯ ¯ ¯n2 cos θ2−n1 cos θ1 
n1 cos θ1+n2 cos θ2 

¯ ¯ ¯ 2 
RTM  = 

¯ ¯ ¯ n2 
cos θ2 

− n1 
cos θ1 

n2 
cos θ2 

+ n1 
cos θ1 

¯ ¯ ¯ 2 

T TE  = 4n1 cos θ1n2 cos θ2 

|n1 cos θ1+n2 cos θ2|2 T TM  = 
4 n2 
cos θ2 

n1 
cos θ1¯ ¯ ¯ n2 

cos θ2 
+ n1 
cos θ1 

¯ ¯ ¯ 2 

T TE  + RTE  = 1  T TM  + RTM  = 1  

(2.118)


A few phenomena that occur upon reflection at surfaces between different 
media are especially noteworthy and need a more indepth discussion because 
they enhance or enable the construction of many optical components and 
devices. 

2.2.4 Brewster’s Angle 

As Figures 2.23 and 2.24 already show, for light polarized parallel to the 
plane of incidence, p-polarized light, the reflection coefficient vanishes at a  
given angle θB, called the Brewster angle. Using Snell’s Law Eq.(2.106), 

n2 sin θ1 
= , (2.119) 

n1 sin θ2 
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we can rewrite the reflection and transmission coefficients in Eq.(2.118) only 
in terms of the angles. For example, we find for the reflection coefficient ¯ 2 2¯̄

sin θ θcos 2 1 ¯̄
 

¯̄̄̄
¯ = 

= 

¯̄̄̄
¯ ¯̄̄̄
 

¯̄̄̄
¯
cos θ2 sin θ1 cos θ2n2 

n1 
− −


cos θ1 

+ cos θ2 
cos θ1 

RTM  (2.120)
=

sin θ1 + cos θ2 
sin θ2 cos θ1¯̄̄̄
 

n2 
n1 

2
sin 2θ1 − sin 2θ2 (2.121)

sin 2θ1 + sin  2θ2 

where we used  in  the last step in addition  the  relation  sin 2α = 2  sin  α cos α. 
Thus by forcing RTM  = 0, the Brewster angle is reached for 

sin 2θ1,B − sin 2θ2,B = 0  (2.122) 

or 
π 

2θ1,B = π − 2θ2,B or θ1,B + θ2,B = (2.123) 
2 

This relation is illustrated in Figure 2.26. The reflected and transmitted 
beams are orthogonal to each other, so that the dipoles induced in the 
medium by the transmitted beam, shown as arrows in Fig. 2.26, can not 
radiate into the direction of the reflected beam. This is the physical origin 
of the zero in the reflection coefficient, only possible for a p-polarized or 
TM-wave. 
The relation (2.123) can be used to express the Brewster angle as a func­

tion of the refractive indices, because if we substitute (2.123) into Snell’s law 
we obtain 

sin θ1 n2 
= 

sin θ2 n1 ¡sin θ1,B 
π 
2 − θ1,B cos θ1,B 

sin θ1,B 
= = tan  θ1,B,¢


sin

or 
tan θ1,B = 

n2 
. (2.124) 

n1 

Using the Brewster angle condition one can insert an optical component with 
a refractive index n = 1  into a TM-polarized beam in air without having 6
reflections, see Figure 2.27. Note, this is not possible for a TE-polarized 
beam. 
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Reflection of TM-Wave at Brewster’s Angle 
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kr 
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θ1,Β 

Figure 2.26: Conditions for reflection of a TM-Wave at Brewster’s angle.  
The reflected and transmitted beams are orthogonal to each other, so that 
the dipoles excited in the medium by the transmitted beam can not radiate 
into the direction of the reflected beam. 

Image removed for copyright purposes. 

Figure 2.27: A plate under Brewster’s angle does not reflect TM-light. The 
plate can be used as a window to introduce gas filled tubes into a laser beam 
without insertion loss (ideally), [6] p. 209. 
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2.2.5 Total Internal Reflection 

Another striking phenomenon, see Figure 2.24, occurs for the case where 
the beam hits the surface from the side of the optically denser medium, i.e. 
n1 > n2. There is obviously a critical angle of incidence, beyond which all 
light is reflected. How can that occur? This is easy to understand from the 
phase matching diagram at the surface, see Figure 2.18, which is redrawn for 
this case in Figure 2.28. 

n n2 > 1 

x 

krki 
θi θr 

θtot 

z 

k2 

k1 

Figure 2.28: Phase matching diagram for total internal reflection. 

There is no real wavenumber in medium 2 possible as soon as the angle of 
incidence becomes larger than the critical angle for total internal reflection 

θi > θtot (2.125) 

with 
sin θtot = 

n2 
. (2.126) 

n1 

Figure 2.29 shows the angle of refraction and incidence for the two cases of 
external and internal reflection, when the angle of incidence approaches the 
critical angle. 
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Image removed for copyright purposes. 

Figure 2.29: Relation between angle of refraction and incidence for external 
refraction and internal refraction ([6], p. 11). 

Image removed for copyright purposes. 

Figure 2.30: Relation between angle of refraction and incidence for external 
refraction and internal refraction ([1], p. 81). 

Total internal reflection enables broadband reflectors. Figure 2.30 shows 
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again what happens when the critical angle of reflection is surpassed. Fig­
ure 2.31 shows how total internal reflection can be used to guide light via 
reflection at a prism or by multiple reflections in a waveguide. 

Image removed for copyright purposes. 

Figure 2.31: (a) Total internal reflection, (b) internal reflection in a prism, 
(c) Rays are guided by total internal reflection from the internal surface of 
an optical fiber ([6] p. 11). 

Figure 2.32 shows the realization of a retro reflector, which always returns 
a parallel beam independent of the orientation of the prism (in fact the prism 
can be a real 3D-corner so that the beam is reflected parallel independent 
from the precise orientation of the corner cube). A surface patterned by little 
corner cubes constitute a "cats eye" used on traffic signs.  

Image removed for copyright purposes. 

Figure 2.32: Total internal reflection in a retro reflector. 

More on reflecting prisms and its use can be found in [1], pages 131-136. 



57 2.2. ELECTROMAGNETIC WAVES AND INTERFACES 

Evanescent Waves 

What is the field in medium 2 when total internal reflection occurs? Is it 
identical to zero? It turns out phase matching can still occur if the propaga­
tion constant in z-direction becomes imaginary, k2z = −jκ2z, because then we 
can fulfill the wave equation in medium 2. This is equivalent to the dispersion 
relation 

k2 + k2 = k2 
2x 2z 2, 

or with k2x = k1x = k1 sin θ1, we obtain for the imaginary wavenumber 

q
κ2z = k1

2 sin2 θ1 − k2
2 , (2.127) p

= k1 sin2 θ1 − sin2 θtot. (2.128) 

The electric field in medium 2 is then, for the example for a TE-wave, given 
by 

E� t = Et �ey e
j(ωt−�kt·�r), (2.129) 

Et �ey e
j(ωt−k2,xx)e−κ2z z . (2.130) 

Thus the wave penetrates into medium 2 exponentially with a 1/e-depth δ, 
given by 

1 1 
δ = = p (2.131) 

κ2z k1 sin2 θ1 − sin2 θtot 

Figure 2.33 shows the penetration depth as a function of angle of incidence 
for a silica/air interface and a silicon/air interface. The figure demonstrates 
that light from inside a semiconductor material with a relatively high index 
around n=3.5 is mostly captured in the semiconductor material (Problem of 
light extraction from light emitting diodes (LEDs)), see problem set 2. 
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Figure 2.33: Penetration depth for total internal reflection at a silica/air and 
a silicon/air interface for λ = 0.633nm. 

As the magnitude of the reflection coefficient is 1 for total internal re­
flection, the power flowing into medium 2 must vanish, i.e. the transmission 
is zero. Note, that the transmission and reflection coefficients in Eq.(2.113) 
can be used beyond the critical angle for total internal reflection. We only 
have to be aware that the electric field in medium 2  has  an imaginary  depen­
dence in the exponent for the z-direction, i.e. k2z = k2 cos θ2 = −jκ2z. Thus 
cos θ2 in all formulas for the reflection and transmission coefficients has to be 
replaced by the imaginary number 

k2z k1 
p

cos θ2 = = −j sin2 θ1 − sin2 θtot (2.132) 
k2 k2 
n1 
p

= −j
n2 

sin2 θ1 − sin2 θtot s µ ¶2
sin θ1 

= −j 
sin θtot 

− 1. 
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Then the reflection coefficients in Eq.(2.113) change to all-pass functions 

TE-wave (s-pol.) TM-wave (p-pol.) 

rTE  = n1 cos θ1−n2 cos θ2 
n1 cos θ1+n2 cos θ2 r³ 

rTM  = 
n2 

cos θ2 
− n1 
cos θ1 

n2 
cos θ2 

+ n1 
cos θ1r³ 

rTE  = 
cos θ1+j 

n2 
n1 

sin θ1 
sin θtot 

´ 2 
−1 

cos θ1−j n2 
n1 

r³ 
sin θ1 
sin θtot 

´ 2 
−1 r³ 

rTM  = 
cos θ1+j 

n1 
n2 

sin θ1 
sin θtot 

´ 2 
−1 

cos θ1−j n1 
n2 

r³ 
sin θ1 
sin θtot 

´ 2 
−1 r³ 

tan φ
TE  

2 = 1 
cos θ1 

n2 
n1 

sin θ1 
sin θtot 

´ 2 
− 1 tan φ

TM  

2 = 1 
cos θ1 

n1 
n2 

sin θ1 
sin θtot 

´ 2 
− 1 

(2.133) 

Thus the magnitude of the reflection coefficient is 1. However,  there  is  
a non-vanishing phase shift for the light field upon total internal reflection, 
denoted as φTE  and φTM  in the table above. Figure 2.34 shows these phase 
shifts for the glass/air interface and for both polarizations. 
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Figure 2.34: Phase shifts for TE- and TM- wave upon reflection from a 
silica/air interface, with n1 = 1.45 and n2 = 1. 

Goos-Haenchen-Shift 

So far, we looked only at plane waves undergoing reflection at surface due to 
total internal reflection. If a beam of finite transverse size is reflected from 
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such a surface it turns out that it gets displaced by a distance ∆z, see Figure 
2.35 (a), called Goos-Haenchen-Shift. 

Image removed for copyright purposes. 

Figure 2.35: (a) Goos-Haenchen Shift and related beam displacement upon 
reflection of a beam with finite size; (b) Accumulation of phase shifts in a 
waveguide. 

Detailed calculations show (problem set 2), that the displacement is given 
by 

∆z = 2δTE/TM  tan θ1, (2.134) 

as if the beam was reflected at a virtual layer with depth δTE/TM  into medium 
2. It turns out, that for TE-waves 

δTE  = δ, (2.135) 

where δ is the penetration depth according to Eq.(2.131) for evanescent 
waves. But for TM-waves 

δTM  = ∙ ³ ´ 2
δ ¸ (2.136) 

n11 +  sin2 θ1 − 1 
n2 
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These shifts accumulate when the beam is propagating in a waveguide, see 
Figure 2.35 (b) and is important to understand the dispersion relations of 
waveguide modes. The Goos-Haenchen shift can be observed by reflection at 
a prism partially coated with a silver film, see Figure 2.36. The part reflected 
from the silver film is shifted with respect to the beam reflected due to total 
internal reflection, as shown in the figure. 

Image removed for copyright purposes. 

Figure 2.36: Experimental proof of the Goos-Haenchen shift by total in­
ternal reflection at a prism, that is partially coated with silver, where the 
penetration of light can be neglected. [3] p. 486. 

Frustrated total internal reflection 

Another proof for the penetration of light into medium 2 in the case of 
total internal reflection can be achieved by putting two prisms, where total 
internal reflection occurs back to back, see Figure 2.37. Then part of the 
light, depending on the distance between the two interfaces, is converted 
back into a propagating wave that can leave the second prism. This effect is 
called frustrated internal reflection and it can be used as a beam splitter as 
shown in Figure 2.37. 
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Image removed for copyright purposes. 

Figure 2.37: Frustrated total internal reflection. Part of the light is picked 
up by the second surface and converted into a propagating wave. 

2.3	 Mirrors, Interferometers and Thin-Film 
Structures 

One of the most striking wave phenomena is interference. Many optical de­
vices are based on the concept of interfering waves, such as low loss dielectric 
mirrors and interferometers and other thin-film optical coatings. After having 
a quick look into the phenomenon of interference, we will develope a powerful 
matrix formalism that enables us to evaluate efficiently many optical (also 
microwave) systems based on interference. 

2.3.1 Interference and Coherence 

Interference 

Interference of waves is a consequence of the linearity of the wave equation 
(2.13). If we have two individual solutions of the wave equation 

E�1(�r, t) =  E1 cos(ω1t − �k1 · �r + ϕ1) �e1, (2.137) 

E�2(�r, t) =  E2 cos(ω2t − �k1 · �r + ϕ2) �e2, (2.138) 

with arbitrary amplitudes, wave vectors and polarizations, the sum of the 
two fields (superposition) is again a solution of the wave equation 

E� (�r, t) =  E�1(�r, t) +  E�2(�r, t). (2.139) 
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If we look at the intensity, wich is proportional to the amplitude square of 
the total field ³ ´ 2 

E� (�r, t)2 = E�1(�r, t) +E�2(�r, t) , (2.140) 

we find 

E� (�r, t)2 = E�1(�r, t)2 +E�2(�r, t)2 + 2E�1(�r, t) E�2(�r, t) (2.141) · 

with ³ ´ E2 

E�1(�r, t)2 = 1 1 + cos 2(ω1t − �k1 · �r + ϕ1) , (2.142) 
2 ³ ´ E2 

E�2(�r, t)2 = 2 1 + cos 2(ω2t − � �r + ϕ2) , (2.143) k2 ·
2 

E�1(�r, t) E�2(�r, t) = (�e1 · �e2)E1E2 cos(ω1t − �k1 · �r + ϕ1) (2.144) · · 
cos(ω2t − �k2 · �r + ϕ2)· 

1 
E�1(�r, t) · E�2(�r, t) =

2
(�e1 · �e2)E1E2 · (2.145) ⎡ ³ ³ ´ ´ ⎤ ⎣ 

cos ³(ω1 − ω2) t − ³ 
�k1 − �k2 · �r + (ϕ1 − ϕ2) 

(2.146) ´ ´ ⎦ · 
+cos  (ω1 + ω2) t − �k1 + �k2 �r + (ϕ1 + ϕ2)· 

Since at optical frequencies neither our eyes nor photo detectors, can ever 
follow the optical frequency itself and certainly not twice as large frequencies, 
we drop the rapidly oscillating terms. Or in other words we look only on the 
cycle-averaged intensity, which we denote by a bar 

E2 E2


E� (�r, t)2 = 1 + 2 + (�e1 · �e2)E1E2 ·

2 2³ ³ ´ ´ 
cos (ω1 − ω2) t − �k1 − �k2 �r + (ϕ1 − ϕ2) (2.147) · · 

Depending on the frequencies ω1 and ω2 and the deterministic and stochastic 
properties of the phases ϕ1 and ϕ2, we can detect this periodically varying 
intensity pattern called interference pattern. Interference of waves can be 
best visuallized with water waves, see Figure 2.38. Note, however, that water 
waves are a scalar field, whereas the EM-waves are vector waves. Therefore, 
the interference phenomena of EM-waves are much richer in nature than 
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for water waves. Notice, from Eq.(2.147), it follows immedicatly that the 
interference vanishes in the case of orthogonally polarized EM-waves, because 
of the scalar product involved. Also, if the frequencies of the waves are not 
identical, the interference pattern will not be stationary in time. 

Image removed for copyright purposes. 

Figure 2.38: Interference of water waves from two point sources in a ripple 
tank [1] p. 276. 

If the frequencies are identical, the interference pattern depends on the 
wave vectors, see Figure 2.39. The interference pattern which has itself a 
wavevector given by 

�k1 − �k2 (2.148) 

shows a period of 

2π
¯
 ¯
.
 (2.149)
Λ =
 ¯̄�k1 − �k2 ̄̄ 
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Figure 2.39: Interference pattern generated by two monochromatic plane 
waves. 

Coherence 

The ability of waves to generate an interference pattern is called coherence. 
Coherence can be quantified both temporally or spatially. For example, if we 
are at a certain position �r in the interference pattern described by Eq.(2.147), 
we will only have stationary conditions over a time interval 

2π 
Tcoh << . 

ω1 − ω2 

Thus the spectral width of the waves determines the temporal coherence. 
However, it depends very often on the expermental arrangement whether a 
given situation can still lead to interference or not. Even so the interfering 
light may be perfectly temporally coherent, i.e. perfectly monochromatic, 
ω1 = ω2,yet the  wave  vectors  may  not be stable over time and  the spatial  
inteference pattern may wash out, i.e. there is insufficient spatial coherence. 
So for stable and maximum interference three conditions must be fulfilled: 

•	 stable and identical polarization 

•	 small change in the relative phase between the beams involved over the 
observation time, temporal coherence, often achieved by using narrrow 
linewidth light 

•	 stable beam propagation or guiding of light to achieve spatial coherence. 
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It is by no means trivial to arrive at a light source and an experimen­
tal setup that enables good coherence and strong interference of the beams 
involved. 
Interference of beams can be used to measure relative phase shifts between 

them which may be proportional to a physical quantity that needs to be 
measured. Such phase shifts between two beams can also be used to modulate 
the light output at a given position in space via interference. In 6.013, we 
have already encountered interference effects between forward and backward 
traveling waves on transmission lines. This is very closely related to what we 
use in optics, therefore, we quickly relate the TEM-wave progagation to the 
transmission line formalism developed in Chapter 5 of 6.013. 

2.3.2 TEM-Waves and TEM-Transmission Lines 

The motion of voltage V and current I along a TEM transmission line with 
an inductance L0 and a capacitance C per unit length is satisfies0 

∂V (t, z) ∂I(t, z) 
= −L0 (2.150) 

∂z ∂t

∂I(t, z) ∂V (t, z)


= −C 0 (2.151) 
∂z ∂t 

Substitution of these equations into each other results in wave equations for 
either the voltage or the current 

∂2V (t, z) 1 ∂2V (t, z) 
∂z2 

− 
c2 ∂t2 

= 0, (2.152) 

∂2I(t, z) 1 ∂2I(t, z) 
∂z2 

− 
c2 ∂t2 

= 0, (2.153) 

where c = 1/
√
L0C 0 is the speed of wave propagation on the transmission 

line. The ratio between voltage and current for monochomatic waves is the p
characteristic impedance Z = L0/C 0. 
The equations of motion for the electric and magnetic field of a x-polarized 

TEM wave according to Figure 2.1, with E−field along the x-axis and H-
fields along the y- axis follow directly from Faraday’s and Ampere’s law 

∂E(t, z) ∂H(t, z) 
= −μ , (2.154) 

∂z ∂t 
∂H(t, z) ∂E(t, z) 

= −ε , (2.155) 
∂z ∂t 
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which are identical to the transmission line equations (2.150) and (2.151). 
Substitution of these equations into each other results again in wave equations 
for electric and magnetic fields propagating at the speed of light c = 1/

√
με p

and with characteristic impedance ZF = μ/ε. 
The solutions of the wave equation are forward and backward traveling 

waves, which can be decoupled by transforming the fields to the forward and 
backward traveling waves r 

Aeff 
a(t, z) =  (E(t, z) + ZFoH(t, z)) , (2.156) 

2ZF r 
Aeff 

b(t, z) =  
2ZF 

(E(t, z)− ZFoH(t, z)) , (2.157) 

which fulfill the equations µ ¶
∂ 1 ∂ 
+ a(t, z) = 0, (2.158) 

∂z c ∂tµ ¶
∂ 1 ∂ 
∂z 
− 

c ∂t
b(t, z) = 0. (2.159) 

Note, we introduced that cross section Aeff such that |a| 2 is proportional to 
the total power carried by the wave. Clearly, the solutions are 

a(t, z) = f(t − z/c0), (2.160) 

b(t, z) = g(t + z/c0), (2.161) 

which resembles the D’Alembert solutions of the wave equations for the elec­
tric and magnetic field s 

ZFo
E(t, z) =  (a(t, z) + b(t, z)) , (2.162) 

2Aeff s 
1 

H(t, z) =  (a(t, z)− b(t, z)) . (2.163) 
2ZFoAeff 

Here, the forward and backward propagating fields are already normalized 
such that the Poynting vector multiplied with the effective area gives already 
the total power transported by the fields in the effective cross section Aeff 

P = S� · (Aeff �ez) = Aeff E(t, z)H(t, z) = |a(t, z)| 2 − |b(t, z)| 2 . (2.164) 
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In 6.013, it was shown that the relation between sinusoidal current and 
voltage waves © ª © ª 

V (t, z) = Re  V (z)ejωt and I(t, z) = Re  I(z)ejωt (2.165) 

along the transmission line or corresponding electric and magnetic fields in 
one dimensional wave propagation is described by a generalized complex 
impedance Z(z) that obey’s certain transformation rules, see Figure 2.40 
(a). 

Figure 2.40: (a) Transformation of generalized impedance along transmission 
lines, (b) Transformation of generalized impedance accross free space sections 
with different characterisitc wave impedances in each section. 

Along the first transmission line, which is terminated by a load impedance, 
the generalized impedance transforms according to 

Z1(z) = Z1 · 
Z0 − jZ1 tan (k1z) (2.166) 
Z1 − jZ0 tan (k1z) 

with k1 = k0n1 and along the second transmission line the same rule applies 
as an example 

Z2(z) = Z2 · 
Z1(−L1)− jZ2 tan (k2z) (2.167) 
Z2 − jZ1(−L1) tan (k2z) 
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with k2 = k0n2. Note, that the media can also be lossy, then the character­
istic impedances of the transmission lines and the propagation constants are 
already themselves complex numbers. The same formalism can be used to 
solve corresponding one dimensional EM-wave propagation problems. 

Antireflection Coating 

The task of an antireflection (AR-)coating, analogous to load matching in 
transmission line theory, is to avoid reflections between the interface of two 
media with different optical properties. One method of course could be to 
place the  interface at Brewster’s angle.  However,  this is not  always  possible.  
Let’s assume we want to put a medium with index n into a beam  under  
normal incidence, without having reflections on the air/medium interface. 
The medium can be for example a lens. This is exactly the situation shown 
in Figure 2.40 (b). Z2 describes the refractive index of the lense material, 
e.g. n2 = 3.5 for a silicon lense, we can deposit on the lens a thin layer 
of material with index n1 corresponding to Z1 and this layer should match 
to the free space index n0 = 1  or impedance Z0 = 377Ω. Using (2.166) we 
obtain 

Z2 = Z1(−L1) =  Z1 
Z0 − jZ1 tan (−k1L1) (2.168) 
Z1 − jZ0 tan (−k1L1) 

If we choose a quarter wave thick matching layer k1L1 = π/2, this simplifies 
to the famous result 

Z2 

Z2 = 1 , (2.169) 
Z0 

or n1 = 
√
n2n0 and L1 = 

λ
. (2.170) 

4n1 

Thus a quarter wave AR-coating needs a material which has an index cor­
responding to the geometric mean of the two media to be matched. In the 
current example this would be n2 = 

√
3.5 ≈ 1.87 

2.3.3 Scattering and Transfer Matrix 

Another formalism to analyze optical systems (or microwave circuits) can 
be formulated using the forward and backward propagating waves, which 
transform much simpler along a homogenous transmission line than the total 
fields, i.e. the sum of forward adn backward waves. However, at interfaces 
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scattering of these waves occurs whereas the total fields are continuous. For 
monochromatic forward and backward propagating waves 

a(t, z) =  a(z)ejωt and b(t, z) =  b(z)ejωt (2.171) 

propagating in z-direction over a distance z with a propagation constant k, 
we find from Eqs.(2.158) and (2.159) 

µ ¶ µ ¶µ ¶
a(z) e−jkz 0 a(0)

= jkz . (2.172) 
b(z) 0 e b(0) 

A piece of transmission line is a two port. The matrix transforming the 
amplitudes of the waves at the input port (1) to those of the output port (2) 
is called the transfer matrix, see Figure 2.41 

T


Figure 2.41: Definition of the wave amplitudes for the transfer matrix T. 

For example, from Eq.(2.172) follows that the transfer matrix for free 
space propagation is µ ¶

e−jkz 0 
T =

0 ejkz . (2.173) 

This formalism can be expanded to arbitrary multiports. Because of its 
mathematical properties the scattering matrix that describes the transfor­
mation between the incoming and outgoing wave amplitudes of a multiport 
is often used, see Figure 2.42. 
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S


Figure 2.42: Scattering matrix and its port definition. 

The scattering matrix defines a linear transformation from the incoming 
to the outgoing waves 

�b = S�a, with �a = (a1,a2, ...)
T , �b = (b1,b2, ...)

T . (2.174) 

Note, that the meaning between forward and backward waves no longer co­
incides with a and b, a connection, which is difficult to maintain if several 
ports come in  from  many different directions. 
The transfer matrix T has advantages, if many two ports are connected 

in series with each other. Then the total transfer matrix is the product of 
the individual transfer matrices. 

2.3.4 Properties of the Scattering Matrix 

Physial properties of the system reflect itself in the mathematical properties 
of the scattering matrix. 

Reciprocity 

A system with constant scalar dielectric and magnetic properties must have 
a symmetric scattering matrix (without proof) 

S = ST . (2.175) 
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Losslessness 

In a lossless system the total power flowing into the system must be equal to 
the power flowing out of the system in steady state 

2 
�b ̄̄̄  
¯̄̄

2 (2.176)
|�a| =
 ,


i.e. 
S+S = 1 or S−1 =S+ . (2.177) 

The scattering matrix of a lossless system must be unitary. 

Time Reversal 

To find the scattering matrix of the time reversed system, we realize that 
incoming waves become outgoing waves under time reversal and the other 
way around, i.e. the meaning of a and b is exchanged and on top of it the 
waves become negative frequency waves. 

aej(ωt−kz) 
time reversal 

aej(−ωt−kz). (2.178) → 

To obtain the complex amplitude of the corresponding positive frequency 
wave, we need to take the complex conjugate value. So to obtain the equa­
tions for the time reversed system we have to perform the following substi­
tutions 

Original system ¢¡Time reversed system 
= S�b 

∗ 
S−1 .
 (2.179)
∗ 

�a�b = S�a �a∗ �b =
→


2.3.5 Beamsplitter 

As an example, we look at the scattering matrix for a partially transmitting 
mirror, which could be simply formed by the interface between two media 
with different refractive index, which we analyzed in the previous section, 
see Figure 2.43. (Note, for brevity we neglect the reflections at the normal 
surface input to the media, or we put an AR-coating on them.) In principle, 
this device has four ports and should be described by a 4x4 matrix. However, 
most often only one of the waves is used at each port, as shown in Figure 
2.43. 
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Figure 2.43: Port definitions for the beam splitter 

The scattering matrix is determined by 

�b = S�a, with �a = (a1,a2)
T , �b = (b3, b4)

T (2.180) 

and µ ¶
S=

jt
r jt  

r 
, with r 2 + t2 = 1. (2.181) 

The matrix S was obtained using using the S-matrix properties described 
above. From Eqs.(2.113) we could immediately identify r as a function of 
the refractive indices, angle of incidence and the polarization used. Note, 
that the off-diagonal elements of S are identical, which is a consequence of 
reciprocity. That the main diagonal elements are identical is a consequence 
of unitarity for a lossless beamsplitter and furthermore t =

√
1− r2 . For a 

given frequency r and t can always be made real by choosing proper reference 
planes at the input and the output of the beam splitter. Beamsplitters can 
be made in many ways, see for example Figure 2.37. 

2.3.6 Interferometers 

Having a valid description of a beamsplitter at hand, we can build and ana­
lyze various types of interferometers, see Figure 2.44. 
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Image removed for copyright purposes. 

Figure 2.44: Different types of interferometers: (a) Mach-Zehnder Interfer­
ometer; (b) Michelson Interferometer; (c) Sagnac Interferometer [6] p. 66. 

Each of these structures has advantages and disadvantages depending 
on the technology they are realized. The interferometer in Figure 2.44 (a) 
is called Mach-Zehnder interferometer, the one in Figure 2.44 (b) is called 
Michelson Interferometer. In the Sagnac interferometer , Figure 2.44 (c) both 
beams see identical beam path and therefore errors in the beam path can be 
balance out and only differential changes due to external influences lead to 
an output signal, for example rotation, see problem set 3. 
To understand the light transmission through an interferometer we ana­

lyze as an example the Mach-Zehnder interferometer shown in Figure 2.45. 
If we excite input port 1 with a wave with complex amplitude a0 and no 
input at port 2 and assume 50/50 beamsplitters, the first beam splitter will 
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φ3 

φ4 

¢ 

Figure 2.45: Mach-Zehnder Interferometer 

produce two waves with complex amplitudes 

¡¡

¯̄

b3 = √1
2 
a0 (2.182) 

b4 = j √1
2 
a0 

During propagation through the interferometer arms, both waves pick up a 
phase delay φ3 = kL3 and φ4 = kL4, respectively 

a5 = √1
2 
a0e

−jφ3 , 
a6 = j √1

2 
a0e

−jφ4 . 
(2.183) 

After the second beam splitter with the same scattering matrix as the first 

e−jφ3 , 
a0 e−jφ3 

The transmitted power to the output ports is 

2 

one, we obtain 
1 

¢

− e−jφ4 

+ e−jφ4 

b7 = a0 (2.184)
2 
= j 1 

2
b8 .


¯̄

2 22 

4
| = |a0| |a0|

2
1 − e−j(φ3−φ4) 

1 +  e−j(φ3−φ4)
|b7 [1 − cos (φ3 − φ4)] ,=


(2.185)
¯̄¯̄ 2 | | 

The total output power is equal to the input power, as it must be for a lossless 
system. However, depending on the phase difference ∆φ = φ3 − φ4 between 
both arms, the power is split differently between the two output ports, see 
Figure 2.46.With proper biasing, i.e. φ3 − φ4 = π/2 +  ∆φ, the difference in 

2 22 = |a0|
4 

|a0|
2

b8 [1 + cos (φ3 − φ4)] .=
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-3 -2 -1 0 1 2 3 
Δφ 

Figure 2.46: Output power from the two arms of an interfereometer as a 
function of phase difference. 

output power between the two arms can be made directly proportional to 
the phase difference ∆φ. 

Opening up the beam size in the interferometer and placing optics into 
the beam enables to visualize beam distortions due to imperfect optical com­
ponents, see Figures 2.47 and 2.48. 

Image removed for copyright purposes. 

Figure 2.47: Twyman-Green Interferometer to test optics quality [1] p. 324. 
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Image removed for copyright purposes. 

Figure 2.48: Interference pattern with a hot iron placed in one arm of the 
interferometer ([1], p. 395). 

2.3.7 Fabry-Perot Resonator 

Interferometers can act as filters. The phase difference between the interfer­
ometer arms depends on frequency, therefore, the transmission from input to 
output depends on frequency, see Figure 2.46. However, the filter function is 
not very sharp. The reason for this is that only a two beam interference is 
used. Much more narrowband filters can be constructed by multipass inter­
ferences such as in a Fabry-Perot Resonator, see Figure 2.49. The simplest 
Fabry Perot is described by a sequence of three layers where at least the mid­
dle layer has an index different from the other two layers, such that reflections 
occur on these interfaces. 
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n2n1 n3 

1 2


S S21 

Figure 2.49: Multiple intereferences in a Fabry Perot resonator. In the sim­
plest implementation a Fabry Perot only consists of a sequence of three layers 
with different refractive index so that two reflections occur with multiple in­
terferences. Each of this discontinuites can be described by a scattering 
matrix. 

Any kind of device that has reflections at two parallel interfaces may 
act as a Fabry Perot such as two semitransparent mirrors. A thin layer 
of material against air can act as a Fabry-Perot and is often called etalon. 
Given the reflection and transmission coefficients at the interfaces 1 and 2, 
we can write down the scattering matrices for both interfaces according to 
Eqs.(2.180) and (2.181). µ ¶ µ ¶µ ¶ µ ¶ µ ¶µ ¶

b̃1 r1 jt1 ã1 b̃3 r2 jt2 ã3 

b̃2 
=

jt1 r1 ã2 
and 

b̃4 
=

jt2 r2 ã4 
. 

(2.186) 
If we excite the Fabry-Perot with a wave from the right with amplitude. 
ã1 = 0, then a fraction of that wave will be transmitted to the interface into 6
the Fabry-Perot as wave b̃2 and part will  be already  reflected into b̃1, 

˜(0)b1 = r1ã1. (2.187) 

The transmitted wave will then propagate and pick up a phase factor e−jφ/2 , 
with φ = 2k2L and k2 =

2
λ
π n2, 

ã3=jtã1e
−jφ/2 . (2.188) 
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After propagation it will be reflected off from the second interface which has 
a reflection coefficient ¯ 

b̃3 ¯̄ Γ2 = ¯ = r2. (2.189) 
ã3 ̄  

a4=0 

Then the reflected wave b̃3 propagates back to interface 1, picking up another 
(1)phase factor e−jφ/2 resulting in an incoming wave after one roundtrip of ã2 = 

jt1r2e
−jφã1. Upon  reflection on interface 1, part of this wave is transmitted 

leading to an output 
(1) 
b̃1 =jt1jt1r2e

−jφã1. (2.190) 

The partial wave a(1)2 is reflected again and after another roundtrip it arrives 
(2)at interface 1 as ã2 = (r1r2) e

−jφ jt1r2e
−jφã1. Part of this wave is trans­· 

mitted and part of it is reflected back to go through another cycle. Thus in 
total if we sum up all partial waves that contribute to the output at port 1 
of the Fabry-Perot filter, we obtain 

X∞ (n)

b̃1 = b̃1


n=0Ã ! X∞
= r1 − t21r2e

−jφ r1r2e
−jφ ã1 

n=0 

e−jφ 

= 
µ
r1 − t21r2 

1− r1r2e−jφ 

¶ 
ã1 

= 
r1 − r2e−jφ 

ã1 (2.191) 
1− r1r2e−jφ 

Note, that the coefficient in front of Eq.(2.191) is the coefficient S11 of the 
scattering matrix of the Fabry-Perot. In a similar manner, we obtain µ 

˜

b

b3

4 

¶ 

= S 

µ 
a
a
˜
˜
1

2 

¶ 

(2.192) ˜

1 r1 − r2e−jφ −t1t2e−jφ/2 
and 

S=
1− r1r2e−jφ 

µ 

−t1t2e−jφ/2 r2 − r1e−jφ 

¶ 

(2.193) 

In  the following,  we want to analyze  the properties of the  Fabry-Perot for  
the case of symmetric reflectors, i.e. r1 = r2 and t1 = t2. Then we obtain for 
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the power transmission coefficient of the Fabry-Perot, S21
2 in terms of the 

2 
| |

power reflectivity of the interfaces R = r

|
S21 2 |
 =
̄̄̄̄ 

1 − R


1 − Re−jφ 
̄̄̄̄ 


2	 2(1 − R)
2 + 4R sin2(φ/2) 

(2.194)
=

(1 − R)

2Figure 2.50 shows the transmission |S21|
= R. 

of the Fabry-Perot interferometer 
for equal reflectivities r1

2 = r2
2 |
 |
 |
 |
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Figure 2.50: Transmission of a lossless Fabry-Perot interferometer with 
2 2 |r1| = |r2| = R 

At very low reflectivity R of the mirror the transmission is almost every­
where 1, there is only a slight sinusoidal modulation due to the first order 
interferences which are periodically in phase and out of phase, leading to 
100% transmission or small reflection. For large reflectivity R, due to the 
then multiple interference operation of the Fabry-Perot Interferometer, very 
narrow transmission resonances emerge at frequencies,  where  the roundtrip  
phase in the resonator is equal to a multiple of 2π 

2πf 
φ = n22L = 2πm,	 (2.195) 

c0 
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which occurs at a comb of frequencies, see Figure 2.51 

fm = m
c0 

. (2.196) 
2n2L 

Figure 2.51: Developement of a set of discrete resonances in a one­
dimensionsal resonator. 

On a large frequency scale, a set of discrete frequencies, resonances or 
modes arise. The frequency range between resonances is called free spectral 
range (FSR) of the Fabry-Perot Interferometer 

c0 1 
FSR  = = , (2.197) 

2n2L TR 

which is the inverse roundtrip time TR of the light in the one-dimensonal 
cavity or resonator formed by the mirrors. The filter characteristic of each 
resonance can be approximately described by a Lorentzian line derived from 
Eq.(2.194) by substituting f = fm + ∆f with ∆f FSR,  ¿ 

2 (1 − R)2 

2|S21| = 
(1 − R) + 4R sin2 

¡£
m2π + 2π ∆f ¤ /2 ¢ 

FSR

1 ≈ ³ 
2π
√
R ∆f 

´ 2 , (2.198) 
1 +  

1−R FSR  

1 ≈ ³ 
∆f 

´ 2 , (2.199) 
1 +  

∆fFWHM/2 
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where we introduced the FWHM of the transmission filter 

FSR  
∆fFWHM  = , (2.200) 

F 

with the finesse of the interferometer defined as 

π
√
R π 

F =
1 − R 

≈ . (2.201) 
T 

The last simplification is valid for a highly reflecting mirror R ≈ 1 and T is 
the mirror transmission. From this relation it is immediately clear that the 
finesse has the additional physical meaning of the optical power enhancement 
inside the Fabry-Perot at resonance besides the factor of π, since the power 
inside  the cavity must be larger by 1/T , if the transmission through the 
Fabry-Perot is unity. 

2.3.8 Quality Factor of Fabry-Perot Resonances 

Another quantity often used to characterize a resonator or a resonance is 
its quality factor Q, which is defined as the ratio between the resonance 
frequency and the decay rate for the energy stored in the resonator, which is 
also often called inverse photon lifetime, τ−1 

ph 

Q = τ phfm. (2.202) 

Lets assume, energy is stored in one of the resonator modes which occupies a 
range of frequencies [fm − FSR/2, fm + FSR/2] as indicated in Figure 2.52. 
Then the fourier integral Z
 +FSR/2 

am(t) =  b̃2(f)e
j2π(f−fm)t df, (2.203) 

−FSR/2 

2 ¯̄̄
 

¯̄̄
b̃2(f) 

of the forward traveling wave in the resonator gives the mode amplitude of the 
m-th mode and its magnitude square is the energy stored in the mode. Note, 
that we could have taken any of the internal waves ã2, ̃b2, ã3, and ̃b3. The  time  
dependent field we create corresponds to the field of the forward or backward 
traveling wave at the corresponding reference plane in the resonator. 

where is normalized such that it describes the power spectral density 
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Figure 2.52: Integration over all frequency components within the frequency 
range [fm − FSR/2, fm + FSR/2] defines a mode amplitude a(t) with a slow 
time dependence 

We now make a "Gedanken-Experiment". We switch on the incoming 
waves ã1(ω) and ã4(ω) to load the cavity with energy and evaluate the in­
ternal wave b̃2(ω). Instead of summing up all the multiple reflections like 
we did in constructing the scattering matrix (2.192), we exploit our skills 
in analyzing feedback systems, which the Fabry-Perot filter is. The scat­
tering equations set force by the two scattering matrices characterizing the 
resonator mirrors in the Fabry-Perot can be visuallized by the signal flow 
diagram in Figure 2.53 

~
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Figure 2.53: Representation of Fabry-Perot resonator by a signal flow dia­
gram 
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For the task to find the relationship between the internal waves feed by 
the incoming wave only the dashed part of the signal flow is important. The 
internal feedback loop can be clearly recognized with a closed loop transfer 
function 

r 2 e−jφ, 

which leads to the resonance denominator 

1− r 2 e−jφ 

in every element of the Fabry-Perot scattering matrix (2.192). Using Blacks 
formula from 6.003 and the superposition principle we immediately find for 
the internal wave 

b̃2 = 1− r
jt 
2e−jφ 

¡
ã1 + re−jφ/2ã4 

¢ 
. (2.204) 

Close to one of the resonance frequencies, Ω = 2πfm + ω, using t = 1− r2 , 
(2.204) can be approximated by 

˜ m e−jωTR/2˜b2(ω) ≈ 
1 + j 

1

j 

−RωTR 

¡
ã1(ω) + r(−1) a4(ω) 

¢ 
, (2.205) 

R 

j ¡ ¢ 
≈ 

1 + jωTR/T 
ã1(ω) + r(−1)m e−jωTR/2ã4(ω) (2.206) 

for high reflectivity R. Multiplication of this equation with the resonant de­
nominator 

(1 + jωTR/T ) b̃2(ω) ≈ j 
¡
ã1(ω) + r(−1)m e−jωTR/2ã4(ω) 

¢ 
(2.207) 

and inverse Fourier-Transform in the time domain, while recognizing that 
the internal fields vanish far off resonance, i.e. Z +π FSR  Z 

am(t) =  
·

b̃2(ω)e
jωt dω = 

+∞ 

b̃2(ω)e
jωt dω, (2.208) 

−π·FSR  −∞ 

we obtain the following differential equation for the mode amplitude slowly 
varying in time 

d 
TR a (t) = −T (am(t) + ja1(t) + j(−1)m a4(t − TR/2)) (2.209) 

dt m
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with the input fields Z +π FSR  ·
a1/4(t) =  ã1/4(ω)e

jωt dω. (2.210) 
−π FSR  ·

Despite the pain to derive this equation the physical interpretation is remark­
ably simple and far reaching as we will see when we apply this equation later 
on to many different situations. Lets assume, we switch off the loading of 
the cavity at some point, i.e. a1/4(t) = 0, then Eq.(2.209) results in 

am(t) =  am(0)e
−t/(TR/T ) (2.211) 

And the power decays accordingly 

|a (t)| 2 = |a (0)| 2 e−t/(TR/2T ) (2.212) m m

twice as fast as the  amplitude.  The energy decay  time  of  the cavity is often  
called the cavity energy decay time, or photon lifetime, τ ph, which is here 

TR
τ ph = . 

2T 

Note, the factor of two comes from the fact that each mirror of the Fabry-
Perot has a transmission T per roundtrip time. For exampl a L = 1.5m long 
cavity with mirrors of 0.5% transmission, i.e. TR = 10ns and 2T = 0.01 has a 
photon lifetime of 1μs. It needs hundred bounces on the mirror for a photon 
to be essentially lost from the cavity. 
Highest quality dielectric mirrors may have a reflection loss of only 10−5...−6 , 

this is not really transmission but rather scattering loss in the mirror. Such 
high reflectivity mirrors may lead to the construction of cavities with photon 
lifetimes on the order of milliseconds. 
Now, that we have an expression for the energy decay time in the cavity, 

we can evaluate the quality factor of the resonator 

m 
Q = fm · τ ph = . (2.213) 

2T 

Again for a resonator with the same parameters as before and at optical 
frequencies of 300THz corresponding to 1μm wavelength, we obtain Q = 
2 108 .· 
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Thin-Film Filters 

Transfer matrix formlism is an efficient method to analyze the reflection and 
transmission properties of layered dielectric media, such as the one shown 

Using the transfer matrix method, it is an easy task to 
compute the transmission and reflection coefficients of a structure composed 
of layers with arbitrary indices and thicknesses. A prominent example of a 
thin-film filter are Bragg mirrors. These are made of a periodic arrangement

re
efl

ct
t

i
iv
y

of  two layers with low  and high index  n1 and n2, respectively. For maximum 
reflection bandwidth, the layer thicknesses are chosen to be quarter wave for 
the wavelength maximum reflection occures, n1d1 

Figure 2.54: Thin-Film dielectric mirror composed of alternating high and 

As an example Figure 2.55 shows the reflection from a Bragg mirror with 
4 for a center wavelength of λ0 

Figure 2.55: Reflectivity of an 8 pair quarter wave Bragg mirror with n1 

4 designed for a center wavelength of 800nm. The mirror is 
embedded in the same low index material. 

2.3.9


in Figure 2.54. 
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2.4 Paraxial Wave Equation and Gaussian Beams 

So far, we have only treated optical systems operating with plane waves, 
which is an idealization. In reality plane waves are impossible to generate 
because of there infinite amount of energy required to do so. The simplest 
(approximate) solution of Maxwell’s equations describing a beam of finite size 
is the Gaussian beam. In fact many optical systems are based on Gaussian 
beams. Most lasers are designed to generate a Gaussian beam as output. 
Gaussian beams stay Gaussian beams when propagating in free space. How­
ever, due to its finite size, diffraction changes the size of the beam and lenses 
are imployed to reimage and change the cross section of the beam. In this sec­
tion, we want to study the properties of Gaussian beams and its propagation 
and modification in optical systems. 

2.4.1 Paraxial Wave Equation 

We start from the Helmholtz Equation (2.18) 

¡ ¢ e�∆ + k0
2 E(x, y, z, ω) = 0, (2.214) 

with  the free space  wavenumber  k0 = ω/c0. This equation can easily be 
solved in the Fourier domain, and one set of solutions are of course the plane 
waves with wave vector |�k|2 = k0

2 . We look for solutions which are polarized 
in x-direction 

�E
e
(x, y, z, ω) = Ee(x, y, z) �ex. (2.215) 

We want to construct a beam with finite transverse extent into the x-y-plane 
and which is mainly propagating into the positive z-direction. As such we 
may try a superposition of plane waves with a dominant z-component of the 
k-vector, see Figure 2.56. The k-vectors can be written as q

kz = k0
2 − kx 

2 − ky2 , µ ¶
≈ k0 1− 

kx 
2 

2

− 

k0
2 

ky 
2 

. (2.216) 

with kx, ky << k0. 
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y 
x 

k 

z 

Figure 2.56: Construction of a paraxial beam by superimposing many plane 
waves with a dominante k-component in z-direction. 

Then we obtain for the propagating field Z Z+∞ +∞ 

Ee(x, y, z) =  Ee0(kx, ky) · 
−∞∙ −∞ µ ¶ ¸

k2 + k2 

exp −jk0 1 − x 

2k2 
y 

z − jkxx − jkyy dkxdky, Z Z 0 
+∞ +∞ 

= Ee0(kx, ky) · 
−∞∙ µ−∞ ¶ ¸

k2 + k2 

exp j x y 
z − jkxx − jkyy dkxdkye

−jk0z , (2.217) 
2k0 

where Ee0(kx, ky) is the amplitude for the waves with the corresponding trans­
verse k-component. This function should only be nonzero within a small 
range kx, ky ¿ k0. The function Z Z ∙ µ ¶ ¸+∞ +∞ k2 + k2 

Ee0(x, y, z) =  Ee0(kx, ky) exp  j x y 
z − jkxx − jkyy dkxdky 

−∞ −∞ 2k0 

(2.218) 
is a slowly varying function in the transverse directions x and y, and  it  can  
be easily verified that it fulfills the paraxial wave equation 

∂ 
µ 

∂2 ∂2 ¶
Ee0(x, y, z) =  

−j 
+ Ee0(x, y, z). (2.219) 

∂z 2k0 ∂x2 ∂x2 

Note, that this equation is in its structure identical to the dispersive spreading 
of an optical pulse. The difference is that this spreading occurs now in the 
two transverse dimensions and is called diffraction. 
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2.4.2 Gaussian Beams 

Since the kernel in Eq.(2.218) is quadratic in the transverse k-components 
using a two-dimensional Gaussian for the amplitude distribution leads to a 
beam in real space which is also Gaussian in the radial direction because of 
the resulting Gaussian integral. By choosing for the transverse amplitude 
distribution 

k2 + k2 

Ee0(kx, ky) = exp  

∙ 

− x 

2kT 
2 

y 
¸ 

, (2.220) 

Eq.(2.218) can be rewritten as Z Z ∙ µ ¶ ¸+∞ +∞ k2 + k2 

Ee0(x, y, z) =  exp j x y 
(z + jzR) − jkxx − jkyy dkxdky, 

−∞ −∞ 2k0 

(2.221) 
with the parameter zR = k0/kT 

2 , which we will later identify as the Rayleigh 
range. Thus, Gaussian beam solutions with different finite transverse width 
in k-space and real space behave as if they propagate along the z-axis with 
different imaginary z-component zR. Carrying out the Fourier transformation 
results in the Gaussian Beam in real space ∙ µ ¶¸

Ee0(x, y, z) =  
z + 

j

jzR 
exp −jk0 

2(

x

z 

2 

+

+ 
jz

y2 

R)
. (2.222) 

The Gaussian beam is often formulated in terms of the complex beam pa­
rameter or q-parameter. 
The propagation of the beam in free space and later even through optical 

imaging systems can be efficiently described by a proper transformation of 
the q-parameter ∙ µ ¶¸

1 r2 

Ee0(r, z) =  
q(z) 

exp −jk0 
2q(z)

. (2.223) 

Free space propagation is then described by 

q(z) =  z + jzR (2.224) 

Using the inverse q-parameter, decomposed in real and imagniary parts, 

1 1 λ

q(z)

= 
R(z) 

− j
πw2(z) 

. (2.225)
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leads to 

2 2 

Ee0(r, z) =  √
√

πw

2P 
(z)

exp 

∙ 

−
w2
r

(z)
− jk0 

2R

r

(z)
+ jζ(z)

¸ 

. (2.226) 

Thus w(z) is the waist of the beam and R(z) is the radius of the phase 
fronts. We normalized the beam such that the Gaussian beam intensity ¯ ¯ ¯ ¯2 
I(z, r) = ¯Ee0(r, z)¯ expressed in terms of the power P carried by the beam 

is given by 

2P 2r2 

I(r, z) =  
πw2(z)

exp 

∙ 

−
w2(z)

¸ 

, (2.227) Z Z 2π∞
i.e. P = I(r, z) rdr dϕ. (2.228) 

0 0 

The use of the q-parameter simplifies the description of Gaussian beam prop­
agation. In free space propagation from z1 to z2, the variation of the beam 
parameter q is simply governed by 

q2 = q1 + z2 − z1. (2.229) 

where q2 and q1 are the beam parameters at z1 and z2. 
If the beam waist, at which the beam has a minimum spot size w0 and 

a planar wavefront  (R = ∞), is located at z = 0, the variations of the 
beam spot size and the radius of curvature of the phase fronts are explicitly 
expressed as " #1/2µ ¶2 

z 
w(z) = wo 1 + , (2.230) 

zR 

and ∙ ¸³ ´ 2
R(z) = z 1 +  

zR 
, (2.231) 

z 

where zR is called the Rayleigh range. The Rayleigh range is the distance 
over which the cross section of the beam doubles. The Rayleigh range is 
related to the initial beam waist and the wavelength of light according to 

πw2 

zR = o . (2.232) 
λ 
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Intensity 

Figure 2.57 shows the intensity of the Gaussian beam according to Eq.(2.227) 
for different propagation distances. 

Image removed for copyright purposes. 

Figure 2.57: The normalized beam intensity I/I0 as a function of the radial 
distance r at different axial distances: (a) z=0, (b) z=zR, (c) z=2zR. 

The beam intensity can be rewritten as 

w2 ∙ 
2r2 ¸ 

2P 
I(r, z) = I0 

w2(
0 

z)
exp −

w2(z)
, with I0 = 

πw2 . (2.233) 
0 

For z > zR the beam radius growth linearly and therefore the area expands 
quadratically, which brings down the peak intensity quadratically with prop­
agation distance. 
On  the beam  axis (r = 0) the intensity is given by 

w0
2 I0

I(r, z) = I0 = ³ ´ 2 . (2.234) 
w2(z) z1 +  

zR 

The normalized beam intensity as a function of propagation distance is shown 
in Figure 2.58 



92 CHAPTER 2. CLASSICAL ELECTROMAGNETISM AND OPTICS


Image removed for copyright purposes. 

Figure 2.58: The normalized Beam intensity I(r = 0)/I0 on the beam axis 
as a function of propagation distance z [6], p. 84. 

Power 

The fraction of the total power contained in the beam up to a certain radius 
is Z 

P (r < r0) 2π r0 

= I(r, z)rdr 
P P 0 Z ∙ ¸

4 r0 2r2 

= 
w2(z) 0 

exp −
w2(z)

rdr (2.235) 

2r0
2 

= 1  − exp 

∙ 

−
w2(z)

¸ 

. 

Thus, there is a certain fraction of power within a certain radius of the 
beam 

P (r < w(z)) 
= 0.86, (2.236) 

P 
P (r <  1.5w(z)) 

= 0.99. (2.237) 
P 

Beam radius 

Due to diffraction, the smaller the spot size at the beam waist, the faster the 
beam diverges according to 2.230 as illustrated in Figure ??. 
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Image removed for copyright purposes. 

Figure 2.59: Gaussian beam and its characteristics. 

Beam divergence 

The angular divergence of the beam is inversely proportional to the beam 
waist. In the far field, the half angle divergence is given by 

λ 
θ = , (2.238) 

πwo 

see Figure 2.59. 

Confocal parameter and depth of focus 

In linear microscopy, only a layer which has the thickness over which the 
beam is focused, called depth of focus, will contribute to a sharp image. In 
nonlinear microscopy (see problem set) only a volume on the order of beam 
cross section times depth of focus contributes to the signal. Therefore, the 
depth of focus or confocal parameter of the Gaussian beam, is the distance 
over which the beam stays focused and is defined as twice the Rayleigh range 

2πw2 

b = 2zR = o . (2.239) 
λ 

The confocal parameter depends linear on the spot size (area) of the beam 
and is inverse to the wavelength of light. At a wavelength of 1μm a beam  
with a radius of wo = 1cm,.the beam will stay focussed ove distances as long 
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600m. However, if the beam is stronlgy focussed down to wo = 10μm the 
field of depth is only 600μm. 

Phase 

The phase delay of the Gaussian beam is 

2r
Φ(r, z) =  k0z − ζ(z) +  k0 (2.240) µ ¶ 

2R(z) 
z 

ζ(z) = arctan . (2.241) 
zR 

On beam axis, there is the additional phase ζ(z) when the beam undergoes 
focussing as shown in Figure 2.60. This is in addition to the phase shift that 
a uniform plane wave already aquires. 

Image removed for copyright purposes. 

Figure 2.60: Phase delay of a Gaussian beam relative to a uniform plane wave 
on the beam axis [6], p. 87. This phase shift is known as Guoy-Phase-Shift. 

This effect is known as Guoy-Phase-Shift. The third term in the phase 
shift is parabolic in the radius and describes the wavefront (planes of constant 
phase) bending due to the focusing, i.e. distortion from the uniform plane 
wave. 
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Image removed for copyright purposes. 

Figure 2.61: The radius of curvature R(z) of the wavefronts of a Gaussian 
beam [6], p. 89. 

The surfaces of constant phase are detemined by k0z − ζ(z) + k0 
r2 

= 
2R(z) 

const. Since the radius of curvature R(z) and the additional phase ζ(z) are 
slowly varying functions of z, i.e. they are constant over the radial variation 
of the wavefront, the wavefronts are paraboloidal surfaces with radius R(z), 
see Figures 2.61 and 2.62. 

Image removed for copyright purposes. 

Figure 2.62: Wavefronts of a Gaussian beam, [6] p. 88. 

For comparison, Figure 2.63 shows the wavefront of (a) a uniform plane 
wave, (b) a spherical wave and (c) a Gaussian beam. At points near the 
beam center, the Gaussian beam resembles a plane wave. At large z, the 
beam  behaves like a  spherical wave except that the phase fronts are  delayed  
by a quarter of the wavlength due to the Guoy-Phase-Shift. 
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Image removed for copyright purposes. 

Figure 2.63: Wavefronts of (a) a uniform plane wave;(b) a spherical wave; 
(c) a Gaussian beam [5], p. 89. 

2.5 Rays and Optical Systems 

Now, that we understand how a beam of finite size as a solution of Maxwell’s 
Equations can be constructed, we are interested how such a beam can be 
imaged by an optical system. Propagation of a Gaussian beam in free space 
leads to spreading of the beam because of the diffraction. We need means 
to focus the beam again. The output beam from a laser may have a certain 
size but we may need a different size for a given experiment. We can change 
the size or focus  the beam  by an optical  imaging system.  Optical  systems  
are studied and analyzed using ray optics. What is a ray? We have already 
discussed that diffraction of a beam is similar to dispersion of an optical 
pulse. Dispersion of a pulse we understood because of the different group 
velocity of different frequency components or sub-pulses. It turns out that 
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these sub-pulses are the temporal analog to the rays. In the same way we 
can construct a short pulse by a superposition of sub-pulses with different 
center frequencies, we can construct a Gaussian beam by sub-beams with 
different center transverse k-vectors and a very narrow spread in transverse 
k-vectors. These are Gaussian beams with a large beam diameter such that 
diffraction is not any longer important. These beams are called rays. The 
ray only experiences a phase shift during propagation depending on the local 
refractive index n(r). Therefore, we can completely understand the imaging 
of Gaussian beams in paraxial optical systems by the imaging properties of 
rays. 

2.5.1 Ray Propagation 

A ray propagating in an optical system, see Figure 2.64, can be described 
by its position r with respect to the optical axis and its inclination with 
respect to the optical axis r0. It is advantageous to use not (r, r0) as the 
ray coordinates but the combination (r, n r0), where  n is the local refractive 
index at the position of the ray. Due to propagation, the ray coordinates 
may change, which can be desribed by a marix, that maps initial position 
and inclination into the corresponding quantitaties after the propagation µ ¶ µ ¶µ ¶

r2 A B  r1 = . (2.242) 
n2r2

0 C D  n1r1
0

This imaging matrix is called an ABCD-matrix. 

Z 

r’1 

r2 

r’2r1 

1 2 

Optical 

System 

Figure 2.64: Description of optical ray propagation by its distance and incli­
nation from the optical axis 
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The advantage in using (r, n r0) as the ray coordinates is that it preserves 
the phase space volume, i.e. for lossless optical systems the determinant of 
the ABCD-matrix must be 1. Also Snell’s law for paraxial rays has then a 
simple form, see Figure 2.65. For paraxial rays the angles to the interface 
normal, θ1 and θ2, are much smaller than 1, and  we  can  write  

r1
0 = tan  θ1 ≈ sin θ1 ≈ θ1, and r2

0 = tan  θ2 ≈ sin θ2 ≈ θ2. 

Then Snell’s law is 
n1 r1

0 = n2 r2
0 . (2.243) 

Z 

r’1 r2 

r’2 

r1 

1 2 

n1 n2 

θ2 

θ1 

Figure 2.65: Snell’s law for paraxial rays 

The ABCD-matrix describing a ray going from a medium with index n1 

to a medium with index n2 is the unity matrix 

r2 = r1 (2.244) 

n2 r2
0 = n1 r1

0 . (2.245) 

Free space propagation 

For propagation in free space, see Figure 2.66, the relationship between input 
and output ray parameters is 

r2 = r1 + r0 L1 · 
r2
0 = r1

0
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or the propagation matrix is µ ¶
1 L 

M = . (2.246) 
0 1

Z 

r’1 

r2 

r’2 

r1 

1 2 

L 

Figure 2.66: Free space propagation 

Propagation in medium with length L and index n 

Free propagation through a medium with index n does result in a reduced 
position shift with respect to the optical axis in comparison to free space, 
because the beam is first bent to the optical axis according to Snell’s law, 
see Figure 2.67. Therefore the corresponding ABCD-matrix is µ ¶

M =
1 L/n 

. (2.247) 
0 1 

Z 

r’1 r2 

r’2 

r1 

1 2 

L 

Figure 2.67: Ray propagation through a medium with refractive index n, 
shortens the path length of the beam by a factor of n. 
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Parbolic surface or thin lens 

Plano-Convex Lens When a ray penetrates a parabolic surface between 
two media with refractive indices n1 and n2, it changes its inclination. A 
parabolic surface can be closely approximated by the surface of a sphere, see 
Figure 2.68. Snells law in paraxial approximation is 

n1 (r1
0 + α) = n2 (r2

0 + α) . (2.248) 

Z 

r’1 r2 

r’2 

r1 

n2 

0 

α 

α 

R 

Figure 2.68: Derivation of ABCD-matrix of a thin plano-convex lens. 

The small angle α can be approximated by  α ≈ r1/R. In total we then 
obtain the mapping 

r2 = r1 (2.249) 

n2 r2
0 = n1 r1

0 + 
n1 − n2 

r1 (2.250) 
R 

or µ ¶
1 0 

M = . (2.251) n1−n2 1
R 

Note, the second normal interface does not change the ray propagation matrix 
and therefore Eq.(2.251) describes correctly the ray propagation through a 
thin plano-convex lens. 
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Biconvex Lens If the lens would have a second convex surface, this would 
refract the ray twice as strongly and we would obtain µ ¶

1 0 
M = . (2.252) 

2n1−n2 1
R 

The quantity 2n2−n1 is called the refractive strength of the biconvex lense 
R 

or inverse focal length 1/f.Because the system of a thin lens plus free space 
propagation results in the matrix (calculated in the reverse order) µ ¶µ ¶ µ ¶

1 f 1 0  0 f 
Mtot = 1 = 1 , (2.253) 

0 1 −
f 1 −

f 1

which ensures that each ray parallel to the optical axis goes through the on 
axis focal point at the end of the free space section, see Figure 2.69. 

r1 

f z


Figure 2.69: Imaging of parallel rays through a lens with focal length f. 

Curved Mirrors 

Other often used optical components in imaging systems are curved mirrors 
with radius of curvature ROC = R, see Figure 2.70. The advantage of 
reflective optics is that the  rays  don’t have to pass through dispersive material 
like through a lense, which is very disturbing for ultrashort pulses. 



102 CHAPTER 2. CLASSICAL ELECTROMAGNETISM AND OPTICS


Z 
r’1 

r2 

r’2 

r1 

0 
α 

-R 

α 

r’1 

Figure 2.70: Derivation of ray matrix for concave mirror with Radius R. 

As in the case of the thin lens,e the imaging does not change the distance 
of the ray from the optical axis, however, the slope of the rays obey 

r1
0 − α = r2

0 + α. (2.254) 

with α ≈ r1/R in paraxial approximation. Therefore the ABCD matrix 
describing the reflection of rays at a curved mirror with ROC = R is µ ¶

1 0 R 
M = 1 , with f = . (2.255) 

f
− 1 2 

2.5.2 Gauss’ Lens Formula 

As a simple application of the ray matrices for optical system design, we 
derive Gauss’ lens formula, which says that all rays emitted from an orignial 
placed a distance d1 from a lens with focal length f form an image at a 
distance d2, which is related to d1 by 

1 1 1 
+ = , (2.256) 

d1 d2 f 

see Figure 2.71. 
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fr1 

z 

d1 d2 

r2 

I II 

Figure 2.71: Gauss’ lens formula. 

d2 =

¯̄̄

 f 

¯̄̄

The magnification of the lens system is Mr = r2 = The ray .


r1 d1 d1−f 

matrix that describes the imagaing from the orignal plane I to the image 
plane II is described by the product 

³
¶µ  

=
1− d

f 
2 1− d

f 
2 d1 + d2 

. (2.257) 
f f
− 1 1− d1 

In order that the distance r2 only depends on r1, but  not  on  r1
0 , B must be 

0, which is Eq. (2.256). Thus in total we have 

¶
 ¶µ 
 ¶
µ
 µ
Ã


1 0 
A B 
 1 d2 1 d1 =
 1 1C D 
 0 1 
 0 1 
−

f ´
 !


Magnification Mr = 
¯̄̄

f 
d1−f 

¯̄̄
 

Distance to focus d2 − f =M2 
r (d1 − f) 

(2.258) 

More complicated imaging systems, such as thick lenses, can be described 
by ray matrices and arbitrary paraxial optical systems can be analyzed with 
them, which shall not be pursued further here. Rather, we want to study 
how Gaussian beams are imaged by paraxial optical systems 

2.6 Gaussian Beams and Resonators 

2.6.1 Gaussian Beam Propagation 

The propagation of Gaussian beams through paraxial optical systems can 
be efficiently evaluated using the ABCD-law [4], which states that the q­
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parameter of a Gaussian beam passing a optical system described by an 
ABCD-marix is given by 

q2 = 
Aq1 + B

, (2.259) 
Cq1 + D

where q1 and q2 are the beam parameters at the input and the output planes 
of the optical system or component, see Figure 2.72 

Image removed for copyright purposes. 

Figure 2.72: Gaussian beam transformation by ABCD law, [6], p. 99. 

To  proove  this  law,  we  realize that it is true for  the case of  free space  prop­
agation, i.e. pure diffraction, comparing (2.259) with (2.229) and (2.246). If 
we can proove that it is additionally true for a thin lens, then we are finished, 
because every ABCD matrix (2x2 matrix) can be written as a product of a 
lower and upper triangular matrix (LR-decomposition) like the one for free 
space propagation and the thin lens. Note, the action of the lens is identi­
cal to the action of free space propagation, but in the Fourier-domain. In 
the Fourier domain the Gaussian beam parameter is replaced by its inverse 
(2.222) 

2 + y2 

Ee0(x, y, z) =  
j 
exp 

∙ 

−jk0 

µ
x

¶¸ 

. (2.260) 
q(z) 2q(z) ∙ µ ¶¸

k2 + k2 

Ee0(kz, ky, z) = 2πj exp −jq(z) z y (2.261) 
2k0 

But the inverse q-parameter transforms according to (2.259) 

1 D 
q
1 
1 
+ C


q2 
= 

B 
q
1 
1 
+ A

, (2.262)
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which leads for a thin lens to 

1 1 1 
q2 
= 

q1 
−
f
. (2.263) 

This is exactly what a thin lens does, see Eq.(2.225), it changes the radius 
of curvature of the phase front but not the waist of the beam according to 

1 1 1 
R2 

= 
R1 
−
f
. (2.264) 

With that finding, we have proven the ABCD law for Gaussian beam prop­
agation through paraxial optical systems. 
The ABCD-matrices of the optical elements discussed so far including 

nonnomal incidence are summarized in Table 2.6. As an application of the 

Optical Element ABCD-Matrix 
Propagation in Medium with 
index n and length L 

µ 
1 L/n 
0 1 

¶
Thin Lens with 
focal length f 

µ 
1 0 
−1/f 1

¶
Mirror under Angle 
θ to Axis and Radius R 
Sagittal Plane 

µ 
1 0 

−2 cos  θ 
R 1

¶ 

Mirror under Angle 
θ to Axis and Radius R 
Tangential Plane 

µ 
1 0 
−2 

R cos θ 1

¶ 

Brewster Plate under 
Angle θ to Axis and Thickness 
d, Sagittal Plane 

µ 
1 d 

n 
0 1

¶ 

Brewster Plate under 
Angle θ to Axis and Thickness 
d, Tangential Plane 

µ 
1 d 

n3 

0 1

¶ 

Table 2.6: ABCD matrices for commonly used optical elements. 

Gaussian beam propagation, lets consider the imaging of a Gaussian beam 
with a waist w01 by a thin lens at a distance d1 away from the waist to a 
beam with a different size w02, see Figure 2.73. 
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d d21 

zR1 zR2 

Figure 2.73: Focusing of a Gaussian beam by a lens. 

There will be a new focus at a distance d2.The corresponding ABCD 
matrix is of course the one from Eq.(2.257), which is repeated here µ ¶ Ã ³ ´ ! 

A B  
=

1− d
f 
2 1− d

f 
2 d1 + d2 

. (2.265) 
C D  1 d1−

f 1− 
f 

The q-parameter of the Gaussian beam at the position of minimum waist is 
01 02purely imaginary q1 = jzR1 = j

πw

λ 

2 

and q2 = jzR2 = j
πw

λ 

2 

, where 

q2 = 
A q1 +B 

= 
jzR1A +B 

= 
jzR1A +B 

= jzR2. (2.266) 
C q1 +D jzR1C +D jzR1C +D 

In the limit of ray optics, where the beam waists can be considered to by 
zero, i.e. zR1 = zR2 = 0 we obtain B = 0, i.e. the imaging rule of classical 
ray optics Eq.(2.256). It should not come at a surprise that for the Gaus­
sian beam propagation this law does not determine the exact distance d2 

of the position of the new waist. Because, in the ray analysis we neglected 
diffraction. Therefore, the Gaussian beam analysis, although it uses the same 
description of the optical components, gives a slightly different and improved 
answer for the position of the focal point. To find the position d2, we request 
that the real part of the right hand side of (2.266) is zero, 

BD − zR
2
1AC = 0  (2.267) 

which can be rewritten as 

1 1 1 
d2 
= 

f 
− 

d1+ 
. (2.268) 2zR1 

d1−f 
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Again for zR1 → 0, we obtain the ray optics result. And the imaginary part 
of Eq.(2.266) leads to ¢


+ zR
2
1C

2 , (2.269) 
1 1

=
 D2 

d1 

¡
zR2 zR1

or "
 #


¯̄̄
 

¯̄̄

¶2 

1−
02 01

With the magnification M for the spot size, with is closely related to the 
Magnification Mr of ray optics, we can rewrite the results as 

µ ¶2µ

1 1
 zR1 (2.270)
1 + 
=
 .

2 2 f
 d1 − fw
 w


Magnification M =Mr/
p
1 + ξ2 , with ξ = zR1 

d1−f and Mr = f 
d1−f 

Beam waist w02 =M · w01 

Confocal parameter 2zR2 =M 2 2zR2 

Distance to focus d2 − f =M 2 (d1 − f ) 
Divergence θ02 = θ01/M 

(2.271) 

2.6.2 Resonators 

With the Gaussian beam solutions, we can finally construct optical resonators 
with finite transverse extent, i.e. real Fabry-Perots, by inserting into the 
Gaussian beam, see Figure 2.74, curved mirrors with the proper radius of 
curvature, such that the beam is imaged upon itself. 

L 

z1 z2 

R1 R2 

Figure 2.74: Fabry-Perot resonator with finite beam cross section by inserting 
curved mirrors into the beam to back reflect the beam onto itself. 
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Any resonator can be unfolded into a sequence of lenses and free space 
propagation. Here, we replace the curved mirrors by equivalent lenses with 
f1 = R1/2, and  f2 = R2/2, see Figure 2.75. 

Figure 2.75: Two-mirror resonator unfolded. Note, only one half of the 
focusing strength of mirror 1 belongs to a fundamental period describing one 
resonator roundtrip. 

The product of ABCD matrices describing one roundtrip of the beam in 
the resonator according to Figure 2.75 is µ ¶µ ¶µ  ¶µ ¶µ  ¶

1 0  1 L 1 0  1 L 1 0  
M = −1 1 0 1  −1 1 0 1  −1 1 . (2.272) 

2f1 f2 2f1 

To carry out this product and to formulate the cavity stability criteria, it is 
convenient to use the cavity parameters gi = 1−L/Ri, i  = 1, 2. The resulting 
cavity roundtrip ABCD-matrix can be written in the form µ ¶ µ ¶

M =
(2g1g2 − 1) 2g2L 

=
A B  

. (2.273) 
2g1 (g1g2 − 1) /L (2g1g2 − 1) C D  

Resonator Stability 

The ABCD matrices describe the dynamics of rays propagating inside the 
resonator. The resonator is stable if no ray escapes after many round-trips, 
which is the case when the magnitude of the eigenvalues of the matrix M 
are less than one. Since we have a lossless resonator, i.e. det|M | = 1, the 
product of the eigenvalues has to be 1 and, therefore, the stable resonator 
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corresponds to the case of a complex conjugate pair of eigenvalues with a 
magnitude of 1. The eigenvalue equation to M is given by ¶¯̄̄̄

(2.275) 2 (2 1) λ + 1 = 0− −g g .1 2 

The eigenvalues are 

µ
2λ

¯̄̄̄


(2g1g2 − 1) − λ 2g2L 
2g1 (g1g2 − 1) /L 

det (2.274)
M − λ · 1| = det  = 0,
|

(2g1g2 − 1) − λ 

(2g1g2 − 1)

exp (±θ) , cosh θ = 2g1g2 − 1, 
exp (±jψ) , cos ψ = 2g1g2 − 1, for 

q
2 − 1, (2.276) λ1/2 = (2g1g2 − 1) ±

= 

½ 
for |2g1g2 − 1| > 1 

.|2g1g2 − 1| (2.277) ≤ 1


The case of a complex conjugate pair corresponds to a stable resontor. There­
fore, the stability criterion for a stable two mirror resonator is 

|2g1g2 − 1| ≤ 1. (2.278) 

The stable and unstable parameter ranges are given by 

stable : 0  ≤ g1 · g2 = S ≤ 1 (2.279) 

unstable : g1g2 ≤ 0; or g1g2 ≥ 1. (2.280) 

where S = g1 g2, is the stability parameter of the cavity. The stability · 
criterion can be easily interpreted geometrically. Of importance are the dis­
tances between the mirror mid-points Mi and the cavity end points, i.e. 
gi = (Ri − L)/Ri = −Si/Ri, as shown in Figure 2.76. 

Figure 2.76: The stability criterion involves distances between the mirror 
mid-points Mi and the cavity end points. i.e. gi = (Ri − L)/Ri = −Si/Ri. 
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The following rules for a stable resonator can be derived from Figure 2.76 
using the stability criterion expressed in terms of the distances Si. Note, that 
the distances and radii can be positive and negative 

S1S2stable : 0 ≤ ≤ 1.	 (2.281) 
R1R2 

The rules are: 

•	 A resonator is stable if the mirror radii, laid out along the optical axis, 
overlap. 

•	 A resonator is unstable if the radii do not overlap or one lies within the 
other. 

Figure 2.77 shows stable and unstable resonator configurations. 

Figure 2.77: Illustration of stable and unstable resonator configurations. 

For a two-mirror resonator with concave mirrors and R1 ≤ R2, we  obtain  
the general stability diagram as shown in Figure 2.78. 
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Figure 2.78: Stabile regions (black) for the two-mirror resonator. 

There are two ranges for the mirror distance L, within which the cavity 
is stable, 0 ≤ L ≤ R1 and R2 ≤ L ≤ R1 +R2. It is interesting to investigate 
the spot size at the  mirrors  and  the  minimum  spot size in  the  cavity  as  a  
function of the mirror distance L. 

Resonator Mode Characteristics 

The stable modes of the resonator reproduce themselves after one round-trip, 
i.e. 

q1 = 
Aq1 +B 

(2.282) 
Cq1 +D 

The inverse q-parameter, which is directly related to the phase front curva­
ture and the spot size of the beam, is determined by µ ¶2 µ ¶

1
+ 

A − D 1 
+
1− AD 

= 0. (2.283) 
q B q B2 

The solution is µ
1 
q 

¶
1/2 

= − 
A 
2

− 
B

D ± 
2

j

B

q
(A +D)2 − 1 (2.284) | |

If we apply this formula to (2.273), we find  the spot size on mirror 1  

1 j λ
µ
q 

¶
1/2 

= −
2 |B|

q
(A +D)2 − 1 = −j 

πw1
2 . (2.285) 

or µ ¶2 

w1
4 =

2λL g2 1 
(2.286) 

π g1 1− g1g2 µ ¶2 µ ¶
= 

λR1 R2 − L L
. (2.287) 

π R1 − L R1 +R2 − L
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By symmetry, we find the spot size on mirror 3 by switching index 1 and 2: µ	 ¶2 

w2
4 =

2λL g1 1	
(2.288) 

π g2 1 − g1g2 µ ¶2 µ ¶
=	

λR2 R1 − L L
. (2.289) 

π	 R2 − L R1 + R2 − L

The intracavity focus can be found by transforming the focused Gaussian 
beam with the propagation matrix µ ¶µ  ¶

1 z1 1 0  
M = 

0 1 	 −1 1
2f1 

z1 z1 
= 

µ	
1 −
−1
2f1 

¶
, (2.290) 

1
2f1 

to its new focus by properly choosing z1, see Figure 2.74. A short calculation 
results in 

z1 = L
g2 (g1 − 1) 

(2.291) 
2g1g2 − g1 − g2 

= 
L(L − R2) 

, (2.292) 
2L − R1 − R2 

and, again, by symmetry 

z2 = L
g1 (g2 − 1) 

(2.293) 
2g1g2 − g1 − g2 

=
2L

L

− 
(L

R

− 

1 

R

− 
1

R

) 

2 
= L − z1.	 (2.294) 

The spot size in the intracavity focus is µ ¶2 

w 4 = 
λL g1g2 (1 − g1g2) (2.295) o π (2g1g2 − g1 − g2)2 µ ¶2 

=	
λ L(R1 − L)(R2 − L)(R1 + R2 − L) 

. (2.296) 
π (R1 + R2 − 2L)2 

All these quantities for the two-mirror resonator are shown in Figure 2.79. 
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Figure 2.79: From top to bottom: Cavity parameters, g1, g2, S, w0, w1, w2, 
z1 and z2 for the two-mirror resonator with R1 = 10 cm and R2 = 11 cm. 
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Hermite-Gaussian-Beams (TEMpq-Beams) 

It turns out that the Gaussian Beams are not the only solution to the parax­
ial wave equation (2.219). The stable modes of the resonator reproduce 
themselves after one round-trip, " # 

w0 

√
2x 

√
2y

Eel,m(x, y, z) = Al,m 

∙ 

w(z)

¸ 

Gl 
w(z) 

Gm 

∙ 

w(z)

¸ 

· (2.297) ∙ µ ¶ ¸
x2 + y2 

exp −jk0 
2R(z)

+ j(l +m + 1)ζ(z)

where ∙ ¸
2u

Gl [u] = Hl [u] exp  , for  l = 0, 1, 2, ... (2.298) − 
2

are the Hermite-Gaussians with the Hermite-Polynomials 

H0 [u] = 1,


H1 [u] = 2u,


H2 [u] = 4u 2 − 1, (2.299)


H3 [u] = 8u 3 − 12u,


and ζ(z) is the Guoy-Phase-Shift according to Eq.(2.241). The lower order 
Hermite Gaussians are depicted in Figure 2.80 

Image removed for copyright purposes. 

Figure 2.80: Hermite-Gauissians Gl(u) for l = 0, 1, 2 and 3. 

and the intensity profile of the first higher order resonator modes are 
shown in Figure 2.81. 
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Image removed for copyright purposes. 

Figure 2.81: Intensity profile of TEMlm-beams, [6], p.  103.  

Besides the different mode profiles, the higher order modes experience 
greater phase advances during propogation, because they are made up of 
k-vectors with larger transverse components. 

Axial Mode Structure 

As we have seen for the Fabry-Perot resonator, the longitudinal modes are 
characterized by a roundtrip phase that is a multiple of 2π. Back then, we 
did not consider transverse modes. Thus in a resonator with finite transverse 
beam size, we obtain an extended family of resonances, with distinguish­
able field patterns. The resonance frequencies ωpmn are determined by the 
roundtrip phase condition 

φpmn = 2pπ, for p = 0, ±1, ±2, ...  (2.300) 
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For the linear resonator according to Figure 2.74, the roundtrip phase of a 
Hermite-Gaussian Tpmn-beam is 

φpmn = 2kL − 2(m + n + 1) (ζ(z2)− ζ(z1)) , (2.301) 

where ζ(z2)− ζ(z1) is the additional Guoy-Phase-Shift, when the beam goes 
through the focus once on its way from mirror 1 to mirror 2. Then the 
resonance frequences are 

ωpmn = 
c 
L 
[πp + (m + n + 1) (ζ(z2)− ζ(z1))] . (2.302) 

If  the Guoy-Phase-Shift is not  a rational  number times  π, then all resonance 
frequencies are non degenerate. However, for the special case where the 
two mirrors have identical radius of curvature R and are spaced a distance 
L = R apart, which is called a confocal resonator, the Guoy-Phase-shift is 
ζ(z2)− ζ(z1) = π/2, with resonance frequencies h i c π 

ωpmn = πp + (m + n + 1)  . (2.303) 
L 2 

In that case all even, i.e. m + n, transverse modes are degenerate to the 
longitudinal or fundamental modes, see Figure 2.82. 

Image removed for copyright purposes. 

Figure 2.82: Resonance frequencies of the confocal Fabry-Perot resonator, 
[6], p. 128. 

The odd modes are half way inbetween the longitudinal modes. Note, in 
contrast to the plan parallel Fabry Perot all mode frequencies are shifted by 
π/2 due to the Guoy-Phase-Shift. 
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2.7 Waveguides and Integrated Optics 

As with electronics, miniaturization and integration of optics is desired to 
reduce cost while increasing functionality and reliability. One essential el­
ement is the guiding of the optical radiation in waveguides for integrated 
optical devices and optical fibers for long distance transmission. Waveguides 
can be as short as a few millimeters. Guiding of light with exceptionally low 
loss in fiber (0.1dB/km) can be achieved by using total internal reflection. 
Figure 2.83 shows different optical waveguides with a high index core mate­
rial and low index cladding. The light will be guided in the high index core. 
Similar to the  Gaussian  beam  the guided  mode is made up  of mostly paraxial  
plane waves that hit the high/low-index interface at grazing incidence and 
therefore undergo total internal reflections. The concomittant lensing effect 
overcomes the diffraction of the beam that would happen in free space and 
leads to stationary mode profiles fof the radiation. 
Depending on the index profile and geometry one distinguishes between 

different waveguide types. Figure 2.83 (a) is a planar slab waveguide, which 
guides light only in one direction. This case is analyzed in more detail, 
as it has simple analytical solutions that show all phenomena associated 
with waveguiding such as cutoff, dispersion, single and multimode operation, 
coupling of modes and more, which are used later in devices and to achieve 
certain device properties. The other two cases show complete waveguiding 
in the transverse direction; (b) planar strip waveguide and (c) optical fiber. 

Image removed for copyright purposes. 

Figure 2.83: Dark shaded area constitute the high index regions. (a) planar 
slab waveguide; (b) strip waveguide; (c) optical fiber [6], p. 239. 

In integrated optics many components are fabricated on a single sub­
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strate, see Figure 2.84 with fabrication processes similar to those in micro­
electronics. 

Image removed for copyright purposes. 

Figure 2.84: Integrated optical device resembling an optical transmit­
ter/receiver, [6], p. 2.83. 

As this example shows, the most important passive component to under­
stand in an integrated optical circuit are waveguides and couplers. 

2.7.1 Planar Waveguides 

To understand the basic physics and phenomena in waveguides, we look at 
a few examples of guiding in one transverse dimension. These simple cases 
can be treated analytically. 

Planar-Mirror Waveguides 

The planar mirror waveguide is composed of two ideal metal mirrors a dis­
tance d apart, see Figure 2.85 
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Image removed for copyright purposes. 

Figure 2.85: Planar mirror waveguide, [6], p. 240. 

We consider a TE-wave, whose electric field is polarized in the y−direction 
and that propagates in the z−direction. The reflections of the light at the 
ideal lossless mirrors will guide or confine the light in the x−direction. The 
field will be homogenous in the y−direction, i.e. will not depend on y. There­
fore, we make the following trial solution for the electric field of a monochro­
matic complex TE-wave 

E� (x, z, t) = Ey(x, z) e
jωt �ey. (2.304) 

Note, this trial solution also satisfies the condition ∇ · E� = 0, see (2.12) 

Modes of the planar waveguide Furthermore, we are looking for solu­
tions that do not change their field distribution transverse to the direction 
of propagation and experience only a phase shift during propagation. We 
call such solutions modes of the waveguide, because they don’t change its 
transverse field profile. The modes of the above planar waveguide can be 
expressed as 

E� y(x, z) = u(x) e−jβz �ey, (2.305) 

where β is the propagation constant of the mode. This solution has to obey 
the Helmholtz Eq.(2.18) in the free space section between the mirrors 

d2 ¡ ¢ ω2 

uy(x) = β2 − k2 uy(x) with k2 = 
c2 
. (2.306) 

dx2 

The presence of the metal mirrors requires that the electric fields vanish at 
the metal mirrors, otherwise infinitely strong currents would start to flow to 
shorten the electric field. 

uy(x = ±d/2) = 0 (2.307) 
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.Note, that Eq.(2.306) is an eigenvalue problem to the differential operator 
d2 

dx2 

d2 

u(x) =  λu(x) with u(x = ±d/2) = 0. (2.308) 
dx2 

in a space of functions u, that satisfies the boundary conditions (2.307). The 
eigenvalues λ are for  the moment arbitrary  but constant numbers. Depending  
on the sign of the eigenvalues the solutions can be sine or cosine functions 
(λ <  0) or exponentials with real exponents for (λ >  0). In the latter case, it is 
impossible to satiesfy the boundary conditions. Therefore, the eigensolutions 
are ⎧ q⎨ 

d 
2 cos (kx,mx) with , kx,m = π

d m, m = 1, 3, 5, ..., even modes  
um(x) =  q⎩ 2 sin (kx,mx) with , kx,m = π m, m = 2, 4, 6, ..., odd modes 

d d 

(2.309) 

Propagation Constants The propagation constants for these modes fol­
low from comparing (2.306) with (2.308) to be 

β2 = k2 − k2 (2.310) x,m 

or r 
ω2 ³ π ´ 2 

sµ
2π 
¶2 ³ π ´ 2 

β = ± 
c2 
− 

d
m = ± 

λ 
− 

d
m (2.311) 

where λ = λ0/n(λ0) is the wavelength in the medium between the mirrors. 
This relationship is shown in Figure 2.86. The lowest order mode with index 
m = 1  has the smallest k-vector component in x-direction and therefore the 
largest k-vector component into z-direction. The sum of the squares of both 
components has to be identical to the magnitude sqaure of the k-vector in 
the medium k. Higher order modes have increasingly more nodes in the 
x-direction, i.e. largest kx-components and the wave vector component in 
z-direction decreases, until there is no real solution anymore to Eq.(??) and  
the corresponding propagation constants βm become imaginary. That is, the 
corresponding waves become evanescent waves, i..e they can not propagate 
in a waveguide with the given dimensions. 
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Figure 2.86: Determination of propagation constants for modes 

Field Distribution The transverse electric field distributions for the var­
ious TE-modes is shown in Figure 2.87 

Image removed for copyright purposes. 

Figure 2.87: Field distributions of the TE-modes of the planar mirror waveg­
uide [6], p. 244. 

Cutoff Wavelength/Frequency For a given planar waveguide with sep­
aration d, there is a lowest frequency, i.e. longest wavelength, beyond which 
no propagating mode exists. This wavelenth/frequency is refered to as cutoff 
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wavelength/frequency which is 

λcutoff = 2d (2.312) 
c 

fcutoff = . (2.313) 
2d 

The physical origin for the existence of a cutoff wavelength or frequency is 
that the guided modes in the mirror waveguide are a superposition of two 
plane waves, that propagate under a certain angle towards the z-axis, see 
Figure 2.88 

Image removed for copyright purposes. 

Figure 2.88: (a) Condition for self-consistency: as a wave reflects twice it 
needs to  be in  phase  with  the previous wave.  (b) The angles for which  self-
consistency is achieved determine the x-component of the �k-vectors involved. 
The corresponding two plane waves setup an interference pattern with an 
extended node at the position of the metal mirrors satisfying the boundary 
conditions, [6], p. 241. 
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In order that the sum of the electric field of the two plane waves fulfills 
the boundary conditions, the phase of one of the plane waves after reflection 
on both mirrors needs to be inphase with the other plane wave, i.e. the 
x-component of the �k-vectors involved, kx, must be a multiple of 2π 

2kxd = ±2πm. 

If we superimpose two plane waves with kx,m = ±πm/d, we  obtain  an  in­
terference pattern which has nodes along the location of the metal mirrors, 
which obviously fulfills the boundary conditions. It is clear that the mini­
mum distance between these lines of nodes for waves of a given wavelength λ 
is λ/2, hence the separation d must be greater than λ/2 otherwise no solution 
is possible. 

Single-Mode Operation For a given separation d, there is a wavelength 
range over which only a single mode can propagate, we call this wavelength 
range single-mode operation. From Figure 2.86 it follows for the planar 
mirror waveguide 

π π 
< k <  2 (2.314) 

d d 
or 

d < λ <  2d (2.315) 

Waveguide Dispersion Due to the waveguiding, the relationship between 
frequency and propagation constant is no longer linear. This does not imply 
that the waveguide core, i.e. here the medium between the plan parallel 
mirrors, has dispersion. For example, even for n = 1, we find for phase and 
group velocity of the m-th mode 

1 β(ω) 1 
r ³ cπ ´ 2 

= = 1− m (2.316) 
vp ω c dω s µ ¶2

1 λ 
= 1− m (2.317) 

c 2d 

and 
1 dβ(ω) 1 ω 
= = q ¡ 2 (2.318) 

vg dω 
2 ω

c2
2 π

d m 
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or 
vg · vp = c 2 . (2.319) 

Thus different modes have different group and phase velocities. Figure 2.89 
shows group and phase velocity for the different modes as a function of the 
normalized wave number kd/π. 

0 1 2 3 4 5 
kd/π 

Figure 2.89: Group and phase velocity of propagating modes with index m 
as a function of normailzed wave number. 

TM-Modes The planar mirror waveguide does not only allow for TE-
waves  to propagate.  There  are also TM-waves,  which have only a magnetic  
field component transverse to the propagation direction and parallel to the 
mirrors, i.e. in y-direction 

H� (x, z, t) = Hy(x, z) e
jωt �ey, (2.320) 

and now H(x, z) has to obey the Helmholtz equation for the magnetic field. 
The corresponding electric field can be derived from Ampere’s law 

� −1 ¡ ¢ 
E(x, z) =  

jωε
∇ × Hy(x, z) �ey (2.321) 

=
1 ∂Hy(x, z) 

�ex + 
−1 ∂Hy(x, z) 

�ez. (2.322) 
jωε ∂z jωε ∂x 
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The electric field tangential to the metal mirrors has to vanish again, which 
leads to the boundary condition 

∂H (x, z)y
(x = ±d/2) = 0. (2.323) 

∂x 

After an analysis very similar to the discussion of the TE-waves we find for 
the TM-modes with  

Hy(x, z) = u(x) e−jβz �ey, (2.324) 

the transverse mode shapes ⎧ q⎨ 2 cos (kx,mx) with , kx,m =
π m, m = 2, 4, 6, ..., even  modes  

d d 
um(x) =  q⎩ 

d 
2 sin (kx,mx) with , kx,m =

π
d m, m = 1, 3, 5, ..., odd  modes  

(2.325) 
Note, that in contrast to the electric field of the TE-waves being zero at the 
metal surface, the transverse magnetic field of theTM-waves is at a maxi­
mum at the metal surface. We will not consider this case further, because 
the discussion of cutoff frequencies and dispersion can be worked out very 
analogous to the case for TE-modes. 

Multimode Propagation Depending on the boundary conditions at the 
input of the waveguide at z = 0  many modes may be excited. Eventually 
there are even excitations with such high transverse wavevectors kx present, 
that are below cutoff. Depending on the excitation amplitudes of each mode, 
the total field in the waveguide will be the superposition of all modes. Lets 
assume that there are only TE-modes excited, then the total field is X∞ ¡ ¢ 

m mE� (x, z, t) =  am e
−jβ z + bm e

jβ z um(x) e
jωt �ey, (2.326) 

m=1 

where the amplitudes am and bm are the excitations of the m-th mode in 
forward and backward direction, respectively. It is easy to show that these 
excitation amplitudes are determined by the transverse electric and magnetic 
fields at z = 0 and t = 0. In many cases, the excitation of the waveguide will 
be such that only the forward propagating modes are excited. X∞

E� (x, z, t) =  am um(x) e
−jβmz ejωt �ey, (2.327) 

m=1 
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When many modes are excited, the transverse field distribution will change 
during propagation, see Figure 2.90 

Image removed for copyright purposes. 

Figure 2.90: Variation of the intensity distribution in the transverse direction 
x at different distances z. Intensity profile of (a) the fundamental mode 
m = 1,  (b)  the second mode with  m = 2 and (c) a linear combination of the 
fundamental and second mode, [6], p. 247. 

Modes which are excited below cutoff will decay rapidly as evanescent 
waves. The other modes will propagate, but due to the different propaga­
tion constants these modes superimpose differently at different propagation 
distances along the waveguide. This dynamic can be used to build many 
kinds of important integrated optical devices, such as multimode interfer­
ence couplers (see problem set 5). Depending on the application, undesired 
multimode excitation may be very disturbing due to the large group delay 
difference between the different modes. This effect is called modal dispersion. 



127 2.7. WAVEGUIDES AND INTEGRATED OPTICS 

Mode Orthogonality 

It turns out that the transverse modes determined by the functions um(x) 
build an orthogonal set of basis functions into which any function in a cer­
tain function space can be decomposed. This is obvious for the case of the 
planar-mirror waveguide, where the um(x) are a subset of the basis functions 
for a Fourier series expansion of an arbitrary function f(x) in the interval 
[−d/2, 3d/2] which is antisymmetric with respect to x = d/2 and fullfills the 
boundary condition f(x = ±d/2) = 0. It is 

Z d/2 

um(x) un(x) dx = δmn, (2.328) 
−d/2 X 

f(x) =  am um(x) (2.329) 
m Z d/2 

with am = um(x) f(x) dx (2.330) 
−d/2 

From our familiarity with Fourier series expansions of periodic functions, 
we can accept these relations here without proof. We will return to these 
equations later in Quantum Mechanics and discuss in which mathematical 
sense Eqs.(2.328) to (2.329) really hold. 

Besides illustrating many important concepts, the planar mirror waveg­
uide is not of much practical use. More in use are dielectric waveguides. 

Planar Dielectric Slab Waveguide 

In the planar dielectric slab waveguide, waveguiding is not achieved by real 
reflection on a mirror but rather by total internal reflection at interfaces 
between two dielectric materials with refractive indices n1 > n2, see  Figure  
2.91 
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Image removed for copyright purposes. 

Figure 2.91: Symmetric planar dielectric slab waveguide with n1 > n2. The  
light is guided by total internal reflection. The field is evanescent in the 
cladding material and oscillatory in the core, [6], p. 249. 

Waveguide Modes As in the case of the planar mirror waveguide, there 
are TE and TM-modes and we could find them as a superposition of cor­
respondingly polarized TEM waves propagating with a certain transverse 
k-vector such that total internal reflection occurs. We do not want to follow 
this procedure here, but rather use immediately the Helmholtz Equation. We 
again write the electric field 

E� y(x, z) = u(x) e−jβz �ey. (2.331) 

The field has to obey the Helmholtz Eq.(2.18) both in the core and in the 
cladding 

d2 ¡ ¢ ω2 

core : 
dx2 

u(x) = β2 − k2 u(x) with k2 = 
c0 
n1
2 , (2.332) 1 1 2 

d2 ¡ ¢ ω2 

cladding : 
dx2 

u(x) = β2 − k2
2 u(x) with k2

2 = 
c0
2 n 22 (2.333) 

The boundary conditions are given by the continuity of electric and magnetic 
field components tangential to the core/cladding interfaces as in section 2.2. 
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Since the guided fields must be evanescent in the cladding and oscillatory in 
the core, we rewrite the Helmholtz Equation as 

d2 ¡ ¢ 
core : u(x) = −k2 u(x) with k2 = k1

2 − β2 , (2.334) 
dx2 x x 

d2 ¡ ¢ 
cladding : 

dx2 
u(x) = κ2 

xu(x) with κx 
2 = β2 − k2

2 (2.335) 

where κx is the decay constant of the evanescent waves in the cladding. It 
is obvious that for obtaining guided modes, the propagation constant of the 
mode must be between the two propagation constants for core and cladding 

k2
2 < β2 < k1

2 . (2.336) 

Or by defining an effective index for the mode 

ω 
β = k0neff , with k0 = (2.337) 

c0 

we find 

n1 > neff > n2, (2.338) 

and Eqs.(2.334), (2.335) can be rewritten as 

d2 ¡ ¢ 
core : u( n 2 2 u(x) = 0  (2.339) −

dx2 
x)− k0

2 
1 − neff 

d2 ¡ ¢ 
cladding : −

dx2 
u(x) + κ20 neff 

2 − n2
2 u(x) = 0  (2.340) 

For reasons, which will become more obvious later, we draw in Figure 2.92 
the negative refractive index  profile of the waveguide. 
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-d/2 d/2 

-neff 

-n1 

-n2 

0 x 

Figure 2.92: Negative refractive index profile and shape of electric field for 
the fundamental and first higher order transverse TE-mode 

From Eq.(2.339) we find that the solution has the general form 

u
(x) = 


⎧⎨ ⎩


A exp (−κxx) + B exp (κxx) , for x < −d/2

C cos (kxx) + D sin (kxx) , for x| < d/2 (2.341)
|

) , forE exp (−κxx) + F exp (κ |x| > d/2
xx

For a guided wave, i.e. um(x → ±∞) = 0  the coefficients A and F must 
be zero. It can be also shown from the symmetry of the problem, that the 
solutons are either even or odd (proof later) 

, (2.342) 

⎧⎨⎩ 

⎧⎨⎩


B exp (κxx) , for x < −d/2 
< d/2(e)(x xx) , for |x| 

xx) , for x
) = 
 C cos (ku


E exp (−κ |
> d/2
|


B exp (κxx) , for x < −d/2 
) , for < d/2(o)(x) =  . (2.343) 
) , for 

The coefficients B and E in each case have to be determined from the bound­
ary conditions. From the continuity of the tangential electric field Ey, and  

D sin (kxx |x
x
|
u


E exp (−κxx > d/2
|
 |
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the tangential magnetic field Hz, which follows from Faraday’s Law to be 

2

2
0

1 ∂Ey du 
zH (x) =  −jωμ0 ∂x 

∼ 
dx 

(2.344) 

we obtain the boundary conditions for u(x) 

u(x = ±d/2 +  �) =  u(x = ±d/2 − �), (2.345) 
du du 
(x = ±d/2 +  �) =  (x = ±d/2 − �). (2.346) 

dx dx

2
1

Note, these are four conditions determining the coefficients B, D, E and the 
propagation constant β or refractive index neff . These conditions solve for 
the parameters of even and odd modes separately. For the case of the even 
modes, where B = E, we obtain  µ ¶ µ ¶

d d 
B exp −κx 

2
= C cos kx 

2
(2.347) µ ¶ µ ¶

d d 
B κx exp −κx = Ckx sin kx (2.348) 

2 2

or by division of the both equations µ ¶
d 

κx = kx tan kx . (2.349) 

Eqs.(2.334) and (2.335) can be rewritten as one equation ¡ ¢ ¡ ¢ 
= k nx x 

Eq.(2.349) together with Eq.(2.350) determine the propagation constant β 

k2 + κ2 2
1 (2.350)
k
 − k
 − n
=


2
2

via the two relations. µ ¶
d d d 

κx = kx tan kx , and (2.351) 
2 2 2µ ¶2 µ ¶2 µ ¶2

d d d 
kx 2

+ κx 2
= k0 

2 
NA (2.352) 

where 
− n2

1

q
(n (2.353)
NA  =
 )


2
2 

2
2 
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is called the numerical apperture of the waveguide. We will discuss the 
physical significance of the numerical apperture shortly. A graphical solution 
of these two equations can be found by showing both relations in one plot, 
see Figure 2.93. 

10 

8 

6 

4 

2 

0 

κd
/2

 

m=0 
m=1 

m=2 
m=3 

m=4 m=5 

k0d/2 NA 

0 2 4 6 8 10 
kxd/2 

Figure 2.93: Graphical solution of Eqs.(2.351) and ( 2.352), solid line for 
even modes and Eq.(2.354) for the odd modes. ¢ The dash dotted line shows 
(2.352) for different values of the product 

¡
k0 

d 
2

NA 


Each crossing in Figure 2.93 of a solid line (2.351) with a circle (2.352) 
with radius k0 2

dNA  represents an even guided mode. Similarly one finds for 
the odd modes from the boundary conditions the relation µ ¶

d d d 
κx = −kx cot kx , (2.354) 
2 2 2

which is shown in Figure 2.93 as dotted line. The corresponding crossings 
with  the circle indicate the  existence of an  odd  mode.  
There are also TM-modes, which we don’t want to discuss for the sake of 

brevity. 

Numerical Aperture Figure 2.93 shows that the number of modes guided 
is determined by he product k0 2

dNA,  where NA  is the numerical apperture 
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defined in Eq.(2.353) ∙ ¸
d 

M = Int k0 NA/(π/2) + 1, (2.355) 
2∙ ¸
d 

= Int 2 NA + 1, (2.356) 
λ0 

where the function Int[x]means the largest integer not greater than x. Note, 
that there is always at least one guided mode no matter how small the sized 
and the refractive index contrast between core and cladding of the waveguide 
is. However, for small size and index contrast the mode may extend very far 
into the cladding and the confinement  in the core is low.  
The numberical apperture also has an additional physical meaning that 

becomes obvious from Figure 2.94. 

Image removed for copyright purposes. 

Figure 2.94: Maximum angle of incoming wave guided by a waveguide with 
numerical apperture  NA, [6], p.  262.  

The maximum angle of an incoming ray that can still be guided in the 
waveguide is given by the numerical apperture, because according to Snell’s 
Law 

n0sin (θa) = n1sin (θ) , (2.357) 

where n0 is the refractive index of the medium outside the waveguide. The 
maximum internal angle θ where light is still guided in the waveguide by 
total internal reflection is determined by the critical angle for total internal 
reflection (2.126) , i.e. θmax = π/2− θtot with 

sin (θtot) =  
n2 

. (2.358) 
n1 
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Thus for the maximum angle of an incoming ray that can still be guided we 
find s 

n0sin (θa,max) = n1sin (θmax) = n1 1− 
µ
n

n

1

2 
¶2 

= NA.  (2.359) 

Most often the external medium is air with n0 ≈ 1 and the refractive index 
contrast is week, so that θa,max 1 and we can replace the sinusoid with its 
argument, which leads to 

¿ 

θa,max = NA.  (2.360) 

Field Distributions Figure 2.95 shows the field distribution for the TE 
guided modes in a dielectric waveguide. Note, these are solutions of the 
second order differential equations (2.339) and (2.340) for an effective index 
neff , that is between the core and cladding index. These guided modes have 
a oscillatory behavior in those regions in space where the negative effective 
index is larger than the negative local refractive index, see Figure 2.92 and 
exponentially decaying solutions where the negative effective index is smaller 
than than the negative local refractive index. 

Image removed for copyright purposes. 

Figure 2.95: Field distributions for TE guided modes in a dielectric waveg­
uide. These results should be compared with those  shown in Figure  2.87 for  
the planar-mirror waveguide [6], p. 254. 

Figure 2.96 shows a comparison of the guided modes in a waveguide 
with a Gaussian beam. In contrast to a the Gaussian beam which diffracts, 
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in a waveguide diffraction is balanced by the guiding action of the index 
discontinuity, i.e. total internal reflection. Most importantly the cross section 
of a waveguide mode stays constant and therefore a waveguide mode can 
efficiently interact with the medium constituting the core or a medium that 
is incorporated in the core. 

Image removed for copyright purposes. 

Figure 2.96: Comparison of Gaussian beam in free space and a waveguide 
mode, [6], p.  255.  

Besides integration, this prolong interaction disctance is one of the major 
reasons for using waveguides. The interaction lenght can be arbitrarily long, 
only limited by the waveguide loss, in contrast to a Gaussian beam, which 
stays focused only over the confocal distance or Rayleigh range. 
As in the case of a planar-mirror waveguide, one can show that the trans­

verse mode functions are orthogonal to each other. At first, a striking dif­
ference here is that we have only a  finite number of guided modes and one 
might worry about the completeness of the transverse mode functions. The 
answer is that in addition to the guided modes, there are unguided modes 
or leaky modes, which together with the guided modes from a complete set. 
Each initial field can be decomposed into these modes. The leaky modes 
rapidly loose energy because of radiation and after a relatively short propa­
gation distance only the field of guided modes remains in the waveguide. We 
will not pursue this further in this introductory class. The interested reader 
should consult with [11]. 
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Confinement Factor 

A very important quantity for a waveguide mode is its confinement in the 
core, which is called the confinement factor R d/2 2um(x) dx 

Γm = R0 . (2.361) ∞ 
um
2 (x) dx

0 

The confinement factor quantifies the fraction  of  the mode energy propagat­
ing in the core of the waveguide. This is very important for the interaction 
of the mode with the medium of the core, which may be used to amplify the 
mode or which may contain nonlinear media for frequency conversion. 

Waveguide Dispersion 

For the guided modes the effective refractive indices of the modes and there­
fore the dispersion relations must be between the indices or dispersion rela­
tions of core and cladding, see Figure 2.97 

Image removed for copyright purposes. 

Figure 2.97: Dispersion relations for the different guided TE-Modes in the 
dielectric slab waveguide. 

The different slopes dω/dβ for each mode indicate the difference in group 
velocity between the modes. Note, that there is at least always one guided 
mode. 
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2.7.2 Two-Dimensional Waveguides 

Both the planar-mirror waveguide and the planar dielectric slab waveguide 
confine light only in one direction. It is straight forward to analyze the modes 
of the two-dimensional planar-mirror waveguide, which you have already done 
in 6.013. Figure 2.98 shows various waveguides that are used in praxis for 
various devices. Here, we do not want to analyze them any further, because 
this is only possible by numerical techniques. 

Image removed for copyright purposes. 

Figure 2.98: Various types of waveguide geometries: (a) strip: (b) embedded 
strip: (c) rib ro ridge: (d) strip loaded. The darker the shading, the higher 
the refractive index [6], p. 261. 

2.7.3 Waveguide Coupling 

The core size of  a  waveguide can  range from  a  fraction  of  the free space  
wavelength to many wavelength for a multimode fiber. For example a typical 
high-index contrast waveguide with a silicon core and a silica cladding for 
1550 nm has a cross section of 0.2μm × 0.4μm, single-mode  fiber, which we 
will discuss in the next section with an index contrast of 0.5-1% between core 
and cladding has a typical mode-field radius of 6μm. 

If the mode cross section is not prohibitively small the simplest approach 
to couple light into a waveguide is by using a proper lens, see Figure 2.99 
(a) or direct butt coupling of the source to the waveguide if the source is a 
waveguide based device itself. 
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Image removed for copyright purposes. 

Figure 2.99: Coupling to a waveguide by (a) a lens; (b) direct butt coupling 
of an LED or laser diode, [6], p. 262 

The lens and the beam size in free space must be chosen such that the 
spot size matches the size of the waveguide mode while the focusing angle in 
free space is less than the numerical aperture of the waveguide, (see problem 
set). Other alternatives are coupling to the evanscent field by using a prism 
coupler, see Figure 2.100 

Image removed for copyright purposes. 

Figure 2.100: Prism coupler, [6], p. 263. 
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Image removed for copyright purposes. 

Figure 2.101: Grating Coupler 

The coupling with the prism coupler is maximum if the propagation con­
stant of the waveguide mode matches the longitudinal component of the 
k-vector 

β = knp cos θp, 

Another way to match the longitudinal component of the k-vector of the 
incoming light to the propagation constant of the waveguide mode is by a 
grating coupler, see Figure 2.101 

2.7.4 Coupling of Modes 

If two dielectric waveguides are placed closely together their fields overlap. 
This situation is shown in Figure 2.102 at the example of the planar dielectric 
slab waveguide. Of course this situation can be achieved with any type of 
two dimensional dielectric waveguide shown in Figure 2.98 
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Image removed for copyright purposes. 

Figure 2.102: Coupling between the two modes of the dielectric slab waveg­
uide, [6], p.  264.  

Once the fields significantly overlap the two modes interact. The shape 
of each mode does not change very much by the interaction. Therefore, we 
can analyze this situation using perturbation theory. We assume that in 
zero-th order the mode in each waveguide is independent from the presence 
of the other waveguide. We consider only the fundamental TE-modes in 
each of the waveguide which have excitation amplitudes a1(z) and a2(z), 
respectively. The dynamics of each mode can be understood in terms of this 
wave amplitude. In the absence of the second waveguide, each waveguide 
amplitude undergoes only a phase shift during propagation according to its 
dispersion relations 

da1(z) = −jβ1a1(z), (2.362) 
dz 

da2(z) = −jβ2a2(z). (2.363) 
dz 

The polarization generated by the field of mode 2 in waveguide 1 acts as a 
source for the field in waveguide 1 and the other way arround. Therefore, 
the coupling of the modes can be described by adding a source term in each 
equation proportional to the free propagation of the corresponding wave in 
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the other guide 

da1(z) 
dz 

= −jβ1a1(z)− jκ12a2(z), (2.364) 

da2(z) 
dz 

= −jκ21a1(z)− jβ2a2(z). (2.365) 

κ12 and κ21 are the coupling constants of the modes. An expression in terms 
of waveguide properties is derived in the appendix. These coupled mode 
equations describe a wealth of phenomena and are of fundamental importance 
in many areas. 
As we will see, there is only a significant interaction of the two modes if 

the two propagation constants are not much different from each other (phase 
matching). Therefore, we write the propagation constants in terms of the 
average β0 and the phase mismatch ∆β 

β1/2 = β0 ± ∆β with (2.366) 

β0 = 
β1 + β2 and ∆β = 

β1 − β2 . (2.367) 
2 2 

and we take the overall trivial phase shift of both modes out by introducing 

which requests that κ21 = κ12
2 , i.e. the two coupling coefficients are not 

the slowly varying relative field amplitudes 

ã1(z) = a1(z)e
jβ0z and ã2(z) = a2(z)e

jβ0z (2.368) 

which obey the equation 

d 
dz 

ã1(z) =  −j∆βã1(z)− jκ12ã2(z), (2.369) 

d 
dz 

ã2(z) =  −jκ21ã1(z) + j∆βã2(z). (2.370) 

Power conservation during propagation demands 

d 
dz 

¡
|ã1(z)| 

2 + |ã2(z)| 
2¢ = 0  (2.371) 

independent from each other (see problem set). 
Note, Eqs.(2.369) and (2.370) are a system of two linear ordinary differ­

ential equations with constant coefficients, which is straight forward to solve. 
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Given the excitation amplitudes ã1(0) and ã2(0) = 0 at the input of the 
waveguides, i.e. no input in waveguide 2 the solution is µ ¶

∆β 
ã1(z) =  ã1(0) cos γz − j sin γz , (2.372) 

γ 
κ21

˜ −jã1(0) γ 
(2.373) a2(z) =  sin γz, 

with 

γ = 
q
∆β2 + |κ12| 2 . (2.374) 

The optical powers after a propagation distance z in both waveguides are 
then Ã ! 

∆β 
P1(z) =  |ã1(z)| 

2 = P1(0) cos 2 γz + 

µ
γ 

¶2 

sin2 γz , (2.375) Ã !22 

P2(z) =  P1(0) 
|κ21| 

sin2 γz. (2.376) 
γ 

This solution shows, that depending on the difference in phase velocity be­
tween the two-waveguides more or less power is coupled back and fourth 
between the two waveguides, see Figure 2.103. 
The period at which the power exchange occurs is 

2π 
L = . (2.377) 

γ 

If both waveguides are identical, i.e. ∆β = 0  and γ = |κ12|, the  waves  are  
phase matched, Eqs.(2.375) and (2.376) simplify to 

P1(z) =  P1(0) cos2 γz (2.378) 

P2(z) =  P1(0) sin
2 γz. (2.379) 

Complete transfer of power occurs between the two waveguides after a dis­
tance 

π 
L0 = , (2.380) 

2γ

see Figure 2.104 
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Image removed for copyright purposes. 

Figure 2.103: Periodic exchange of power between guides 1 and 2 [6], p. 266. 

Image removed for copyright purposes. 

Figure 2.104: Exchange of power between guides 1 and 2 in the phase-
matched case, [6], p. 266. 

Depending on the length of the coupling region the coupling ratio can be 
chosen. A device with a distance L0/2 and L0 achieves 50% and 100% power 
transfer into waveguide two, respectively, see Figure 2.105 
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Image removed for copyright purposes. 

Figure 2.105: Optical couplers: (a) 100% coupler, (b) 3dB coupler, [6], 267. 

2.7.5 Switching by Control of Phase Mismatch 

If we keep the interaction length of the waveguides fixed at a length L0, then  
the power tranfer from waveguide 1 to waveguide 2 depends critically on the 
phase mismatch ∆β 

⎛ s ⎞ ³ ´ 2 
µ ¶2 

T (∆β) =  
P2 
= 

π 
sin c 2 ⎝1 1 +

2∆βL0 ⎠ , (2.381) 
P1 2 2 π 

where sinc(x) = sin(πx)/(πx). Figure 2.106 shows the transfer characteristic 
as a function of normalized phase mismatch. The phase mismatch between 
waveguides can be controlled for example by the linear electro-optic or Pock­
els effect, which we will investigate later. 
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Image removed for copyright purposes. 

Figure 2.106: Dependence of power transfer from waveguide 1 to waveguide 
2 as a function of phase mismatch, [6], p. 267. 

The implementation of such a waveguide coupler switch is shown in Figure 
2.107. 

Image removed for copyright purposes. 

Figure 2.107: Integrated waveguide coupler switch, [6], p. 708 
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2.7.6 Optical Fibers 

Optical fibers are cylindrical waveguides, see Figure 2.108, made of low-loss 
materials such as silica glass.  

Image removed for copyright purposes. 

Figure 2.108: Optical fibers are cylindrical dielectric waveguides, [6], p. 273. 

Similar to the waveguides studied in the last section the most basic fibers 
consist of a high index core and a lower index cladding. Today fiber technol­
ogy is a highly developed art which has pushed many of the physical param­
eters of a waveguide to values which have been thought to be impossible a 
few decades ago: 

•	 Fiber with less than 0.16dB/km loss 

•	 Photonic crystal fiber (Nanostructured fiber)


Hollow core fiber
• 

•	 Highly nonlinear fiber 

•	 Er-doped fiber for amplifiers 

•	 Yb-doped fiber for efficient lasers and amplifiers 

•	 Raman gain fiber 

•	 Large area single mode fibers for high power (kW) lasers. 

Figure 2.109 shows the ranges of attenuation coefficients of silica glass 
single-mode and multimode fiber. 
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Image removed for copyright purposes. 

Figure 2.109: Ranges of attenuation coefficients of silica glass single-mode 
and multimode fiber, [10], p. 298. 

For the purpose of this introductory class we only give an overview about 
the mode structure of the most basic fiber, the step index fiber, see Figure 
2.110 (b) 

Image removed for copyright purposes. 

Figure 2.110: Geometry, refractive index profile, and typical rays in: (a) a 
multimode step-index fiber, (b) a single-mode step-index fiber, (c) a multi­
mode graded-index fiber [6], p. 274 
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Step-index fiber is a cylindrical dielectric waveguide specified by its core 
and cladding refractive indices, n1 and n2 and the core radius a, see Fig­
ure 2.108. Typically the cladding is assumed to be so thick that the finite 
cladding radius does not need to be taken into account. The guided modes 
need to be sufficiently decaded before reaching the cladding boundary, which 
is usually strongly scattering or absorbing. In standard fiber, the cladding 
indices differ only slightly, so that the relative refractive-index difference 

∆ = 
n1 − n2 (2.382) 

n1 

is small, typically 10−3 < ∆ < 2 10−2. Most  fibers currently used in medium ·
to long optical communication systems are made of fused silica glass (SiO2) of  
high chemical purity. The increase in refractive index of the core is achieved 
by doping with titanium, germanium or boron, among others. The refractive 
index n1 ranges from 1.44 to 1.46 depending on the wavelength utilized in 
the fiber. The acceptance angle of the rays coupling from free space into 
guided modes of the waveguide is determined by the numerical apperture as 
already discussed for the dielectric slab waveguide, see Figure 2.111 

2 2θa ∼ sin(θa) =  NA  = 
q
n1 − n2 ≈ n1

√
2∆. (2.383) 

Image removed for copyright purposes. 

Figure 2.111: The acceptance angle of a fiber and numerical aperture NA 
[6], p. 276. 
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Guided Waves 

Again the guided waves can be found by looking at solutions of the Helmholtz 
equations in the core and cladding where the index is homogenous and by 
additionally requesting the continuity of the tangential electric and magnetic 
fields at the core-cladding boundary. In general the fiber modes are not any-
longer pure TE or TM modes but rather are hybrid modes, i.e. the modes 
have both transverse and longitudinal electric and magnetic field components. 
Only the radial symmetric modes are still TE or TM modes. To determine 
the exact mode solutions of the fiber is beyond the scope of this class and 
the interested reader may consult reference [2]. However, for weakly guiding 
fibers, i.e. ∆ 1, the modes are actually very much TEM like, i.e. the longi­¿
tudinal field components are much smaller than the radial field components. 
The linear in x and y directions polarized modes form orthogonal polariza­
tion states. The linearly polarized (l, m) mode is usually denoted as the 
LPlm-mode.The two polarizations of the mode with indices (l, m) travel with 
the same propagation constant and have identical intensity distributions. 
The generic solutions to the Helmhotz equation in cylindrical coordinates 

are the ordinary, Jm(kr), and modified, Km(kr), Bessel functions (analogous 
to the cos(x)/ sin(x) and exponential functions e±κx , that are solutions to the 
Helmholtz equation in cartesian coordinates). Thus, a generic mode function 
for a cylinder symmetric fiber has the form 

ul,m(r, ϕ) =  

⎧ ⎪⎪⎨ ⎪⎪⎩


½ 

Jl(kl,mr) 
cos(lϕ) 

, for r < a, core  ½sin(lϕ) (2.384) 
Kl(kl,mr) 

cos(lϕ) 
, for r > a, cladding

sin(lϕ) 

For large r, the modified Bessel function approaches an exponential, Kl(kl,mr) ∼½ 

e−κln mr cos(lϕ) 
. The propagation constants for this two dimensional waveg­

sin(lϕ) 
uide have to fullfil the additional constraints 

2k2 = 
¡¡n1k02 − β2

¢ 
, (2.385)l,m ¢ 

κ2 β2 2k2 
l,m = − n2 0 , (2.386) 

k2 k2 
l,m + κ2 = 0NA2 . (2.387)l,m 

Figure 2.112 shows the radial dependence of the mode functions 
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Image removed for copyright purposes. 

Figure 2.112: Radial dependence of mode functions u(r),[6], p.279. 

The transverse intensity distribution of the linearly polarized LP0,1 and 
LP3,4 modes  are  shown in Figure 2.113.  

Image removed for copyright purposes. 

Figure 2.113: Intensity distribtuion of the (a) LP01 and (b) LP3,4 modes in 
the transverse plane. The LP01 has a intensity distribution similar to the 
Gaussian beam, [6], p. 283. 

Number of Modes 

It turns out, that as in the case of the dielectric slab waveguide the number of 
guided modes critically depends on the numerical aperture or more precisely 
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on the V-parameter, see Eq.(2.355) 

d 
V = k0 NA.  (2.388) 

2 

Without proof the number of modes is 

M ≈ 
π

4 
2 
V 2 , for V À 1. (2.389) 

which is similar to Eq.(2.355) for the one-dimensional dielectric slab waveg­
uide, but the number of modes here is now related to the square of the 
V-parameter, because of the two-dimensional transverse confinement of the 
modes in the fiber. As in the case of the dielectric waveguide, there is al­
ways at least one guided mode (two polarizations). However, the smaller the 
V-parameter the more the mode extends into the cladding and the guiding 
properties become weak, i.e. small bending of the fiber may already lead to 
high loss. 

2.8 Wave Propagation in Anisotropic Media 

So far we have always assumed that the medium in which the electromagnetic 
wave propagates is isotropic. This causes the induced polarization to be 
parallel to the applied electric field. In crystaline materials or materials with 
microscopic fine structure in general, this is no longer the case. Instead of 
the simple relation  

P� = �0χ E� , (2.390) · 
where the susceptibility is a scalar, the induced polarization may have a 
general lineare dependence on E� not necessarily parallel to the applied field ³ ´ 

P x = �0 χ 
xx 
Ex + χ 

xy 
Ey + χ 

xz 
Ez , (2.391) ³ ´ 

P y = �0 ³ 
χ 
yx 
Ex + χ 

yy 
Ey + χ 

yz 
Ez ´ 

, (2.392) 

P z = �0 χ 
zx 
Ex + χ 

zy 
Ey + χ 

zz 
Ez . (2.393) 

The tensor χ is called the electric susceptibility tensor. As shown in Table 
2.7 the crytaline structure determines to a large extend the values of the 
susceptibility tensor elements or in other words the symmetry properties of 
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⎡ ⎤ 
xx 0 0 

isotropic ⎣ 0 xx 0 ⎦ cubic 
0 0 xx⎡ ⎤ 
xx 0 0 Tetragonal 

uniaxial ⎣ 0 xx 0 ⎦ Trigonal 
0 0 zz Hexagonal ⎡ ⎤ 
xx 0 0 

biaxial ⎣ 0 yy 0 ⎦ Orthorhombic 
0 0 zz⎡ ⎤ 
xx 0 xz ⎣ 0 yy 0 ⎦ Monoclinic 
xz 0 zz⎡ ⎤ 
xx xy xz ⎣ xy yy yz ⎦ Triclinic 
xz yz zz 

Table 2.7: Form of the electric susceptibility tensor for various crystal sys­
tems. 

the crystal reflect themselves in the symmetry properties of the susceptibility 
tensor. 
Elementary algebra tells us that we can choose a new coordinate system 

with axis x0, y0, z0, such that the susceptibility tensor has diagonal form 

P x0 = �0χ 
x0x0 

Ex0 , (2.394) 

P y0 = �0χ 
y0y0 

Ey0 , (2.395) 

P z0 = �0χ 
z0z0 

Ez0 . (2.396) 

These directions are called the principle axes of the crystal. In the following, 
we consider that the crystal axes are aligned with the principle axes. If a 
TEM-wave is launched along the z−axis with the elecric field polarized along 
one of the prinicple axes, lets say x, the wave will experience a refractive index 

nx 
2 = 1 + χ (2.397) 

xx 

and the wave will have a phase velocity 

c = c0/nx. (2.398) 
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If  on  the other  hand  the wave is polarized  along the  y-axis it will have a dif­
ferent phase velocity corresponding to ny. If  the wave propagates  along  the  
z−axis with electric field components along both the x- and  y-axis, the wave 
can be decomposed into the two polarization components. During propaga­
tion of the wave the will experience a differential phase shift with respect to 
each other and the state of polarization may change. Later, this phenomenon 
will be exploited for the construction of modulators and switches. 

2.8.1 Birefringence and Index Ellipsoid 

If we consider the propagation of a wave into an arbitrary direction of the 
crystal it is no longer obvious what the plane wave solution and its phase 
velocity is. We have 

�D = ε �E (2.399) 

with 

ε =ε0 

⎡ ⎣ 
εx 

0 
0 

0 0 
εy 0 
0 εz 

⎤ ⎦ . (2.400) 

Let’s assume there are plane wave solutions 

E� = E� 0e
−j�k·�r 

then Ampere’s and Faraday’s law give 

�k × H� = −ωεE� , (2.401) 
�k × E� = ωμ0H� , (2.402) 

resulting in the wave equation 

�k × �k × E� = −ω2μ0εE� . (2.403) 

Note, that the wavevector �k is orthogonal to the dielectric displacement D�

and the magnetic field � E. There is H, but not necessarily to the electric field �³ ´ 
� εE� = D� B. (2.404) k⊥ ⊥ �

This situation is reflected in Figure 2.114 
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Figure 2.114: Wave propagation in anisotropic media. KDB-system. 

One distinguishes between isotropic, uniaxial und biaxial media. We have 
extensively studied the isotropic case. The most general case is the biaxial 
case, where the dielectric constants along the three axes are all different. 
These dielectic constants, or corresponding indices, define an index ellipsoid 

2 2 2x y z
+ + = 1, (2.405) 

2 2 2n n nx y z 

see Figure 2.115. 
Here we want to consider the case of an uniaxial crystal, where 

εxx = εyy = ε1 = εzz = ε3. (2.406) 6

The refractive indices corresponding to these susceptibilities are called ordi­
nary and extraordinary indices 

n1 = no = n3 = ne. (2.407) 6

Further, there is a distinction between positive, ne > no, and negative, ne < 
no, uniaxial crystals. The uniaxial case corresponds to an index ellipsoid that 
has rotational symmectry around the z-axis, see Figure 2.115. 
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Figure 2.115: Index Ellipsoid 

The general case is then a wave with wave vector �k propagating under 
an angle θ with respect to the z-axis; the z-axis is also often called the fast 
axis or c-axis or optical axis. Without restrictions, we assume that the wave 
vector is in the x − z−plane. If the wave vector is aligned with the fast 
axis, there is no birefringence, because the index experienced by the wave 
is independent from its polarization. If there is a finite angle, θ = 0, then 6
there are two waves with different phase velocity and group velocity as we 
will show now, see 2.115, and birefringence occurs. With the identity A�³ ´ ³ ´ ³ ´ 

C = A C A B C, when applied to Eq.(2.403), follows × B� × � � · � ³ 
B� − ´ 

� · � �

�k E� �k − k2E� + ω2μ0εE� = 0. (2.408) · 

This equation determines the dispersion relation and polarization of the pos­
sible waves with wave vector �k. Since the wave vector is in the x − z−plane 
this equation reads⎛ ⎞ 

k0
2n2 + kx

2−k2 kxkzo ⎝ k0
2n2 

o−k2 ⎠ E� = 0  (2.409) 
kzkx k0

2ne 
2 + kz 

2−k2 

This equation clearly shows that a wave polarized along the y−axis or in 
general orthogonal to the plane composed of the wave vector and the fast 
axis decouples from the other components. 
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2.8.2 Ordinary Wave 

This wave is called the ordinary wave, because it has the dispersion relation 

k2 = k0
2 n 2 

o. (2.410) 

As with the TEM waves in an isotropic medium, the wave vector and the 
field components build an orthogonal trihedral, � H.k⊥E�⊥ �

2.8.3 Extraordinary Wave 

Eq.(2.409) allows for another wave with a polarization in the x − z−plane, 
and therefore this wave has a longitudinal electric field component. This 
wave is called extraordinary wave and its dispersion relation follows from 

det ̄̄̄̄ 


¯̄̄̄

= 0.
 (2.411)


k0
2n2 

o + kx
2−k2 kxkz 

kzkx k0
2n2 + kz 

2−k2 
e 

Calculating the determinant and simplifying we find 

k2 k2 
z x 

n2 
+ 

n2 
= k0

2 . (2.412) 
o e 

With kx = k sin (θ) , kz = k cos (θ) and k = n (θ) k0 we obtain for the 
refractive index seen by the extraordinary wave 

1 cos2 (θ) sin2 (θ) 

n (θ)2 = 
no 
2 

+ 
ne 
2 

. (2.413) 
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Figure 2.116: Cut through the surface with a constant free space wave num­
ber ko(kx, ky, kz) or frequency, which is also an ellipsoid, but with exchanged 
principle axis when compared with Figure 2.114 

Eqs.(2.412) and (2.413) also describe an ellipse. This ellipse is the location 
of a constant free space wave number or frequency, ω = k0c0, and therefore 
determines the refractive index, n (θ) , of the extraordinary wave, see Figure 
2.115. The group velocity is found to be parallel to the Poynting vector 

υg = ∇kω(k) k S, (2.414) 

and is orthogonal to the surface. For completeness, we give a derivation of 
the walk-off angle between the ordinary and extraordinary wave 

kx 
tan θ = (2.415) 

kz 

dkz 
tan φ = −

dkx 
(2.416) 
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From Eq.(2.412) we obtain by differentiation along the surface of the ellipsoid 

2kzdkz 2kxdkx 
+ = 0. (2.417) 

n2 n2 
o e 

no
2kx no 

2 

tan φ = = tan θ 
n2 
ekz n2 

e 

Thus, we obtain for the walk-off-angle ( between Poynting vector and wave 
vector 

tan ( = tan  (θ − φ) =  
tan θ − tan φ 
1 + tan  θ tan φ 

(2.418) 

or ³ ´ 
n2 
0 

2
0 
2 
e 

− 1 tan θ 

n

n

2 
en

1 +  
tan ( = − .
 (2.419)


tan2 θ 

2.8.4 Example: Calcite 

One example of a birefringent materialis calcite, which is also often used in 
optical devices, such as polarizers for example. Figure 2.117 and 2.118 show 
the arrangement of atoms in calcite. 

Image removed for copyright purposes. 

Figure 2.117: Arrangement of atoms in calcite, [1], p. 231. 
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Image removed for copyright purposes. 

Figure 2.118: Atomic arrangement of calcite looking down the optical axis 
[1], p. 232. 

Figure 2.119 shows a crystal cleaved along the crystal axis (cleavage 
form). 

Image removed for copyright purposes. 

Figure 2.119: Calcite cleavage form [1], p. 232. 

Figure 2.120 shows the light path of two orthogonally polarized light 
beams where one propagates as an ordinary and the other as an extraordinary 
wave through the crystal. This leads to a double image when an object is 
viewed through the crystal, see Figure 2.121. 
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Image removed for copyright purposes. 

Figure 2.120: A light beam with two orthogonal field components traversing 
a calcite principal section [1], p. 234. 

Image removed for copyright purposes. 

Figure 2.121: Double image formed by a calcite crystal (not cleavage form) 
[1], p. 233. 

Table 2.8 gives the ordinary and extraordinary refractive indices of some 
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uniaxial crystals. Birefringent materials enable the construction of wave 

Crystal no ne 

Tourmaline 1.669 1.638 
Calcite 1.6584 1.4864 
Quartz 1.5443 1.5534 
Sodim Nitrate 1.5854 1.3369 
Ice 1.309 1.313 
Rutile (TiO2) 2.616 1.903 

Table 2.8: Refractive indices of some uniaxial birefringent crystals (λ = 
589.3nm) [1], p.236 

plates or retardation plates, which enable the manipulation of polarization 
in a very unique way. 

2.9 Polarization and Crystal Optics 

So far we have discussed linearly polarized electromagnetic waves, where the 
electric field of a TEM-wave propagating along the z−direction was either 
polarized along the x− or y−axis. The most general TEM-wave has simul­
taneously electric fields in both polarizations and the direction of the electric 
field in space, i.e. its polarization, can change during propagation. A de­
scription of polarization and polarization evolution in optical systems can be 
based using Jones vectors and matrices. 

2.9.1 Polarization 

A general complex TEM-wave propagating along the z−direction is given by 

⎛ ⎞ 
E0x 

E� (z, t) =  ⎝ E0y 
⎠ ej(ωt−kz), (2.420) 

0 

where E0x = E0xejϕx and E0y = E0yejϕy are the complex field amplitudes of 
the x− and y− polarized components of the wave. The real electric field is 
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given by ⎛ ⎞ 
)¢E0x cos (ωt − kz + ϕ

ωt − kz + ϕ
0

¡ x

E� (z, t) = 
⎝

y 
⎠ , (2.421)
E0y cos

Both components are periodic functions in ωt − kz = ω (t − z/c) . 

Linear Polarization 

If the phases of the complex field amplitudes along the x− and y−axis are 
equal, i.e. ¯̄



¯̄

eE0x = E0x E0y| | e= 

then the real electric field ⎛ ⎞ 
E0x 

�E(z, t) =  ⎝ E0y 

0 

⎠ cos (ωt − kz + ϕ) (2.422) 

jϕ and E0y 
jϕ 

always oscillates along a fixed direction in the x-y-plane, see Figure 2.122 

Image removed for copyright purposes. 

Figure 2.122: Linearly polarized light. (a) Time course at a fixed position z. 
(b) A snapshot at a fixed time t, [6], p.  197.  

The angle between the polarization direction and the x-axis, α, is given 
by α = arctan  (E0y/E0x) . If there is a phase difference of the complex field 
amplitudes along the x− and y−axis, the direction and magnitude of the 
electric field amplitude changes periodically in time at a given position z. 
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Circular Polarization 

Special cases occur when the magnitude of the fields in both linear polariza­
tions are equal E0x = E0y = E0, but there is a phase difference ∆ϕ = ±π in

2 
both components. Then we obtain ⎧⎛ ⎞ ⎫ ⎨ ejϕ ⎬ 

E� (z, t) =  E0 Re ⎝ ej(ϕ−∆ϕ) ⎠ ej(ωt−kz) (2.423) ⎩ ⎭
0 ⎛ ⎞ 

cos (ωt − kz + ϕ) 
= E0 ⎝ sin (ωt − kz + ϕ) ⎠ . (2.424) 

0 

For this case, the tip of the electric field vector describes a circle in the 
x − y−plane, as 

|Ex(z, t)| 2 + |Ey(z, t)| 2 = E0
2 for all z, t, (2.425) 

see Figure 2.123. 

Image removed for copyright purposes. 

Figure 2.123: Trajectories of the tip of the electric field vector of a right and 
left  circularly  polarized  plane wave.  (a) Time course at a  fixed position z. 
(b) A snapshot at a fixed time t. Note, the sense of rotation in (a) is opposite 
to that in (b) [6], p. 197. 



164 CHAPTER 2. CLASSICAL ELECTROMAGNETISM AND OPTICS 

Right Circular Polarization If the tip of the electric field at  a  given time,  
t, rotates counter clockwise with respect to the phase fronts of the wave, here 
in the positive z−direction, then the wave is called right circularly polarized 
light, i.e. ⎧⎛ ⎞ ⎫ ⎛ ⎞ ⎨ 1 ⎬ cos (ωt − kz + ϕ) 
E�rc(z, t) =  E0 Re ⎩⎝ j ⎠ ej(ωt−kz+ϕ) ⎭ 

= E0 ⎝ − sin (ωt − kz + ϕ) ⎠ . 
0 0 

(2.426) 
A snapshot of the lines traced by the end points of the electric-field vec­

tors at different positions is a right-handed helix, like a right-handed screw 
pointing in the direction of the phase fronts of the wave, i.e. k−vector see 
Figure 2.123 (b). 

Left Circular Polarization If the tip of the electric field at a given fixed 
time, t, rotates clockwise with respect to the phase fronts of the wave, here 
in the again in the positive z−direction, then the wave is called left circularly 
polarized light, i.e. ⎧⎛ ⎞ ⎫ ⎛ ⎞ ⎨ 1 ⎬ cos (ωt − kz + ϕ) 

E� lc(z, t) =  E0 Re ⎩⎝ −j ⎠ ej(ωt−kz+ϕ) ⎭ 
= E0 ⎝ sin (ωt − kz + ϕ) ⎠ . 

0 0 
(2.427) 

Eliptical Polarization The general polarization case is called eliptical 
polarization, as for arbitrary E0x = E0xejϕx and E0y = E0yejϕy , we obtain 
for the locus of the tip of the electric field vector from ⎛ ⎞ 

E0× cos (ωt − kz + ϕ )x
� ⎝ 

¡ ¢ ⎠E(z, t) =  E0y cos ωt − kz + ϕy . (2.428) 
0 

the relations 

Ey ¡ ¢ 
= cos  ωt − kz + ϕ (2.429) 

E0y
y 

= cos  (ωt − kz + ϕx) cos  
¡
ϕ¡y − ϕx 

¢ ¢ (2.430) 

− sin (ωt − kz + ϕx) sin  ϕy − ϕx . 
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and 

Ex 
= cos  (ωt − kz + ϕx) . (2.431) 

E0x 

These relations can be combined to 
Ey Ex ¡ ¢ ¡ ¢

E0y 
− 

E0x 
cos ϕy − ϕx = − sin (ωt − kz + ϕx) sin  ϕy − ϕx (2.432)
s 

sin (ωt − kz + ϕx) =  1 − 

µ
E

E

0

x

x 

¶2 

(2.433) 

Substituting Eq.(2.433) in Eq.(2.432) and building the square results in 

µ 
Ey Ex ¡ ¢¶2 

Ã µ 
Ex 
¶2 
! ¡ ¢ 

E0y 
− 

E0x 
cos ϕy − ϕx = 1 − 

E0x 
sin2 ϕy − ϕx . (2.434) 

After reordering of the terms we obtain µ 
Ex 
¶2 

+ 

µ 
Ey 
¶2 

− 2 
Ex Ey 

cos 
¡
ϕy − ϕx 

¢ 
= sin2 

¡
ϕy − ϕx 

¢ 
. (2.435) 

E0x E0y E0x E0y 

This is the equation of an ellipse making an angle α with respect to the x-axis 
given by 

2E0xE0y cos ϕy − ϕx
tan 2α = 

E0
2 
x −

¡
E0
2 
y 

¢ 
. (2.436) 

see Figure 2.124. 

Image removed for copyright purposes. 

Figure 2.124: (a) Rotation of the endpoint of the electric field vector in the 
x-y-plane at a fixed position z. (b) A snapshot at a fixed time t [6], p. 197. 
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Elliptically polarized light can also be understood as a superposition of a 
right and left cicular polarized light, see Figure 2.125. 

Image removed for copyright purposes. 

Figure 2.125: Elliptically polarized light as a superposition of right and left 
circularly polarized light [1], p. 223. 

2.9.2 Jones Calculus 

As seen in the last section, the information about polarization of a TEM-wave 
can be tracked by a vector that is proportional to the complex electric-field 
vector. This vector is called the Jones vector 

µ ¶ µ ¶
E0x V x 

E0y 
∼ V� = 

V y 
: Jones Vector (2.437) 

Jones Matrix 

Figure 2.126 shows a light beam that is normally incident on a retardation 
plate along the z−axis with a polarization state described by a Jones vector 
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Image removed for copyright purposes. 

Figure 2.126: A retardation plate rotated at an angle ψ about the z-axis. 
f("fast") and s("slow") are the two principal dielectric axes of the crystal for 
light propagating along the z−axis [2], p. 17. 

The principle axis (s− for slow and f− for fast axis) of the retardation 
plate are rotated by an angle ψ with respect to the x− and y−axis. Let ns 

and nf be the refractive index of the slow and fast principle axis, respectively. 
The polarization state of the emerging beam in the crystal coordinate system 
is thus given by µ ¶ µ ¶µ ¶

V 0 e−jkonsL 0 Vss 

Vf
0 =

0 e−jkonf L Vf 
, (2.438) 

The phase retardation is defined as the phase difference between the two 
components 

Γ = (ns − nf ) koL. (2.439) 

In birefringent crystals the difference in refractive index is much smaller 
than the index itself, |ns − nf | ¿ ns, nf , therefore parallel to the evolving 
differential phase a large absolute phase shift occurs. Taking the mean phase 
shift 

1 
φ = (ns + nf ) koL, (2.440) 

2
out, we can rewrite (2.438) as µ ¶ µ ¶µ ¶

V 0
= e−jφ e−jΓ/2 0 Vs 

V 
s

f
0 0 ejΓ/2 Vf 

. (2.441) 
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The matrix connecting the Jones vector at the input of an optical component 
with the Jones vector at the output is called a Jones matrix. 
If no coherent additon with another field  is planned  at  the output of the  

system, the average phase φ can be dropped. With the rotation matrix, R, 
connecting the (x, y) coordinate system with the (s, f) coordinate system µ ¶

cos ψ sin ψ 
R (ψ) =  , (2.442) − sin ψ cos ψ 

we find the Jones matrix W describing the propagation of the field compo­
nents through the retardation plate as µ ¶ µ ¶

Vx
0

= W
Vx . (2.443) 

Vy
0 Vy 

with 
W = R (−ψ) W0R (ψ) . (2.444) 

and µ ¶
e−jΓ/2 0 

W0 = jΓ/2 . (2.445) 
0 e

Carrying out the matix multiplications leads to µ ¶
e−jΓ/2 cos2(ψ) +  ejΓ/2 sin2(ψ) −j sin Γ sin (2ψ)

W = 2 
jΓ/2 . −j sin Γ sin (2ψ) e−jΓ/2 sin2(ψ) +  e cos2(ψ)

2 
(2.446) 

Note that the Jones matrix of a wave plate is a unitary matrix, that is 

W †W = 1. 

Unitary matrices have the property that they transform orthogonal vectors 
into another pair of orthogonal vectors. Thus two orthogonal polarization 
states remain orthogonal when propagating through wave plates. 

Polarizer 

A polarizer is a device that absorbs one component of the polarization vector. 
The Jones matrix of polarizer along the x-axis or y-axis is µ ¶ µ ¶

1 0  0 0  
Px = , and Py = . (2.447) 

0 0  0 1  
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Half-Wave Plate 

A half-wave plate has a phase retardation of Γ = π, i.e. its thickness is 
t = λ/2(ne − no). The corresponding Jones matrix follows from Eq.(2.446) 

W = −j 
µ 
cos(2ψ)  sin  (2ψ) 

¶ 

. (2.448) 
sin (2ψ) − cos(2ψ) 

For the special case of ψ = 45o, see Figure 2.127, the half-wave plate rotates 
a linearly polarized beam exactly by 900 , i.e. it exchanges the polarization 
axis. It can be shown, that for a general azimuth angle ψ, the half-wave 
plate will rotate the polarization by an angle 2ψ, see problem set. When 
the incident light is circularly polarized a half-wave plate will convert right-
hand circularly polarized light into left-hand circularly polarized light and 
vice versa, regardless of the azimuth angle ψ. 

Image removed for copyright purposes. 

Figure 2.127: The effect of a  half-wave plate  on  the polarziation state of a 
beam, [2], p.21.  

Quarter-Wave Plate 

A quarter-wave plate has a phase retardation of Γ = π/2, i.e. its thickness 
is t = λ/4(ne − no). The corresponding Jones matrix follows again from 
Eq.(2.446) 

http:beam,[2],p.21
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Ã ! 
1 −j 1
2 

1
2 

√

√

√ [1 − j cos(2ψ)] 
−j 1

2
√

sin (2ψ)
2 (2.449)
W =
 .


sin (2ψ) [1 + j cos(2ψ)] 

and for the special case of ψ = 45o, see Figure 2.127 we obtain 

W = √1
2 

µ 

−
1 
j 
−
1 
j 
¶ 

, (2.450) 

see Figure 2.128. 

Image removed for copyright purposes. 

Figure 2.128: The effect of a quarter wave plate on the polarization state of 
a linearly polarized input wave [2], p.22. 

If the incident beam is vertically polarized, i.e. µ ¶ µ ¶
Vx 0 

= , (2.451) 
Vy 1 

the effect of a 45o -oriented quarter-wave plate is to convert vertically polar­
ized light into left-handed circularly polarized light. If the incident beam is 
horizontally polarized the outgoing beam is a right-handed circularly polar­
ized, see Figure 2.128. µ ¶ µ ¶

Vx
0

= 
−j 1 

. (2.452) 
Vy
0 √

2 j 
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