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6.4 The Density Operator

To study incoherent or dissipative processes it is necessary to switch to a
statistical description. That is, we investigate not only the interaction of the
atoms with the light field, via the Schroedinger Equation, leading to Rabi-
oscillations but rather the interaction of an atomic ensemble with the light
field. This is achieved by using the density operator instead of deterministic
wave functions, similar to classical statistical mechanics, where the determin-
istic trajectories of particles are replaced by probability distributions.
The density operator of a pure state is defined by the dyadic product of

the state with itself
ρ = |ψi hψ| (6.58)

or in the energy representation by a 2× 2−matrix

ρ =

µ
ρee ρeg
ρge ρgg

¶
. (6.59)

. In the case of a pure state (6.9) this is

ρ =

µ
cec

∗
e cec

∗
g

cgc
∗
e cgc

∗
g

¶
. (6.60)

For the rather simple case of a two-level system, each element of the density
matrix corresponds to a physical quantity. The main diagonal contains the
population probabilities for the levels; the off-diagonal element is the expec-
tation value of the positive or negative frequency component of the dipole
moment of the atom, i.e. its contribution to the polarization in the medium.
However, the concept of a density operator can be applied to any quantum

mechanical system, not just the two-level atom. If an ensemble is described
by a density operator, the expectation value of an arbitrary operator A can
be computed using the trace formula

hAi = Tr{ρA }. (6.61)

The trace of an operator is defined as

Tr{O } =
X
n

hn|O |ni . (6.62)

where |ni can be any complete orthonormal base (ONB) in the Hilbert space.
For example for the density matrix of the pure state (6.58) we find
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hAi = Tr{ρA } =
X
n

hn|ρA |ni (6.63)

=
X
n

hn |ψi hψ|A |ni = hψ|A
X
n

|ni hn |ψi (6.64)

= hψ|A |ψi . (6.65)

The advantage of the density operator is that it can also be applied to a
statistical mixture of pure states. For example, if the atom is in state |ei
with probability pe and in state | |gi with probability pg a density operator

ρ = pe |ei he|+ pg |gi hg| (6.66)

is defined, which can be used to compute the average values of observables
in the proper statistical sense

hAi = Tr{ρA} = pe he|A |ei+ pg hg|A |gi . (6.67)

Since the matrices (6.27) to (6.30) build a complete base in the space of
2× 2−matrices, we can express the density matrix as

ρ = ρee
1

2
(1+ σz) + ρgg

1

2
(1− σz) + ρegσ

+ + ρgeσ
− (6.68)

=
1

2
1+

1

2
(ρee − ρgg)σz + ρegσ

+ + ρgeσ
−, (6.69)

since the trace of the density matrix is always one (normalization). Choosing
the new base 1,σx,σy,σz, we obtain

ρ =
1

2
1+

1

2
(ρee − ρgg)σz + dxσx + dyσy, (6.70)

with

dx =
1

2

¡
ρeg + ρge

¢
= <{


σ(+)

®
}, (6.71)

dy =
j

2

¡
ρeg − ρge

¢
= ={


σ(+)

®
}. (6.72)

The expectation value of the dipole operator is given by (6.36)D
d
E
= Tr{ρd} = −M∗Tr{ρσ+}+ c.c. = −M∗ρge + c.c. (6.73)



6.5. ENERGY- AND PHASE-RELAXATION 281

From the Schrödinger equation for the wave function |ψ > we can eas-
ily derive the equation of motion for the density operator called the von
Neumann equation

ρ̇ =
d

dt
|ψi hψ|+ h.c. =

1

j~
H |ψi hψ|− 1

j~
|ψi hψ|H (6.74)

=
1

j~
[H,ρ] .

Due to the linear nature of this equation, this is also the correct equation
for a density operator describing an arbitrary mixture of states. In case of a
two-level atom, the von Neumann equation is

ρ̇ =
1

j~
[HA,ρ] = −j

ω∈g
2
[σz,ρ]. (6.75)

Using the commutator relations (6.16) - (6.18), the result is

ρ̇∈e = 0, (6.76)

ρ̇gg = 0, (6.77)

ρ̇eg = −jωegρeg → ρeg(t) = e−jωegtρeg(0), (6.78)

ρ̇ge = jωegρge → ρge(t) = ejωegtρge(0). (6.79)

Again the isolated two-level atom has rather simple dynamics. The popu-
lations are constant. If there is a dipole moment induced at t = 0, i.e. the
system is in a superposition state, then this dipole moment oscillates with
the transition frequency ω∈g.

6.5 Energy- and Phase-Relaxation

In reality one has to work very hard to isolated an atom from its environment.
Indeed in the case of laser active media, we are interested at radiating atoms,
i.e. atoms that have a dipole interaction with the field. The coupling with the
infinitely many modes of the free field leads already to spontaneous emission,
an irreversible process. We could treat this process by using the Hamiltonian

H = HA +HF +HA−F . (6.80)

Here, HA is the Hamiltonian of the atom, HF of the free field in thermal
equilibrium at temperature T, and HA−F describes the interaction between
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them. A complete treatment along these lines would be straight forward
using the techniques we learned so far, however it is beyond the scope of this
class. The result of this calculation leads to the von Neumann equation of
the reduced density matrix, i.e. the density matrix of the atom alone. In
fact the result of such a calculation gives for the diagonal elements of the
density operator, i.e. the state population probabilities, equations identical
to those in section 3.3 involving Einstein’s A and B coefficients. With the
spontaneous emission rate A = 1/τ sp,i.e. the inverse spontaneous life time
τ sp, the populations change due to the induced and spontaneious emission
processes and the absorption processes

d

dt
|ce(t)|2 =

d

dt
ρee = −Γeρee + Γaρgg (6.81)

with the abbreviations

Γe =
1

τ sp
(nth + 1), (6.82)

Γa =
1

τ sp
nth. (6.83)

see Figure 6.3.
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Figure 6.3: Two-level atom with transistion rates due to induced and spon-
taneous emission and absorption.

Here nth is the number of thermally excited photons in the modes of the
free field with frequency ωeg, nth = 1/(exp(~ωeg/kT )−1), at temperature T .
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The total probability of being in the excited or the ground state has to
be maintained, that is

d

dt
ρgg = −

d

dt
ρee = Γeρee − Γaρgg. (6.84)

If the populations decay, the polarization does as well, since ρge = c∗ecg. It
turns out that the polarization dynamics according to Eq.(6.78), besides the
coherent oscillation, also aquires a decay process due to the finite lifetime of
the excited state

d

dt
ρge = jωegρeg −

Γe + Γa
2

ρge. (6.85)

Thus the absorption as well as the emission processes are destructive to the
phase. Therefore, the corresponding rates add up in the phase decay rate.
Taking the coherent (6.76)-(6.79) and incoherent processes (6.84-6.85)

into account results in the following equations for the normalized average
dipole moment d = dx + jdy and the inversion w

ḋ = ρ̇ge = (jωeg −
1

T2
)d, (6.86)

ẇ = ρ̇ee − ρ̇gg = −
w − w0
T1

, (6.87)

with the time constants

1

T1
=
2

T2
= Γe + Γa =

2nth + 1

τ sp
(6.88)

and the equilibrium inversion w0, due to the thermal excitation of the atom
by the thermal field

w0 =
Γa − Γe
Γa + Γe

=
−1

1 + 2nth
= − tanh

µ
~ωeg

2kT

¶
. (6.89)

The time constant T1 denotes the energy relaxation in the two-level system
and T2 the phase relaxation. T2 is the correlation time between amplitudes
ce and cg. The coherence between the excited and the ground state described
by ρge is destroyed by the interaction of the two -level system with the envi-
ronment.
In this basic model, the energy relaxation is half the phase relaxation rate

or
T2 = 2T1. (6.90)
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The atoms in a laser medium do not only interact with the electromagnetic
field, but also with phonons, i.e. acoustic vibrations of the host lattice in solid
state laser material. Atoms might collide with each other in a gas laser and so
on. All these processes must be considered when determining the energy and
phase relaxation rates. Thus it might be not only radiative transistions that
lead to a finite energy relaxation time T1. Some of the processes are elastic,
i.e. there is no energy relaxation but only the phase is influenced during the
collision. Therefore, these processes reduce T2 but have no influence on T1.
In real systems the phase relaxation time is most often much shorter than
twice the energy relaxation time.

T2 ≤ 2T1. (6.91)

If the inversion deviates from its equilibrium value, w0, it relaxes back into
equilibrium with a time constant T1. Eq. (6.89) shows that for all tempera-
tures T > 0 the inversion is negative, i.e. the lower level is stronger populated
than the upper level. Thus with incoherent thermal light, inversion in a two-
level system cannot be achieved. Inversion can only be achieved by pumping
with incoherent light, if there are more levels and subsequent relaxation pro-
cesses into the upper laser level. Due to these relaxation processes the rate Γa
deviates from the equilibrium expression (6.83), and it has to be replaced by
the pump rate Λ. If the pump rate Λ exceeds Γe, the inversion corresponding
to Eq. (6.89) becomes positive,

w0 =
Λ− Γe
Λ+ Γe

. (6.92)

If we allow for artificial negative temperatures, we obtain with T < 0 for the
ratio of relaxation rates

Γe
Γa
=
1 + n̄

n̄
= e

~ωeg
kT < 1. (6.93)

Thus the pumping of the two-level system drives the system far away from
thermal equilibrium. Now, we have a correct description of an ensemble of
atoms in thermal equilibrium with its environment, which is a much more
realistic description of media especially of typical laser media.

6.6 The Bloch Equations

If there is a coherent additional field in addition to the coupling to the envi-
ronment, the Hamiltonian has to be extended by the dipole interaction with
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that field,
HE = −d·E(xA, t). (6.94)

Again we use the interaction Hamiltonian in RWA according to Eq.(6.40) for
a time harmonic field Eq.(6.38) with polarization vector ep

HE =
1

2

³
M · e∗p

´
E∗0e

−jωtσ+ + h.c.. (6.95)

In the von Neumann equation this leads to the additional term

ρ̇|E =
1

j~
[HE,ρ] (6.96)

= −jΩre
−jωt[σ+,ρ] + jΩ∗re

jωt[σ−,ρ]. (6.97)

With the density operator expressed as

ρ =
1

2
1+

1

2
(ρee − ρgg)σz + ρegσ

+ + ρgeσ
−, (6.98)

and the commutation relations (6.16) - (6.18) we find

ρ̇|E =
1

2
(ρ̇ee − ρ̇gg)σz + ρ̇egσ

+ + ρ̇geσ
− (6.99)

= −jΩre
−jωt

½
1

2
(ρee − ρgg)

£
σ+,σz

¤
+ ρge

£
σ+,σ−

¤¾
+

+jΩ∗re
jωt[

½
1

2
(ρee − ρgg)

£
σ−,σz

¤
+ ρeg

£
σ−,σ+

¤¾
= jΩre

−jωt ©(ρee − ρgg)σ+ + ρgeσz

ª
+jΩ∗re

jωt[
©
(ρee − ρgg)σ− − ρegσz

ª
or expressed by the components of the density operator

(ρ̇ee − ρ̇gg)|E = 2jΩre
−jωtρge + c.c., (6.100)

ρ̇ge|E = jΩ∗re
jωt(ρee − ρgg), . (6.101)

The interaction with the external field leads to the following contributions
in the dynamics of the dipole moment and the inversion

ḋ|E = ρ̇ge|E = jΩ∗rejωtw, (6.102)

ẇ|E = ρ̇ee|E − ρ̇gg|E = 2jΩre
−jωtd+ c.c. (6.103)
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Thus, the total dynamics of the two-level system including the pumping and
dephasing processes from Eqs.(6.86) and (6.87) is given by

ḋ = −( 1
T2
− jωeg)d+ jΩ

∗
re
jωtw, (6.104)

ẇ = −w − w0
T1

+ 2jΩre
−jωtd− 2jΩ∗rejωtd∗. (6.105)

These equations are called the Bloch Equations. They describe the dynamics
of a statistical ensemble of two-level atoms interacting with a classical electric
field. Together with the Maxwell-Equations, where the polarization of the
medium is related to the expectation value of the dipole moment of the
atomic ensemble these result in the Maxwell-Bloch Equations.

6.7 Dielectric Susceptibility and Saturation

We have assumed that the external field is time harmonic

E(xA, t) =
1

2

¡
E0e

jωt ep +E∗0e
−jωt e∗p

¢
. (6.106)

The Bloch Equations are nonlinear. However, for moderate field intensities,
i.e. the magnitude of the Rabi-frequency is much smaller than the optical
frequency, |Ωr| << ω, the inversion does not change much within an optical
cycle of the field. We assume that the inversion w of the atom will only
be slowly changing and it adjusts itself to a steady state value ws. If the
inversion can be assumed time independent, w = ws the equation for the
dipole moment is linear and the dipole moment will oscillate with the same
frequency as the driving field

d = d0e
jωt. (6.107)

With the time harmonic solution (6.107) we find from Eqs. (6.104) and
(6.105) for the dipole amplitude and the steady state inversion

d0 =
j

2~

³
M∗ · ep

´
ws

1/T2 + j(ω − ωeg)
E0 (6.108)

ws =
w0

1 + T1
~2

1/T2 |M∗·ep|2
(1/T2)2+(ωeg−ω)2 |E0|2

. (6.109)
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We introduce the normalized lineshape function, which is in this case a
Lorentzian,

L(ω) =
(1/T2)

2

(1/T2)2 + (ωeg − ω)2
, (6.110)

and connect the square of the field |E0|2 to the intensity I of a propagating
plane wave, according to Eq. (2.38), I = 1

2ZF
|E0|2,

ws =
w0

1 + I
Is
L(ω)

. (6.111)

Thus the stationary inversion depends on the intensity of the incident light.
Therefore, w0 is called the unsaturated inversion, ws the saturated inversion
and Is,with

Is =

∙
2T1T2ZF

~2
|M∗ · ep|2

¸−1
, (6.112)

is the saturation intensity. The expectation value of the dipole operator
(6.31) is then given by D

d̃
E
= −(M∗d + Md∗). (6.113)

Multiplication with the number of atoms per unit volume, N, relates the
dipole moment of the atom to the complex polarization P 0 of the medium,
and therefore to the susceptibility according to

P 0 = −2NM∗d0, (6.114)

P 0 = 0χ(ω)epE0. (6.115)

From the definitions (6.114), (6.115) and Eq. (6.108) we obtain for the linear
susceptibility of the medium

χ(ω) =M∗MT jN

~ 0

ws

1/T2 + j(ω − ωeg)
, (6.116)

which is a tensor. In the following we assume that the direction of the
atom is random, i.e. the alignment of the atomic dipole moment,M, and the
electric field is random. Therefore, we have to average over the angle enclosed
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between the electric field of the wave and the atomic dipole moment, which
results in⎛⎝ MxMx MxMy MxMz

MyMx MyMy MyMz

MzMx MzMy MzMz

⎞⎠ =

⎛⎝ M2
x 0 0

0 M2
y 0

0 0 M2
z

⎞⎠ =
1

3
|M |2 1. (6.117)

Thus, for homogeneous and isotropic media the susceptibility tensor shrinks
to a scalar

χ(ω) =
1

3
|M |2 jN

~ 0

ws

1/T2 + j(ω − ωeg)
. (6.118)

Real and imaginary part of the susceptibility

χ(ω) = χ0(ω) + jχ00(ω) (6.119)

are then given by

χ0(ω) = − |M |
2NwsT

2
2 (ωeg − ω)

3~ 0
L(ω), (6.120)

χ00(ω) =
|M |2NwsT2

3~ 0
L(ω). (6.121)

If the incident radiation is weak, i.e.

I

Is
L(ω))¿ 1 (6.122)

we obtain ws ≈ w0. For optical transitions there is no thermal excitation of
the excited state and w0 = −1. For an inverted system, w0 > 0, the real and
imaginary parts of the susceptibility are shown in Fig. 6.4.
The shape of the susceptibility computed quantum mechanically com-

pares well with the classical susceptibility (2.43) derived from the harmonic
oscillator model close to the transistion frequency ωeg for a transition with
reasonably high Q = T2ωeg. Note, the quantum mechanical susceptibility is
identical to the complex Lorentzian introduced in Eq.(2.90). There is an
appreciable deviation, however, far away from resonance. Far off resonance
the rotating wave approximation should not be used.
The physical meaning of the real and imaginary part of the susceptibility

is of course identical to section 2.1.8. The propagation constant k of a TEM-
wave in such a medium is related to the susceptibility by

k = ω
p
μ0 0(1 + χ(ω)) ≈ k0

µ
1 +

1

2
χ(ω)

¶
, with k0 = ω

√
μ0 0 (6.123)
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for |χ| ¿ 1. Under this assumption we obtain

k = k0(1 +
χ0

2
) + jk0

χ00

2
. (6.124)
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Figure 6.4: Real and imaginary part of the complex susceptibility for an
inverted medium ws > 0. The positive imaginary susceptibility indicates
exponential growth of an electromagnetic wave propagating in the medium.

The real part of the susceptibility contributes to the refractive index n =
1 + χ0/2. In the case of χ00 < 0, the imaginary part leads to an exponential
damping of the wave. For χ00 > 0 amplification takes place. Amplification of
the wave is possible for w0 > 0, i.e. an inverted medium.
The phase relaxation rate 1/T2 of the dipole moment determines the width

of the absorption line or the bandwidth of the amplifier. The amplification
can not occur forever, because the amplifier saturates when the intensity
reaches the saturation intensity. This is a strong deviation from the linear
susceptibility we derived from the classical oscillator model. The reason for
this saturation is two fold. First, the light can not extract more energy
from the atoms then there is energy stored in them, i.e. energy conservation
holds. Second the induced dipole moment in a two-level atom is limited by
the maximum value of the matrix element. In contrast the induced dipole
moment in a classical oscillator grows proportionally to the applied field
without limits.




