
2.3 Mirrors, Interferometers and Thin-Film
Structures

One of the most striking wave phenomena is interference. Many optical de-
vices are based on the concept of interfering waves, such as low loss dielectric
mirrors and interferometers and other thin-film optical coatings. After having
a quick look into the phenomenon of interference, we will develope a powerful
matrix formalism that enables us to evaluate efficiently many optical (also
microwave) systems based on interference.

2.3.1 Interference and Coherence

Interference

Interference of waves is a consequence of the linearity of the wave equation
(2.13). If we have two individual solutions of the wave equation

E1(r, t) = E1 cos(ω1t− k1 · r + ϕ1) e1, (2.137)

E2(r, t) = E2 cos(ω2t− k1 · r + ϕ2) e2, (2.138)

with arbitrary amplitudes, wave vectors and polarizations, the sum of the
two fields (superposition) is again a solution of the wave equation

E(r, t) = E1(r, t) +E2(r, t). (2.139)
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If we look at the intensity, wich is proportional to the amplitude square of
the total field

E(r, t)2 =
³
E1(r, t) +E2(r, t)

´2
, (2.140)

we find

E(r, t)2 = E1(r, t)
2 +E2(r, t)

2 + 2E1(r, t) ·E2(r, t) (2.141)

with

E1(r, t)
2 =

E2
1

2

³
1 + cos 2(ω1t− k1 · r + ϕ1)

´
, (2.142)

E2(r, t)
2 =

E2
2

2

³
1 + cos 2(ω2t− k2 · r + ϕ2)

´
, (2.143)

E1(r, t) · E2(r, t) = (e1 · e2)E1E2 cos(ω1t− k1 · r + ϕ1) · (2.144)

· cos(ω2t− k2 · r + ϕ2)

E1(r, t) ·E2(r, t) =
1

2
(e1 · e2)E1E2 · (2.145)

·

⎡⎣ cos
³
(ω1 − ω2) t−

³
k1 − k2

´
· r + (ϕ1 − ϕ2)

´
+cos

³
(ω1 + ω2) t−

³
k1 + k2

´
· r + (ϕ1 + ϕ2)

´ ⎤⎦ (2.146)

Since at optical frequencies neither our eyes nor photo detectors, can ever
follow the optical frequency itself and certainly not twice as large frequencies,
we drop the rapidly oscillating terms. Or in other words we look only on the
cycle-averaged intensity, which we denote by a bar

E(r, t)2 =
E2
1

2
+

E2
2

2
+ (e1 · e2)E1E2 ·

· cos
³
(ω1 − ω2) t−

³
k1 − k2

´
· r + (ϕ1 − ϕ2)

´
(2.147)

Depending on the frequencies ω1 and ω2 and the deterministic and stochastic
properties of the phases ϕ1 and ϕ2, we can detect this periodically varying
intensity pattern called interference pattern. Interference of waves can be
best visuallized with water waves, see Figure 2.38. Note, however, that water
waves are a scalar field, whereas the EM-waves are vector waves. Therefore,
the interference phenomena of EM-waves are much richer in nature than
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for water waves. Notice, from Eq.(2.147), it follows immedicatly that the
interference vanishes in the case of orthogonally polarized EM-waves, because
of the scalar product involved. Also, if the frequencies of the waves are not
identical, the interference pattern will not be stationary in time.

Figure 2.38: Interference of water waves from two point sources in a ripple
tank [1] p. 276.

If the frequencies are identical, the interference pattern depends on the
wave vectors, see Figure 2.39. The interference pattern which has itself a
wavevector given by

k1 − k2 (2.148)

shows a period of

Λ =
2π¯̄̄

k1 − k2

¯̄̄ . (2.149)



2.3. MIRRORS, INTERFEROMETERSANDTHIN-FILMSTRUCTURES65

k1

k2

Wavefronts

Lines of constant 
differential
phase

Λ

Figure 2.39: Interference pattern generated by two monochromatic plane
waves.

Coherence

The ability of waves to generate an interference pattern is called coherence.
Coherence can be quantified both temporally or spatially. For example, if we
are at a certain position r in the interference pattern described by Eq.(2.147),
we will only have stationary conditions over a time interval

Tcoh <<
2π

ω1 − ω2
.

Thus the spectral width of the waves determines the temporal coherence.
However, it depends very often on the expermental arrangement whether a
given situation can still lead to interference or not. Even so the interfering
light may be perfectly temporally coherent, i.e. perfectly monochromatic,
ω1 = ω2,yet the wave vectors may not be stable over time and the spatial
inteference pattern may wash out, i.e. there is insufficient spatial coherence.
So for stable and maximum interference three conditions must be fulfilled:

• stable and identical polarization

• small change in the relative phase between the beams involved over the
observation time, temporal coherence, often achieved by using narrrow
linewidth light

• stable beam propagation or guiding of light to achieve spatial coherence.
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It is by no means trivial to arrive at a light source and an experimen-
tal setup that enables good coherence and strong interference of the beams
involved.
Interference of beams can be used to measure relative phase shifts between

them which may be proportional to a physical quantity that needs to be
measured. Such phase shifts between two beams can also be used to modulate
the light output at a given position in space via interference. In 6.013, we
have already encountered interference effects between forward and backward
traveling waves on transmission lines. This is very closely related to what we
use in optics, therefore, we quickly relate the TEM-wave progagation to the
transmission line formalism developed in Chapter 5 of 6.013.

2.3.2 TEM-Waves and TEM-Transmission Lines

The motion of voltage V and current I along a TEM transmission line with
an inductance L0 and a capacitance C0 per unit length is satisfies

∂V (t, z)

∂z
= −L0∂I(t, z)

∂t
(2.150)

∂I(t, z)

∂z
= −C 0∂V (t, z)

∂t
(2.151)

Substitution of these equations into each other results in wave equations for
either the voltage or the current

∂2V (t, z)

∂z2
− 1

c2
∂2V (t, z)

∂t2
= 0, (2.152)

∂2I(t, z)

∂z2
− 1

c2
∂2I(t, z)

∂t2
= 0, (2.153)

where c = 1/
√
L0C 0 is the speed of wave propagation on the transmission

line. The ratio between voltage and current for monochomatic waves is the
characteristic impedance Z =

p
L0/C 0.

The equations of motion for the electric and magnetic field of a x-polarized
TEM wave according to Figure 2.1, with E−field along the x-axis and H-
fields along the y- axis follow directly from Faraday’s and Ampere’s law

∂E(t, z)

∂z
= −μ∂H(t, z)

∂t
, (2.154)

∂H(t, z)

∂z
= −ε∂E(t, z)

∂t
, (2.155)
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which are identical to the transmission line equations (2.150) and (2.151).
Substitution of these equations into each other results again in wave equations
for electric and magnetic fields propagating at the speed of light c = 1/

√
με

and with characteristic impedance ZF =
p
μ/ε.

The solutions of the wave equation are forward and backward traveling
waves, which can be decoupled by transforming the fields to the forward and
backward traveling waves

a(t, z) =

r
Aeff

2ZF
(E(t, z) + ZFoH(t, z)) , (2.156)

b(t, z) =

r
Aeff

2ZF
(E(t, z)− ZFoH(t, z)) , (2.157)

which fulfill the equationsµ
∂

∂z
+
1

c

∂

∂t

¶
a(t, z) = 0, (2.158)µ

∂

∂z
− 1

c

∂

∂t

¶
b(t, z) = 0. (2.159)

Note, we introduced that cross section Aeff such that |a|2 is proportional to
the total power carried by the wave. Clearly, the solutions are

a(t, z) = f(t− z/c0), (2.160)

b(t, z) = g(t+ z/c0), (2.161)

which resembles the D’Alembert solutions of the wave equations for the elec-
tric and magnetic field

E(t, z) =

s
ZFo

2Aeff
(a(t, z) + b(t, z)) , (2.162)

H(t, z) =

s
1

2ZFoAeff
(a(t, z)− b(t, z)) . (2.163)

Here, the forward and backward propagating fields are already normalized
such that the Poynting vector multiplied with the effective area gives already
the total power transported by the fields in the effective cross section Aeff

P = S · (Aeff ez) = AeffE(t, z)H(t, z) = |a(t, z)|2 − |b(t, z)|2 . (2.164)
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In 6.013, it was shown that the relation between sinusoidal current and
voltage waves

V (t, z) = Re
©
V (z)ejωt

ª
and I(t, z) = Re

©
I(z)ejωt

ª
(2.165)

along the transmission line or corresponding electric and magnetic fields in
one dimensional wave propagation is described by a generalized complex
impedance Z(z) that obey’s certain transformation rules, see Figure 2.40
(a).

Figure 2.40: (a) Transformation of generalized impedance along transmission
lines, (b) Transformation of generalized impedance accross free space sections
with different characterisitc wave impedances in each section.

Along the first transmission line, which is terminated by a load impedance,
the generalized impedance transforms according to

Z1(z) = Z1 ·
Z0 − jZ1 tan (k1z)

Z1 − jZ0 tan (k1z)
(2.166)

with k1 = k0n1 and along the second transmission line the same rule applies
as an example

Z2(z) = Z2 ·
Z1(−L1)− jZ2 tan (k2z)

Z2 − jZ1(−L1) tan (k2z)
(2.167)
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with k2 = k0n2. Note, that the media can also be lossy, then the character-
istic impedances of the transmission lines and the propagation constants are
already themselves complex numbers. The same formalism can be used to
solve corresponding one dimensional EM-wave propagation problems.

Antireflection Coating

The task of an antireflection (AR-)coating, analogous to load matching in
transmission line theory, is to avoid reflections between the interface of two
media with different optical properties. One method of course could be to
place the interface at Brewster’s angle. However, this is not always possible.
Let’s assume we want to put a medium with index n into a beam under
normal incidence, without having reflections on the air/medium interface.
The medium can be for example a lens. This is exactly the situation shown
in Figure 2.40 (b). Z2 describes the refractive index of the lense material,
e.g. n2 = 3.5 for a silicon lense, we can deposit on the lens a thin layer
of material with index n1 corresponding to Z1 and this layer should match
to the free space index n0 = 1 or impedance Z0 = 377Ω. Using (2.166) we
obtain

Z2 = Z1(−L1) = Z1
Z0 − jZ1 tan (−k1L1)
Z1 − jZ0 tan (−k1L1)

(2.168)

If we choose a quarter wave thick matching layer k1L1 = π/2, this simplifies
to the famous result

Z2 =
Z21
Z0
, (2.169)

or n1 =
√
n2n0 and L1 =

λ

4n1
. (2.170)

Thus a quarter wave AR-coating needs a material which has an index cor-
responding to the geometric mean of the two media to be matched. In the
current example this would be n2 =

√
3.5 ≈ 1.87

2.3.3 Scattering and Transfer Matrix

Another formalism to analyze optical systems (or microwave circuits) can
be formulated using the forward and backward propagating waves, which
transform much simpler along a homogenous transmission line than the total
fields, i.e. the sum of forward adn backward waves. However, at interfaces
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scattering of these waves occurs whereas the total fields are continuous. For
monochromatic forward and backward propagating waves

a(t, z) = a(z)ejωt and b(t, z) = b(z)ejωt (2.171)

propagating in z-direction over a distance z with a propagation constant k,
we find from Eqs.(2.158) and (2.159)

µ
a(z)
b(z)

¶
=

µ
e−jkz 0
0 ejkz

¶µ
a(0)
b(0)

¶
. (2.172)

A piece of transmission line is a two port. The matrix transforming the
amplitudes of the waves at the input port (1) to those of the output port (2)
is called the transfer matrix, see Figure 2.41

T

Figure 2.41: Definition of the wave amplitudes for the transfer matrix T.

For example, from Eq.(2.172) follows that the transfer matrix for free
space propagation is

T =

µ
e−jkz 0
0 ejkz

¶
. (2.173)

This formalism can be expanded to arbitrary multiports. Because of its
mathematical properties the scattering matrix that describes the transfor-
mation between the incoming and outgoing wave amplitudes of a multiport
is often used, see Figure 2.42.
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S

Figure 2.42: Scattering matrix and its port definition.

The scattering matrix defines a linear transformation from the incoming
to the outgoing waves

b = Sa, with a = (a1,a2, ...)
T , b = (b1,b2, ...)

T . (2.174)

Note, that the meaning between forward and backward waves no longer co-
incides with a and b, a connection, which is difficult to maintain if several
ports come in from many different directions.
The transfer matrix T has advantages, if many two ports are connected

in series with each other. Then the total transfer matrix is the product of
the individual transfer matrices.

2.3.4 Properties of the Scattering Matrix

Physial properties of the system reflect itself in the mathematical properties
of the scattering matrix.

Reciprocity

A system with constant scalar dielectric and magnetic properties must have
a symmetric scattering matrix (without proof)

S = ST . (2.175)



72 CHAPTER 2. CLASSICAL ELECTROMAGNETISM AND OPTICS

Losslessness

In a lossless system the total power flowing into the system must be equal to
the power flowing out of the system in steady state

|a|2 =
¯̄̄
b
¯̄̄2
, (2.176)

i.e.
S+S = 1 or S−1=S+. (2.177)

The scattering matrix of a lossless system must be unitary.

Time Reversal

To find the scattering matrix of the time reversed system, we realize that
incoming waves become outgoing waves under time reversal and the other
way around, i.e. the meaning of a and b is exchanged and on top of it the
waves become negative frequency waves.

aej(ωt−kz)
time reversal→ aej(−ωt−kz). (2.178)

To obtain the complex amplitude of the corresponding positive frequency
wave, we need to take the complex conjugate value. So to obtain the equa-
tions for the time reversed system we have to perform the following substi-
tutions

Original system Time reversed system
b = Sa a∗ = Sb

∗ → b =
¡
S−1

¢∗
a
. (2.179)

2.3.5 Beamsplitter

As an example, we look at the scattering matrix for a partially transmitting
mirror, which could be simply formed by the interface between two media
with different refractive index, which we analyzed in the previous section,
see Figure 2.43. (Note, for brevity we neglect the reflections at the normal
surface input to the media, or we put an AR-coating on them.) In principle,
this device has four ports and should be described by a 4x4 matrix. However,
most often only one of the waves is used at each port, as shown in Figure
2.43.
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Figure 2.43: Port definitions for the beam splitter

The scattering matrix is determined by

b = Sa, with a = (a1,a2)
T , b = (b3, b4)

T (2.180)

and

S=

µ
r jt
jt r

¶
, with r2 + t2 = 1. (2.181)

The matrix S was obtained using using the S-matrix properties described
above. From Eqs.(2.113) we could immediately identify r as a function of
the refractive indices, angle of incidence and the polarization used. Note,
that the off-diagonal elements of S are identical, which is a consequence of
reciprocity. That the main diagonal elements are identical is a consequence
of unitarity for a lossless beamsplitter and furthermore t =

√
1− r2. For a

given frequency r and t can always be made real by choosing proper reference
planes at the input and the output of the beam splitter. Beamsplitters can
be made in many ways, see for example Figure 2.37.

2.3.6 Interferometers

Having a valid description of a beamsplitter at hand, we can build and ana-
lyze various types of interferometers, see Figure 2.44.
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Figure 2.44: Different types of interferometers: (a) Mach-Zehnder Interfer-
ometer; (b) Michelson Interferometer; (c) Sagnac Interferometer [6] p. 66.

Each of these structures has advantages and disadvantages depending
on the technology they are realized. The interferometer in Figure 2.44 (a)
is called Mach-Zehnder interferometer, the one in Figure 2.44 (b) is called
Michelson Interferometer. In the Sagnac interferometer , Figure 2.44 (c) both
beams see identical beam path and therefore errors in the beam path can be
balance out and only differential changes due to external influences lead to
an output signal, for example rotation, see problem set 3.
To understand the light transmission through an interferometer we ana-

lyze as an example the Mach-Zehnder interferometer shown in Figure 2.45.
If we excite input port 1 with a wave with complex amplitude a0 and no
input at port 2 and assume 50/50 beamsplitters, the first beam splitter will
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φ3

φ4

Figure 2.45: Mach-Zehnder Interferometer

produce two waves with complex amplitudes

b3 =
1√
2
a0

b4 = j 1√
2
a0

(2.182)

During propagation through the interferometer arms, both waves pick up a
phase delay φ3 = kL3 and φ4 = kL4, respectively

a5 =
1√
2
a0e

−jφ3 ,

a6 = j 1√
2
a0e

−jφ4 .
(2.183)

After the second beam splitter with the same scattering matrix as the first
one, we obtain

b7 =
1
2
a0
¡
e−jφ3 − e−jφ4

¢
,

b8 = j 1
2
a0
¡
e−jφ3 + e−jφ4

¢
.

(2.184)

The transmitted power to the output ports is

|b7|2 = |a0|
2

4

¯̄
1− e−j(φ3−φ4)

¯̄2
= |a0|

2

2
[1− cos (φ3 − φ4)] ,

|b8|2 = |a0|
2

4

¯̄
1 + e−j(φ3−φ4)

¯̄2
= |a0|

2

2
[1 + cos (φ3 − φ4)] .

(2.185)

The total output power is equal to the input power, as it must be for a lossless
system. However, depending on the phase difference ∆φ = φ3 − φ4 between
both arms, the power is split differently between the two output ports, see
Figure 2.46.With proper biasing, i.e. φ3 − φ4 = π/2 +∆φ, the difference in
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Figure 2.46: Output power from the two arms of an interfereometer as a
function of phase difference.

output power between the two arms can be made directly proportional to
the phase difference ∆φ.

Opening up the beam size in the interferometer and placing optics into
the beam enables to visualize beam distortions due to imperfect optical com-
ponents, see Figures 2.47 and 2.48.

Figure 2.47: Twyman-Green Interferometer to test optics quality [1] p. 324.
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Figure 2.48: Interference pattern with a hot iron placed in one arm of the
interferometer ([1], p. 395).

2.3.7 Fabry-Perot Resonator

Interferometers can act as filters. The phase difference between the interfer-
ometer arms depends on frequency, therefore, the transmission from input to
output depends on frequency, see Figure 2.46. However, the filter function is
not very sharp. The reason for this is that only a two beam interference is
used. Much more narrowband filters can be constructed by multipass inter-
ferences such as in a Fabry-Perot Resonator, see Figure 2.49. The simplest
Fabry Perot is described by a sequence of three layers where at least the mid-
dle layer has an index different from the other two layers, such that reflections
occur on these interfaces.
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Figure 2.49: Multiple intereferences in a Fabry Perot resonator. In the sim-
plest implementation a Fabry Perot only consists of a sequence of three layers
with different refractive index so that two reflections occur with multiple in-
terferences. Each of this discontinuites can be described by a scattering
matrix.

Any kind of device that has reflections at two parallel interfaces may
act as a Fabry Perot such as two semitransparent mirrors. A thin layer
of material against air can act as a Fabry-Perot and is often called etalon.
Given the reflection and transmission coefficients at the interfaces 1 and 2,
we can write down the scattering matrices for both interfaces according to
Eqs.(2.180) and (2.181).µ

b̃1
b̃2

¶
=

µ
r1 jt1
jt1 r1

¶µ
ã1
ã2

¶
and

µ
b̃3
b̃4

¶
=

µ
r2 jt2
jt2 r2

¶µ
ã3
ã4

¶
.

(2.186)
If we excite the Fabry-Perot with a wave from the right with amplitude.
ã1 6= 0, then a fraction of that wave will be transmitted to the interface into
the Fabry-Perot as wave b̃2 and part will be already reflected into b̃1,

b̃
(0)

1 = r1ã1. (2.187)

The transmitted wave will then propagate and pick up a phase factor e−jφ/2,
with φ = 2k2L and k2 =

2π
λ
n2,

ã3=jtã1e
−jφ/2. (2.188)
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After propagation it will be reflected off from the second interface which has
a reflection coefficient

Γ2 =
b̃3
ã3

¯̄̄̄
¯
a4=0

= r2. (2.189)

Then the reflected wave b̃3 propagates back to interface 1, picking up another
phase factor e−jφ/2 resulting in an incoming wave after one roundtrip of ã(1)2 =
jt1r2e

−jφã1. Upon reflection on interface 1, part of this wave is transmitted
leading to an output

b̃
(1)

1 =jt1jt1r2e−jφã1. (2.190)

The partial wave a(1)2 is reflected again and after another roundtrip it arrives
at interface 1 as ã(2)2 = (r1r2) e

−jφ · jt1r2e−jφã1. Part of this wave is trans-
mitted and part of it is reflected back to go through another cycle. Thus in
total if we sum up all partial waves that contribute to the output at port 1
of the Fabry-Perot filter, we obtain

b̃1 =
∞X
n=0

b̃
(n)

1

=

Ã
r1 − t21r2e

−jφ
∞X
n=0

r1r2e
−jφ

!
ã1

=

µ
r1 − t21r2

e−jφ

1− r1r2e−jφ

¶
ã1

=
r1 − r2e

−jφ

1− r1r2e−jφ
ã1 (2.191)

Note, that the coefficient in front of Eq.(2.191) is the coefficient S11 of the
scattering matrix of the Fabry-Perot. In a similar manner, we obtainµ

b̃3
b̃4

¶
= S

µ
ã1
ã2

¶
(2.192)

and

S=
1

1− r1r2e−jφ

µ
r1 − r2e

−jφ −t1t2e−jφ/2
−t1t2e−jφ/2 r2 − r1e

−jφ

¶
(2.193)

In the following, we want to analyze the properties of the Fabry-Perot for
the case of symmetric reflectors, i.e. r1 = r2 and t1 = t2. Then we obtain for
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the power transmission coefficient of the Fabry-Perot, |S21|2 in terms of the
power reflectivity of the interfaces R = r2

|S21|2 =
¯̄̄̄
1−R

1−Re−jφ

¯̄̄̄2
=

(1−R)2

(1−R)2 + 4R sin2(φ/2)
(2.194)

Figure 2.50 shows the transmission |S21|2 of the Fabry-Perot interferometer
for equal reflectivities |r1|2 = |r2|2 = R.
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Figure 2.50: Transmission of a lossless Fabry-Perot interferometer with
|r1|2 = |r2|2 = R

At very low reflectivity R of the mirror the transmission is almost every-
where 1, there is only a slight sinusoidal modulation due to the first order
interferences which are periodically in phase and out of phase, leading to
100% transmission or small reflection. For large reflectivity R, due to the
then multiple interference operation of the Fabry-Perot Interferometer, very
narrow transmission resonances emerge at frequencies, where the roundtrip
phase in the resonator is equal to a multiple of 2π

φ =
2πf

c0
n22L = 2πm, (2.195)
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which occurs at a comb of frequencies, see Figure 2.51

fm = m
c0
2n2L

. (2.196)
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Figure 2.51: Developement of a set of discrete resonances in a one-
dimensionsal resonator.

On a large frequency scale, a set of discrete frequencies, resonances or
modes arise. The frequency range between resonances is called free spectral
range (FSR) of the Fabry-Perot Interferometer

FSR =
c0
2n2L

=
1

TR
, (2.197)

which is the inverse roundtrip time TR of the light in the one-dimensonal
cavity or resonator formed by the mirrors. The filter characteristic of each
resonance can be approximately described by a Lorentzian line derived from
Eq.(2.194) by substituting f = fm +∆f with ∆f ¿ FSR,

|S21|2 =
(1−R)2

(1−R)2 + 4R sin2
¡£
m2π + 2π ∆f

FSR

¤
/2
¢

≈ 1

1 +
³
2π
√
R

1−R
∆f
FSR

´2 , (2.198)

≈ 1

1 +
³

∆f
∆fFWHM/2

´2 , (2.199)
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where we introduced the FWHM of the transmission filter

∆fFWHM =
FSR

F
, (2.200)

with the finesse of the interferometer defined as

F =
π
√
R

1−R
≈ π

T
. (2.201)

The last simplification is valid for a highly reflecting mirror R ≈ 1 and T is
the mirror transmission. From this relation it is immediately clear that the
finesse has the additional physical meaning of the optical power enhancement
inside the Fabry-Perot at resonance besides the factor of π, since the power
inside the cavity must be larger by 1/T , if the transmission through the
Fabry-Perot is unity.

2.3.8 Quality Factor of Fabry-Perot Resonances

Another quantity often used to characterize a resonator or a resonance is
its quality factor Q, which is defined as the ratio between the resonance
frequency and the decay rate for the energy stored in the resonator, which is
also often called inverse photon lifetime, τ−1ph

Q = τ phfm. (2.202)

Lets assume, energy is stored in one of the resonator modes which occupies a
range of frequencies [fm − FSR/2, fm + FSR/2] as indicated in Figure 2.52.
Then the fourier integral

am(t) =

Z +FSR/2

−FSR/2
b̃2(f)e

j2π(f−fm)t df, (2.203)

where
¯̄̄
b̃2(f)

¯̄̄2
is normalized such that it describes the power spectral density

of the forward traveling wave in the resonator gives the mode amplitude of the
m-th mode and its magnitude square is the energy stored in the mode. Note,
that we could have taken any of the internal waves ã2, b̃2, ã3, and b̃3. The time
dependent field we create corresponds to the field of the forward or backward
traveling wave at the corresponding reference plane in the resonator.
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Figure 2.52: Integration over all frequency components within the frequency
range [fm − FSR/2, fm + FSR/2] defines a mode amplitude a(t) with a slow
time dependence

We now make a "Gedanken-Experiment". We switch on the incoming
waves ã1(ω) and ã4(ω) to load the cavity with energy and evaluate the in-
ternal wave b̃2(ω). Instead of summing up all the multiple reflections like
we did in constructing the scattering matrix (2.192), we exploit our skills
in analyzing feedback systems, which the Fabry-Perot filter is. The scat-
tering equations set force by the two scattering matrices characterizing the
resonator mirrors in the Fabry-Perot can be visuallized by the signal flow
diagram in Figure 2.53
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Figure 2.53: Representation of Fabry-Perot resonator by a signal flow dia-
gram
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For the task to find the relationship between the internal waves feed by
the incoming wave only the dashed part of the signal flow is important. The
internal feedback loop can be clearly recognized with a closed loop transfer
function

r2e−jφ,

which leads to the resonance denominator

1− r2e−jφ

in every element of the Fabry-Perot scattering matrix (2.192). Using Blacks
formula from 6.003 and the superposition principle we immediately find for
the internal wave

b̃2 =
jt

1− r2e−jφ
¡
ã1 + re−jφ/2ã4

¢
. (2.204)

Close to one of the resonance frequencies, Ω = 2πfm + ω, using t = 1− r2,
(2.204) can be approximated by

b̃2(ω) ≈
j

1 + j R
1−RωTR

¡
ã1(ω) + r(−1)me−jωTR/2ã4(ω)

¢
, (2.205)

≈ j

1 + jωTR/T

¡
ã1(ω) + r(−1)me−jωTR/2ã4(ω)

¢
(2.206)

for high reflectivity R. Multiplication of this equation with the resonant de-
nominator

(1 + jωTR/T ) b̃2(ω) ≈ j
¡
ã1(ω) + r(−1)me−jωTR/2ã4(ω)

¢
(2.207)

and inverse Fourier-Transform in the time domain, while recognizing that
the internal fields vanish far off resonance, i.e.

am(t) =

Z +π·FSR

−π·FSR
b̃2(ω)e

jωt dω =

Z +∞

−∞
b̃2(ω)e

jωt dω, (2.208)

we obtain the following differential equation for the mode amplitude slowly
varying in time

TR
d

dt
am(t) = −T (am(t) + ja1(t) + j(−1)ma4(t− TR/2)) (2.209)
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with the input fields

a1/4(t) =

Z +π·FSR

−π·FSR
ã1/4(ω)e

jωt dω. (2.210)

Despite the pain to derive this equation the physical interpretation is remark-
ably simple and far reaching as we will see when we apply this equation later
on to many different situations. Lets assume, we switch off the loading of
the cavity at some point, i.e. a1/4(t) = 0, then Eq.(2.209) results in

am(t) = am(0)e
−t/(TR/T ) (2.211)

And the power decays accordingly

|am(t)|
2 = |am(0)|

2 e−t/(TR/2T ) (2.212)

twice as fast as the amplitude. The energy decay time of the cavity is often
called the cavity energy decay time, or photon lifetime, τ ph, which is here

τ ph =
TR
2T

.

Note, the factor of two comes from the fact that each mirror of the Fabry-
Perot has a transmission T per roundtrip time. For exampl a L = 1.5m long
cavity with mirrors of 0.5% transmission, i.e. TR = 10ns and 2T = 0.01 has a
photon lifetime of 1μs. It needs hundred bounces on the mirror for a photon
to be essentially lost from the cavity.
Highest quality dielectric mirrors may have a reflection loss of only 10−5...−6,

this is not really transmission but rather scattering loss in the mirror. Such
high reflectivity mirrors may lead to the construction of cavities with photon
lifetimes on the order of milliseconds.
Now, that we have an expression for the energy decay time in the cavity,

we can evaluate the quality factor of the resonator

Q = fm · τ ph =
m

2T
. (2.213)

Again for a resonator with the same parameters as before and at optical
frequencies of 300THz corresponding to 1μm wavelength, we obtain Q =
2 · 108.
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2.3.9 Thin-Film Filters

Transfer matrix formlism is an efficient method to analyze the reflection and
transmission properties of layered dielectric media, such as the one shown
in Figure 2.54. Using the transfer matrix method, it is an easy task to
compute the transmission and reflection coefficients of a structure composed
of layers with arbitrary indices and thicknesses. A prominent example of a
thin-film filter are Bragg mirrors. These are made of a periodic arrangement
of two layers with low and high index n1 and n2, respectively. For maximum
reflection bandwidth, the layer thicknesses are chosen to be quarter wave for
the wavelength maximum reflection occures, n1d1 =λ0/4 and n2d2 =λ0/4

a2_~

a1_~ b2_~

b1_~

....
n1 n1 n1n2n2 n2

d1 d1 d1d2 d2 d2

Figure 2.54: Thin-Film dielectric mirror composed of alternating high and
low index layers.

As an example Figure 2.55 shows the reflection from a Bragg mirror with
n1 = 1.45, n2 = 2.4 for a center wavelength of λ0 = 800nm. The layer
thicknesses are then d1 =134nm and d2 =83nm.
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Figure 2.55: Reflectivity of an 8 pair quarter wave Bragg mirror with n1 =
1.45 and n2 = 2.4 designed for a center wavelength of 800nm. The mirror is
embedded in the same low index material.
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2.4 Paraxial Wave Equation and Gaussian Beams

So far, we have only treated optical systems operating with plane waves,
which is an idealization. In reality plane waves are impossible to generate
because of there infinite amount of energy required to do so. The simplest
(approximate) solution of Maxwell’s equations describing a beam of finite size
is the Gaussian beam. In fact many optical systems are based on Gaussian
beams. Most lasers are designed to generate a Gaussian beam as output.
Gaussian beams stay Gaussian beams when propagating in free space. How-
ever, due to its finite size, diffraction changes the size of the beam and lenses
are imployed to reimage and change the cross section of the beam. In this sec-
tion, we want to study the properties of Gaussian beams and its propagation
and modification in optical systems.

2.4.1 Paraxial Wave Equation

We start from the Helmholtz Equation (2.18)

¡
∆+ k20

¢ e
E(x, y, z, ω) = 0, (2.214)

with the free space wavenumber k0 = ω/c0. This equation can easily be
solved in the Fourier domain, and one set of solutions are of course the plane
waves with wave vector |k|2 = k20. We look for solutions which are polarized
in x-direction e

E(x, y, z, ω) = eE(x, y, z) ex. (2.215)

We want to construct a beam with finite transverse extent into the x-y-plane
and which is mainly propagating into the positive z-direction. As such we
may try a superposition of plane waves with a dominant z-component of the
k-vector, see Figure 2.56. The k-vectors can be written as

kz =
q
k20 − k2x − k2y,

≈ k0

µ
1−

k2x − k2y
2k20

¶
. (2.216)

with kx, ky << k0.
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Figure 2.56: Construction of a paraxial beam by superimposing many plane
waves with a dominante k-component in z-direction.

Then we obtain for the propagating field

eE(x, y, z) =

Z +∞

−∞

Z +∞

−∞
eE0(kx, ky) ·

exp

∙
−jk0

µ
1−

k2x + k2y
2k20

¶
z − jkxx− jkyy

¸
dkxdky,

=

Z +∞

−∞

Z +∞

−∞
eE0(kx, ky) ·

exp

∙
j

µ
k2x + k2y
2k0

¶
z − jkxx− jkyy

¸
dkxdkye

−jk0z, (2.217)

where eE0(kx, ky) is the amplitude for the waves with the corresponding trans-
verse k-component. This function should only be nonzero within a small
range kx, ky ¿ k0. The function

eE0(x, y, z) = Z +∞

−∞

Z +∞

−∞
eE0(kx, ky) exp ∙j µk2x + k2y

2k0

¶
z − jkxx− jkyy

¸
dkxdky

(2.218)
is a slowly varying function in the transverse directions x and y, and it can
be easily verified that it fulfills the paraxial wave equation

∂

∂z
eE0(x, y, z) = −j

2k0

µ
∂2

∂x2
+

∂2

∂x2

¶ eE0(x, y, z). (2.219)

Note, that this equation is in its structure identical to the dispersive spreading
of an optical pulse. The difference is that this spreading occurs now in the
two transverse dimensions and is called diffraction.




