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Chapter 1

Introduction

The word Photonics has been coined over the last two decades with the goal
to describe the field of Optics, Optoelectronic phenomena and its applica-
tions by one word similar to the very successful field of Electronics. As the
word indicates, Photonics uses primarily photons to carry out its mission
in contrast to Electronics which uses primarily electrons or other charged
particles. But no strict separation of both fields is possible, at least not
on an elementary level. Electrons in acceleration generate electromagnetic
waves. Sometimes these waves are guided and over short distances the wave
aspect can be neglected and one can talk about electronics only. Similar,
pure photonics, i.e. the free electromagnetic field in vaccum, without matter
is not of very much interest and use either. Quantum Mechanics teaches
us that there are elementary excitations (in energy) of these waves, photons
with particle like properties. So far, we are used to thinking of electrons
as classical particles but Quantum Mechanics equally assigns to them wave
properties, matter waves, like it assigns to the electromagnetic waves particle
like properties. Electrons are elementary excitations of matter waves just as
photons are elementary excitations of electromagnetic waves. We will talk
later in more depth about this wave particle duality, once we have developed
the mathematical tools to analyze its meaning quantitatively.
So far we have been educated using the language of classical physics.

In the classical limit, it turns out that electrons (particles with spin 1/2)
are particles and photons (particles with integral spin) behave like classical
waves and the particle nature is of vanishing importance. This is the reason
why Photonics eventually is experienced as more abstract than Electronics,
especially if you went through three years of education primarily focused on
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2 CHAPTER 1. INTRODUCTION

Electronics and its applications. The particle properties of electromagnetic
waves become of importance when the energy of the photons considered,
hf, where h is Planck’s constant and f is the frequency, is larger than the
thermal energy stored in an electromagnetic mode, kT , where k is Boltz-
mann’s constant and T is temperature. At room temperature this is the case
for frequencies greater than 6THz. For lower temperatures this transition
frequency from classical to quantum behaviour may already occur at GHz
frequencies. Certainly, at room temperature, the particle properties are im-
portant in the near infrared (IR) and visible spectrum where currently the
bulk of the photonic activities are carried out, see Figure 1.1.

Figure 1.1: Wavelength and frequency ranges of electromagnetic radiation
and its use.

An important task of Photonics is the development of coherent sources of
radiation, which are in the optical range called LASER’s (Light Amplification
by Stimulated Emission of Radiation). The first amplifier making explicit use
of the quantum properties of matter was the MASER (Microwave Amplifi-
cation by Stimulated Emission of Radiation) invented by J. P. Gordon, C.
H. Townes and Zeiger in 1954. The extension of the MASER principle to
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the optical wavelength range was proposed by Schawlow and Townes in 1958
and the first laser was demonstrated in 1960 by Maiman [5].
As in the case of Electronics, Communications is a very important area

in Photonics, and is usually called Optical Communications, which is carried
out primarily in the infrared to visible wavelength range, see Figure 1.1. The
enormous bandwidth available at optical frequencies, roughly four orders of
magnitude higher than typical microwave frequencies (10GHz), enables the
corresponding advance in information transmission capacity when compared
to what electronics can do over a single long distance transmission link at
microwave frequencies. Our current society could not be sustained without
the worldwide deployed optical cable network, see Figure 1.2, which can be
considered the largest connected machinery on earth. Understanding of the
basic working principles of the components used in such lightwave networks,
like the optical fiber itself, waveguide couplers, modulators, light sources is
at the heart of this course.

Figure 1.2: Worldwide underwater optical cable systems

The big advantage of Photonics versus Electronics in the area of infor-
mation transmission is that photons do not interact with each other directly.
Maxwell’s equations in the classical vacuum are linear. Whereas electrons,
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which are charged particles, show very strong interaction via their Coulomb
fields. This is one reason why Photonics is very powerful in information trans-
mission; essentially no interference with other signals; whereas electronics is
very strong in information processing which is based on nonlinear operations.

Figure 1.3: High-Index Contrast SiN/SiO2/Air Filter using Scanning Elec-
tron Beam Lithograph. Courtesy of H. Smith MIT-Nanostructures Labora-
tory

As in the case of Electronics, miniaturization of many components and
integration on a common technology platform is one of the major challenges
in photonics (Integrated Optics). Over the last few years a new field called
Silicon-Photonics came to life. Modern nanofabrication techniques such as
Scanning Electron Beam Lithography enable the fabrication of optical com-
ponents on the scale of the optical wavelength with a relative precision in the
few nanometer range in the same material system like electronics, i.e. sili-
con/silicon nitride/silicon dioxide, see Figure 1.3. Fig. 1.4 shows a measured
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filter characteristic useful for optical communications applications. Systems
that integrate both optical and electronic subsystems on a single chip called
Electronic-Photonic Integrated Circuits are on the horizon.

in through

adddrop

stage through

discard

in through

adddrop

stage through

discard

Figure 1.4: Schematic and measured two stage third order ring filter. Cour-
tesy MIT-Optics and Quantum Electronics Group

As with Electronics, Photonics has not only left its mark on communi-
cations but is used in a wide variety of sensing applications specific to its
wavelength range as well as optical imaging, test and measurement instru-
mentation, manufacturing and materials processing. High power lasers with
average powers of tens of kilowatts can cut many centimeter thick steel plates
at high speed. Laser systems reaching petawatts (1015Watt) of peak power
were built at Lawrence Livermore Laboratory for the first time in 1996, (see
Fig. 1.5) and much more compact versions are under construction at several
laboratories around the world. The enormous peak power (the average power
consumption of the earth is on the order of a few Terawatt (1012Watt)), even
though only available over a fraction of a picosecond, will enable us to inves-
tigate new physics and fundamental interactions at extreme intensities, such
as the scattering of photons with each other invoking vacuum nonlinearities
(the Quantum Electrodynamic Vacuum), see Figure 1.6
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Figure 1.5: First petawatt laser system installed at LLNL us-
ing chirped pulse amplification and the NOVA amplifier chain, see
http://www.llnl.gov/str/MPerry.html.

Because of the higher operating frequencies, optical sources can provide
much higher time resolution than microwave sources. Therefore, it is not
surprising that the shortest controlled events that currently can be made are
optical pulses that comprise only a few cycles of light. These events are so
short that one can only use the pulses themselves to reveal its pulse width,
for example by performing an autocorrelation of the pulse with a copy of
itself using a nonlinear element, see Fig. 1.7.
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Figure 1.6: Progress in peak intensity generation from lasers over the last 45
years. Courtesy Gerard Mourou.
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Figure 1.7: Experimental setup for measureing an interferometric autocorre-
lation. A copy of the pulse is generated and interferometrically delayed with
respect to the original pulse. The superposition of the two pulses undergo
second harmonic generation in a crystal and the second harmonic light is
detected.

Figure 1.8 shows a measured interferometric second harmonic autocorrela-
tion trace of a 5fs (fs=femtosecond, 10−15s) short pulse at a center frequency
of 800nm [19].

8
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Figure 1.8: Measured and fitted interferometric autocorrelation function of
a 5fs pulse [19].

Femtosecond pulses have been used to understand the carrier dynamics
in semiconductors, that limit the speed of electronic devices, the dynamics
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of chemical reactions such as photosynthesis or the early stages of vision.
As in any discipline the development does not stop and most recently pulses
as short as 250 attoseconds (10−18s)have been generated in the soft-x-ray
regime [4]. Laser like sources potentially generating radiation up into the
hard x-ray regime are being planned to be built over the next years [5]. The
hope is that such sources enable the spatially and temporally resolved direct
imaging of molecules and atoms undergoing reactions, which would advance
medical diagnostics and drug discovery. As these examples show, Photonics
is a booming area, despite the downturn of the Telecommunications industry.
The basis for its success is fundamental and, therefore, it will continue to grow
in importance with impact in our everyday lifes as has been the case with
(Micro-) Electronics, just think about your high-speed internet connection
or the CD-player.
The course is organized as follows: In Chapter 2 we will review some con-

cepts of Classical Electromagnetism from 6.013, such as plane electromag-
netic waves in isotropic media, the related energy flow, and their properties
upon reflections at interfaces. This will enable us to study various important
optical devices such as prisms, interferometers, Fabry-Perot resonators and
thin film interference coatings. The plane electromagnetic wave is an ideal-
ization similar to the perfect monochromatic sin or cosine in signal theory.
We will use the plane waves to understand beams of finite size and discuss
them as solutions to the paraxial wave equation, the Gaussian beams which
in the limit of large beam size become optical rays. The concept of optical
rays will enable us to discuss imaging properties and the design of optical
systems. Then we will look into guided optical beams such as in optical fibers
and waveguides from the point of view of ray optics and from the view point
of full solutions to Maxwell’s equations. The concept of optical modes and
resonances will be discussed. To understand optics in crystalline materials
and related phenomena such as birefringence and its multiple use in opti-
cal components for polarization manipulation and switching we will briefly
discuss wave propagation in anisotropic media.
This basic training in wave physics puts us in an excellent position to

understand Quantum Mechanics. We will revisit in chapter III the expermi-
mental facts appearing at the turn of the 19th century that lead to the dis-
covery of Quantum Mechanics. In chapter IV, we will find the Schroedinger
Equation, a wave equation for matter waves, and introduce the formalism
of Quantum Mechanics at the example of the harmonic oscillator and the
hydrogen atom. Both systems are model systems for understanding pho-
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tons and energy eigenspectra of quantum systems that can be fully solved
analytically.
Chapter V is devoted to the basic understanding of the interaction of light

and matter and sets the basis for the study of the laser and its fundamental
properties in chapter VI. In chapter VII the modulation of light using electro
and acousto-optic effects is discussed. If time permits an introduction to the
quantum theory of light fields and photo detection is also treated.
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Chapter 2

Classical Electromagnetism and
Optics

The classical electromagnetic phenomena are completely described byMaxwell’s
Equations. The simplest case we may consider is that of electrodynamics of
isotropic media

2.1 Maxwell’s Equations of Isotropic Media

Maxwell’s Equations are

∇×H =
∂D

∂t
+ J, (2.1a)

∇×E = −∂B
∂t

, (2.1b)

∇ ·D = ρ, (2.1c)

∇ ·B = 0. (2.1d)

The material equations accompanying Maxwell’s equations are:

D = 0E + P, (2.2a)

B = μ0H +M. (2.2b)

Here, E and H are the electric and magnetic field, D the dielectric flux, B
the magnetic flux, J the current density of free chareges, ρ is the free charge
density, P is the polarization, and M the magnetization.
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14 CHAPTER 2. CLASSICAL ELECTROMAGNETISM AND OPTICS

Note, it is Eqs.(2.2a) and (2.2b) which make electromagnetism an inter-
esting and always a hot topic with never ending possibilities. All advances in
engineering of artifical materials or finding of new material properties, such
as superconductivity, bring new life, meaning and possibilities into this field.
By taking the curl of Eq. (2.1b) and considering

∇×
³
∇×E

´
= ∇

³
∇ · E

´
−∆E,

where ∇ is the Nabla operator and ∆ the Laplace operator, we obtain

∆E − μ0
∂

∂t

Ã
j + 0

∂E

∂t
+

∂P

∂t

!
=

∂

∂t
∇×M+∇

³
∇ ·E

´
(2.3)

and henceµ
∆− 1

c20

∂2

∂t2

¶
E = μ0

Ã
∂j

∂t
+

∂2

∂t2
P

!
+

∂

∂t
∇×M+∇

³
∇ · E

´
. (2.4)

with the vacuum velocity of light

c0 =

s
1

μ0 0
. (2.5)

For dielectric non magnetic media, which we often encounter in optics, with
no free charges and currents due to free charges, there is M = 0, J = 0,
ρ = 0, which greatly simplifies the wave equation toµ

∆− 1

c20

∂2

∂t2

¶
E = μ0

∂2

∂t2
P +∇

³
∇ · E

´
. (2.6)

2.1.1 Helmholtz Equation

In general, the polarization in dielectric media may have a nonlinear and
non local dependence on the field. For linear media the polarizability of the
medium is described by a dielectric susceptibility χ (r, t)

P (r, t) = 0

Z Z
dr0dt0 χ (r − r0, t− t0)E (r0, t0) . (2.7)
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The polarization in media with a local dielectric suszeptibility can be de-
scribed by

P (r, t) = 0

Z
dt0 χ (r, t− t0)E (r, t0) . (2.8)

This relationship further simplifies for homogeneous media, where the sus-
ceptibility does not depend on location

P (r, t) = 0

Z
dt0 χ (t− t0)E (r, t0) . (2.9)

which leads to a dielectric response function or permittivity

(t) = 0(δ(t) + χ (t)) (2.10)

and with it to

D(r, t) =

Z
dt0 (t− t0)E (r, t0) . (2.11)

In such a linear homogeneous medium follows from eq.(2.1c) for the case of
no free charges Z

dt0 (t− t0) (∇ · E (r, t0)) = 0. (2.12)

This is certainly fulfilled for ∇ · E = 0, which simplifies the wave equation
(2.4) further µ

∆− 1

c20

∂2

∂t2

¶
E = μ0

∂2

∂t2
P. (2.13)

This is the wave equation driven by the polarization of the medium. If the
medium is linear and has only an induced polarization, completely described
in the time domain χ (t) or in the frequency domain by its Fourier transform,
the complex susceptibility χ̃(ω) = r̃(ω) − 1 with the relative permittivity
r̃(ω) = ˜(ω)/ 0, we obtain in the frequency domain with the Fourier trans-
form relationship

e
E(z, ω) =

+∞Z
−∞

E(z, t)e−jωtdt, (2.14)

e
P (ω) = 0χ̃(ω)

e
E(ω), (2.15)
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where, the tildes denote the Fourier transforms in the following. Substituted
into (2.13) µ

∆+
ω2

c20

¶ e
E(ω) = −ω2μ0 0χ̃(ω)

e
E(ω), (2.16)

we obtain µ
∆+

ω2

c20
(1 + χ̃(ω)

¶ e
E(ω) = 0, (2.17)

with the refractive index n(ω) and 1+ χ̃(ω) = n(ω)2 results in the Helmholtz
equation µ

∆+
ω2

c2

¶ e
E(ω) = 0, (2.18)

where c(ω) = c0/n(ω) is the velocity of light in the medium. This equation
is the starting point for finding monochromatic wave solutions to Maxwell’s
equations in linear media, as we will study for different cases in the following.
Also, so far we have treated the susceptibility χ̃(ω) as a real quantity, which
may not always be the case as we will see later in detail.

2.1.2 Plane-Wave Solutions (TEM-Waves) and Com-
plex Notation

The real wave equation (2.13) for a linear medium has real monochromatic
plane wave solutions Ek(r, t), which can be be written most efficiently in
terms of the complex plane-wave solutions Ek(r, t) according to

Ek(r, t) =
1

2

h
Ek(r, t) +Ek(r, t)

∗
i
= <e

n
Ek(r, t)

o
, (2.19)

with
Ek(r, t) = Ek e

j(ωt−k·r) e(k). (2.20)

Note, we explicitly underlined the complex wave to indicate that this is a
complex quantity. Here, e(k) is a unit vector indicating the direction of the
electric field which is also called the polarization of the wave, and Ek is
the complex field amplitude of the wave with wave vector k. Substitution
of eq.(2.19) into the wave equation results in the dispersion relation, i.e. a
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relationship between wave vector and frequency necessary to satisfy the wave
equation

|k|2 = ω2

c(ω)2
= k(ω)2. (2.21)

Thus, the dispersion relation is given by

k(ω) = ±ω

c0
n(ω). (2.22)

with the wavenumber
k = 2π/λ, (2.23)

where λ is the wavelength of the wave in the medium with refractive index
n, ω the angular frequency, k the wave vector. Note, the natural frequency
f = ω/2π. From ∇ · E = 0, for all time, we see that k ⊥ e. Substitution of
the electric field 2.19 into Maxwell’s Eqs. (2.1b) results in the magnetic field

Hk(r, t) =
1

2

h
Hk(r, t) +Hk(r, t)

∗
i

(2.24)

with
Hk(r, t) = Hk e

j(ωt−k·r) h(k). (2.25)

This complex component of the magnetic field can be determined from the
corresponding complex electric field component using Faraday’s law

−jk ×
³
Ek e

j(ωt−k·r) e(k)
´
= −jμ0ωHk(r, t), (2.26)

or

Hk(r, t) =
Ek

μ0ω
ej(ωt−k·r)k × e = Hke

j(ωt−k·r)h (2.27)

with

h(k) =
k

|k| × e(k) (2.28)

and

Hk =
|k|
μ0ω

Ek =
1

ZF
Ek. (2.29)

The characteristic impedance of the TEM-wave is the ratio between electric
and magnetic field strength

ZF = μ0c =

r
μ0

0 r
=
1

n
ZF0 (2.30)
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Figure 2.1: Transverse electromagnetic wave (TEM) [6]

with the refractive index n =
√

r and the free space impedance

ZF0 =

r
μ0

0
≈ 377Ω. (2.31)

Note that the vectors e, h and k form an orthogonal trihedral,

e ⊥ h, k ⊥ e, k ⊥ h. (2.32)

That is why we call these waves transverse electromagnetic (TEM) waves.
We consider the electric field of a monochromatic electromagnetic wave with
frequency ω and electric field amplitude E0, which propagates in vacuum
along the z-axis, and is polarized along the x-axis, (Fig. 2.1), i.e. k

|k| = ez,

and e(k) = ex. Then we obtain from Eqs.(2.19) and (2.20)

E(r, t) = E0 cos(ωt− kz) ex, (2.33)

and similiar for the magnetic field

H(r, t) =
E0
ZF0

cos(ωt− kz) ey, (2.34)

see Figure 2.1.Note, that for a backward propagating wave with E(r, t) =

E ejωt+jk·r ex, and H(r, t) = H ej(ωt+kr) ey, there is a sign change for the
magnetic field

H = − |k|
μ0ω

E, (2.35)

so that the (k,E,H) always form a right handed orthogonal system.
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2.1.3 Poynting Vectors, Energy Density and Intensity

The table below summarizes the instantaneous and time averaged energy
content and energy transport related to an electromagnetic field

Quantity Real fields Complex fields

Electric and
magnetic energy
density

we =
1
2
E ·D = 1

2 0 rE
2

wm =
1
2
H ·B = 1

2
μ0μrH

2

w = we + wm

w̄e =
1
4 0 r

¯̄̄
E
¯̄̄2

w̄m =
1
4
μ0μr

¯̄̄
H
¯̄̄2

w̄ = w̄e + w̄m

Poynting vector S = E×H T = 1
2
E×H∗

Poynting theorem divS +E · j + ∂w
∂t
= 0

divT + 1
2
E · j∗+

+2jω(w̄m − w̄e) = 0

Intensity I =
¯̄̄
S
¯̄̄
= cw I = Re{T} = cw̄

Table 2.1: Poynting vector and energy density in EM-fields

For a plane wave with an electric field E(r, t) = Eej(ωt−kz) ex we obtain
for the energy density in units of [J/m3]

w =
1

2
r 0|E|2, (2.36)

the complex Poynting vector

T =
1

2ZF
|E|2 ez, (2.37)

and the intensity in units of [W/m2]

I =
1

2ZF
|E|2 = 1

2
ZF |H|2. (2.38)

2.1.4 Classical Permittivity

In this section we want to get insight into propagation of an electromagnetic
wavepacket in an isotropic and homogeneous medium, such as a glass optical
fiber due to the interaction of radiation with the medium. The electromag-
netic properties of a dielectric medium is largely determined by the electric
polarization induced by an electric field in the medium. The polarization is
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Figure 2.2: Classical harmonic oscillator model for radiation matter interac-
tion

defined as the total induced dipole moment per unit volume. We formulate
this directly in the frequency domain

e
P (ω) =

dipole moment
volume

= N · hep(ω)i = 0eχ(ω)eE(ω), (2.39)

where N is density of elementary units and hpi is the average dipole mo-
ment of the unit (atom, molecule, ...). In an isotropic and homogeneous
medium the induced polarization is proportional to the electric field and the
proportionality constant, eχ(ω), is called the susceptibility of the medium.
As it turns out (justification later), an electron elastically bound to a

positively charged rest atom is not a bad model for understanding the inter-
action of light with matter at very low electric fields, i.e. the fields do not
change the electron distribution in the atom considerably or even ionize the
atom, see Figure 2.2. This model is called Lorentz model after the famous
physicist A. H. Lorentz (Dutchman) studying electromagnetic phenomena
at the turn of the 19th century. He also found the Lorentz Transformation
and Invariance of Maxwell’s Equations with respect to these transformation,
which showed the path to Special Relativity.
The equation of motion for such a unit is the damped harmonic oscillator

driven by an electric field in one dimension, x. At optical frequencies, the
distance of elongation, x, is much smaller than an optical wavelength (atoms
have dimensions on the order of a tenth of a nanometer, whereas optical
fields have wavelength on the order of microns) and therefore, we can neglect
the spatial variation of the electric field during the motion of the charges
within an atom (dipole approximation, i.e. E(r, t) = E(rA, t) = E(t)ex).
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The equation of motion is

m
d2x

dt2
+ 2

Ω0
Q
m
dx

dt
+mΩ20x = e0E(t), (2.40)

where E(t) = Ẽejωt. Here, m is the mass of the electron assuming the that
the rest atom has infinite mass, e0 the charge of the electron, Ω0 is the
resonance frequency of the undamped oscillator and Q the quality factor of
the resonance, which determines the damping of the oscillator. By using the
trial solution x (t) = x̃ejωt, we obtain for the complex amplitude of the dipole
moment p̃ with the time dependent response p(t) = e0x(t) = p̃ejωt

p̃ =
e20
m

(Ω20 − ω2) + 2jΩ0
Q
ω
Ẽ. (2.41)

Note, that we included ad hoc a damping term in the harmonic oscillator
equation. At this point it is not clear what the physical origin of this damp-
ing term is and we will discuss this at length later in chapter 4. For the
moment, we can view this term simply as a consequence of irreversible in-
teractions of the atom with its environment. We then obtain from (2.39) for
the susceptibility

χ(ω) =
N

e20
m
1
0

(Ω20 − ω2) + 2jωΩ0
Q

(2.42)

or

eχ(ω) = ω2p

(Ω20 − ω2) + 2jωΩ0
Q

, (2.43)

with ωp called the plasma frequency, which is defined as ω2p = Ne20/m 0. Fig-
ure 2.3 shows the normalized real and imaginary part, eχ(ω) = eχr(ω)+jeχi(ω)
of the classical susceptibility (2.43). Note, that there is a small resonance
shift (almost invisible) due to the loss. Off resonance, the imaginary part ap-
proaches zero very quickly. Not so the real part, which approaches a constant
value ω2p/Ω

2
0 below resonance for ω → 0, and approaches zero far above res-

onance, but much slower than the imaginary part. As we will see later, this
is the reason why there are low loss, i.e. transparent, media with refractive
index very much different from 1.
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Figure 2.3: Real part (dashed line) and imaginary part (solid line) of the
susceptibility of the classical oscillator model for the dielectric polarizability.

2.1.5 Optical Pulses

Optical pulses are wave packets constructed by a continuous superposition
of monochromatic plane waves. Consider a TEM-wavepacket, i.e. a super-
position of waves with different frequencies, polarized along the x-axis and
propagating along the z-axis

E(r, t) =

Z ∞

0

dΩ

2π
eE(Ω)ej(Ωt−K(Ω)z) ex. (2.44)

Correspondingly, the magnetic field is given by

H(r, t) =

Z ∞

0

dΩ

2πZF (Ω)
eE(Ω)ej(Ωt−K(Ω)z) ey (2.45)

Again, the physical electric and magnetic fields are real and related to the
complex fields by

E(r, t) =
1

2

³
E(r, t) +E(r, t)∗

´
(2.46)

H(r, t) =
1

2

³
H(r, t) +H(r, t)∗

´
. (2.47)

Here, |Ẽ(Ω)|ejϕ(Ω) is the complex wave amplitude of the electromagnetic wave
at frequency Ω and K(Ω) = Ω/c(Ω) = n(Ω)Ω/c0 the wavenumber, where,
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ω0

Ω

|E( )|Ω̃

|A( )|ω̃

ω
0

Figure 2.4: Spectrum of an optical wave packet described in absolute and
relative frequencies

n(Ω) is again the refractive index of the medium

n2(Ω) = 1 + χ(Ω), (2.48)

c and c0 are the velocity of light in the medium and in vacuum, respectively.
The planes of constant phase propagate with the phase velocity c of the wave.
The wavepacket consists of a superposition of many frequencies with the

spectrum shown in Fig. 2.4.
At a given point in space, for simplicity z = 0, the complex field of a

pulse is given by (Fig. 2.4)

E(z = 0, t) =
1

2π

Z ∞

0

Ẽ(Ω)ejΩtdΩ. (2.49)

Optical pulses often have relatively small spectral width compared to
the center frequency of the pulse ω0, as it is illustrated in the upper part
of Figure 2.4. For example typical pulses used in optical communication
systems for 10Gb/s transmission speed are on the order of 20ps long and
have a center wavelength of λ = 1550nm. Thus the spectral with is only on
the order of 50GHz, whereas the center frequency of the pulse is 200THz,
i.e. the bandwidth is 4000 smaller than the center frequency. In such cases
it is useful to separate the complex electric field in Eq. (2.49) into a carrier
frequency ω0 and an envelope A(t) and represent the absolute frequency as
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Ω = ω0 + ω. We can then rewrite Eq.(2.49) as

E(z = 0, t) =
1

2π

Z ∞

−ω0
Ẽ(ω0 + ω)ej(ω0+ω)tdω (2.50)

= A(t)ejω0t.

The envelope, see Figure 2.8, is given by

A(t) =
1

2π

Z ∞

−ω0→−∞
Ã(ω)ejωtdω (2.51)

=
1

2π

Z ∞

−∞
Ã(ω)ejωtdω, (2.52)

where Ã(ω) is the spectrum of the envelope with, Ã(ω) = 0 for ω ≤ −ω0.
To be physically meaningful, the spectral amplitude Ã(ω) must be zero for
negative frequencies less than or equal to the carrier frequency, see Figure
2.8. Note, that waves with zero frequency can not propagate, since the
corresponding wave vector is zero. The pulse and its envelope are shown in
Figure 2.5.

Figure 2.5: Electric field and envelope of an optical pulse.

Table 2.2 shows pulse shape and spectra of some often used pulses as well
as the pulse width and time bandwidth products. The pulse width and band-
width are usually specified as the Full Width at Half Maximum (FWHM) of

the intensity in the time domain, |A(t)|2 , and the spectral density
¯̄̄
Ã(ω)

¯̄̄2
in the frequency domain, respectively. The pulse shapes and corresponding
spectra to the pulses listed in Table 2.2 are shown in Figs 2.6 and 2.7.
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Pulse Shape Fourier Transform
Pulse
Width

Time-Band-
width Product

A(t) Ã(ω) =
R∞
−∞ a(t)e−jωtdt ∆t ∆t ·∆f

Gaussian: e−
t2

2τ2
√
2πτe−

1
2
τ2ω2 2

√
ln 2τ 0.441

Hyperbolic Secant:
sech( t

τ
)

τ
2
sech

¡
π
2
τω
¢

1.7627 τ 0.315

Rect-function:

=

½
1, |t| ≤ τ/2
0, |t| > τ/2

τ sin(τω/2)
τω/2

τ 0.886

Lorentzian: 1
1+(t/τ)2

2πτe−|τω| 1.287 τ 0.142

Double-Exp.: e−| tτ | τ
1+(ωτ)2

ln2 τ 0.142

Table 2.2: Pulse shapes, corresponding spectra and time bandwidth prod-
ucts.

Figure 2.6: Fourier transforms to pulse shapes listed in table 2.2 [6].
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Figure 2.7: Fourier transforms to pulse shapes listed in table 2.2 continued
[6].

2.1.6 Pulse Propagation

Having a basic model for the interaction of light and matter at hand, via
section 2.1.4, we can investigate what happens if an electromagnetic wave
packet, i.e. an optical pulse propagates through such a medium. We start
from Eqs.(2.44) to evaluate the wave packet propagation for an arbitrary
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propagation distance z

E(z, t) =
1

2π

Z ∞

0

Ẽ(Ω)ej(Ωt−K(Ω)z)dΩ. (2.53)

Analogous to Eq. (2.50) for a pulse at a given position, we can separate an
optical pulse into a carrier wave at frequency ω0 and a complex envelope
A(z, t),

E(z, t) = A(z, t)ej(ω0t−K(ω0)z). (2.54)

By introducing the offset frequency ω, the offset wavenumber k(ω) and spec-
trum of the envelope Ã(ω)

ω = Ω− ω0, (2.55)

k(ω) = K(ω0 + ω)−K(ω0), (2.56)

Ã(ω) = Ẽ(Ω = ω0 + ω). (2.57)

the envelope at propagation distance z, see Fig.2.8, is expressed as

A(z, t) =
1

2π

Z ∞

−∞
Ã(ω)ej(ωt−k(ω)z)dω, (2.58)

with the same constraints on the spectrum of the envelope as before, i.e.
the spectrum of the envelope must be zero for negative frequencies beyond
the carrier frequency. Depending on the dispersion relation k(ω), (see Fig.
2.9),.the pulse will be reshaped during propagation as discussed in the fol-
lowing section.

2.1.7 Dispersion

The dispersion relation indicates how much phase shift each frequency com-
ponent experiences during propagation. These phase shifts, if not linear with
respect to frequency, will lead to distortions of the pulse. If the propagation
constant k(ω) is only slowly varying over the pulse spectrum, it is useful to
represent the propagation constant, k(ω), or dispersion relation K(Ω) by its
Taylor expansion, see Fig. 2.9,

k(ω) = k0ω +
k00

2
ω2 +

k(3)

6
ω3 +O(ω4). (2.59)
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Figure 2.8: Electric field and pulse envelope in time domain.

Figure 2.9: Taylor expansion of dispersion relation at the center frequency
of the wave packet.

If the refractive index depends on frequency, the dispersion relation is no
longer linear with respect to frequency, see Fig. 2.9 and the pulse propagation
according to (2.58) can be understood most easily in the frequency domain

∂Ã(z, ω)

∂z
= −jk(ω)Ã(z, ω). (2.60)

Transformation of Eq.() into the time domain gives

∂A(z, t)

∂z
= −j

∞X
n=1

k(n)

n!

µ
−j ∂

∂t

¶n

A(z, t). (2.61)
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If we keep only the first term, the linear term, in Eq.(2.59), then we obtain for
the pulse envelope from (2.58) by definition of the group velocity at frequency
ω0

υg0 = 1/k
0 =

µ
dk(ω)

dω

¯̄̄̄
ω=0

¶−1
(2.62)

A(z, t) = A(0, t− z/υg0). (2.63)

Thus the derivative of the dispersion relation at the carrier frequency deter-
mines the propagation velocity of the envelope of the wave packet or group
velocity, whereas the ratio between propagation constant and frequency de-
termines the phase velocity of the carrier

υp0 = ω0/K(ω0) =

µ
K(ω0)

ω0

¶−1
. (2.64)

To get rid of the trivial motion of the pulse envelope with the group velocity,
we introduce the retarded time t0 = t− z/vg0. With respect to this retarded
time the pulse shape is invariant during propagation, if we approximate the
dispersion relation by the slope at the carrier frequency

A(z, t) = A(0, t0). (2.65)

Note, if we approximate the dispersion relation by its slope at the carrier
frequency, i.e. we retain only the first term in Eq.(2.61), we obtain

∂A(z, t)

∂z
+
1

υg0

∂A(z, t)

∂t
= 0, (2.66)

and (2.63) is its solution. If, we transform this equation to the new coordinate
system

z0 = z, (2.67)

t0 = t− z/υg0, (2.68)

with

∂

∂z
=

∂

∂z0
− 1

υg0

∂

∂t0
, (2.69)

∂

∂t
=

∂

∂t0
(2.70)
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the transformed equation is

∂A(z0, t0)

∂z0
= 0. (2.71)

Since z is equal to z0 we keep z in the following.
If the spectrum of the pulse is broad enough, so that the second order

term in (2.59) becomes important, the pulse will no longer keep its shape.
When keeping in the dispersion relation terms up to second order it follows
from (2.58) and (2.69,2.70)

∂A(z, t0)

∂z
= j

k00

2

∂2A(z, t0)

∂t02
. (2.72)

This is the first non trivial term in the wave equation for the envelope.
Because of the superposition principle, the pulse can be thought of to be
decomposed into wavepackets (sub-pulses) with different center frequencies.
Now, the group velocity depends on the spectral component of the pulse, see
Figure 2.10, which will lead to broadening or dispersion of the pulse.
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Figure 2.10: Decomposition of a pulse into wave packets with different center
frequency. In a medium with dispersion the wavepackets move at different
relative group velocity.

Fortunately, for a Gaussian pulse, the pulse propagation equation 2.72
can be solved analytically. The initial pulse is then of the form

E(z = 0, t) = A(z = 0, t)ejω0t (2.73)

A(z = 0, t = t0) = A0 exp

∙
−1
2

t02

τ 2

¸
(2.74)
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Eq.(2.72) is most easily solved in the frequency domain since it transforms
to

∂Ã(z, ω)

∂z
= −jk

00ω2

2
Ã(z, ω), (2.75)

with the solution

Ã(z, ω) = Ã(z = 0, ω) exp

∙
−jk

00ω2

2
z

¸
. (2.76)

The pulse spectrum aquires a parabolic phase. Note, that here ω is the
Fourier Transform variable conjugate to t0 rather than t. The Gaussian pulse
has the advantage that its Fourier transform is also a Gaussian

Ã(z = 0, ω) = A0
√
2πτ exp

∙
−1
2
τ 2ω2

¸
(2.77)

and, therefore, in the spectral domain the solution at an arbitray propagation
distance z is

Ã(z, ω) = A0
√
2πτ exp

∙
−1
2

¡
τ 2 + jk00z

¢
ω2
¸
. (2.78)

The inverse Fourier transform is analogously

A(z, t0) = A0

µ
τ 2

(τ 2 + jk00z)

¶1/2
exp

∙
−1
2

t02

(τ 2 + jk00z)

¸
(2.79)

The exponent can be written as real and imaginary part and we finally obtain

A(z, t0) = A0

µ
τ 2

(τ 2 + jk00z)

¶1/2
exp

"
−1
2

τ 2t02¡
τ 4 + (k00z)2

¢ + j1
2
k00z

t02¡
τ 4 + (k00z)2

¢#
(2.80)

As we see from Eq.(2.80) during propagation the FWHM of the Gaussian
determined by

exp

"
−τ(τ

0
FWHM/2)2¡

τ 4 + (k00z)2
¢ # = 0.5 (2.81)

changes from
τFWHM = 2

√
ln 2 τ (2.82)
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at the start to

τ 0FWHM = 2
√
ln 2 τ

s
1 +

µ
k00L

τ 2

¶2
(2.83)

= τFWHM

s
1 +

µ
k00L

τ 2

¶2
at z = L. For large stretching this result simplifies to

τ 0FWHM = 2
√
ln 2

¯̄̄̄
k00L

τ

¯̄̄̄
for

¯̄̄̄
k00L

τ 2

¯̄̄̄
À 1. (2.84)

The strongly dispersed pulse has a width equal to the difference in group
delay over the spectral width of the pulse.
Figure 2.11 shows the evolution of the magnitude of the Gaussian wave

packet during propagation in a medium which has no higher order dispersion
in normalized units. The pulse spreads continuously.
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Figure 2.11: Magnitude of the complex envelope of a Gaussian pulse,
|A(z, t0)| , in a dispersive medium.
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As discussed before, the origin of this spreading is the group velocity
dispersion (GVD), k00 6= 0. The group velocity varies over the pulse spectrum
significantly leading to a group delay dispersion (GDD) after a propagation
distance z = L of k00L 6= 0, for the different frequency components. This leads
to the build-up of chirp in the pulse during propagation. We can understand
this chirp by looking at the parabolic phase that develops over the pulse in
time at a fixed propagation distance. The phase is, see Eq.(2.80)

φ(z = L, t0) = −1
2
arctan

∙
k00L

τ 2

¸
+
1

2
k00L

t02¡
τ 4 + (k00L)2

¢ . (2.85)

(a) Phase

Time  t

k'' <  0

k'' >  0

Front Back

Instantaneous 
Frequency

Time  t

k''  <  0

k''  >  0

(b)

Figure 2.12: (a) Phase and (b) instantaneous frequency of a Gaussian pulse
during propagation through a medium with positive or negative dispersion.

This parabolic phase, see Fig. 2.12 (a), can be understood as a localy
varying frequency in the pulse, i.e. the derivative of the phase gives the
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instantaneous frequency shift in the pulse with respect to the center frequency

ω(z = L, t0) =
∂

∂t0
φ(L, t0) =

k00L¡
τ 4 + (k00L)2

¢t0 (2.86)

see Fig.2.12 (b). The instantaneous frequency indicates that for a medium
with positive GVD, ie. k00 > 0, the low frequencies are in the front of the
pulse, whereas the high frequencies are in the back of the pulse, since the
sub-pulses with lower frequencies travel faster than sub-pulses with higher
frequencies. The opposite is the case for negative dispersive materials.
It is instructive for later purposes, that this behaviour can be completely

understood from the center of mass motion of the sub-pulses, see Figure 2.10.
Note, we can choose a set of sub-pulses, with such narrow bandwidth, that
dispersion does not matter. In the time domain, these pulses are of course
very long, because of the time bandwidth relationship. Nevertheless, since
they all have different carrier frequencies, they interfere with each other in
such a way that the superposition is a very narrow pulse. This interference,
becomes destroyed during propagation, since the sub-pulses propagate at
different speed, i.e. their center of mass propagates at different speed.
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Figure 2.13: Pulse spreading by following the center of mass of sub-pulses
according to Fig. 2.10. For z < 1, the pulses propagate in a medium with
positive dispersion and for z > 1 in a medium with negative dispersion.
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The differential group delay ∆Tg(ω) = k00Lω of a sub-pulse with its cen-
ter frequency ω different from 0, is due to its differential group velocity
∆vg(ω) = −vg0∆Tg(ω)/Tg0 = −v2g0k00ω. Note, that Tg0 = L/vg0. This is illus-
trated in Figure 2.13 by ploting the trajectory of the relative motion of the
center of mass of each sub-pulse as a function of propagation distance, which
asymptotically approaches the formula for the pulse width of the highly dis-
persed pulse Eq.(2.84). If we assume that the pulse propagates through a
negative dispersive medium following the positive dispersive medium, the
group velocity of each sub-pulse is reversed. The sub-pulses propagate to-
wards each other until they all meet at one point (focus) to produce again
a short and unchirped initial pulse, see Figure 2.13. This is a very powerful
technique to understand dispersive wave motion and as we will see in the
next section is the connection between ray optics and physical optics.

2.1.8 Loss and Gain

If the medium considered has loss, described by the imaginary part of the
dielectric susceptibility, see (2.43) and Fig. 2.3, we can incorporate this loss
into a complex refractive index

n(Ω) = nr(Ω) + jni(Ω) (2.87)

via

n(Ω) =
q
1 + eχ(Ω). (2.88)

For an optically thin medium, i.e. eχ¿ 1 the following approximation is very
useful

n(Ω) ≈ 1 +
eχ(Ω)
2

. (2.89)

As one can show (in Recitations) the complex susceptibility (2.43) can be
approximated close to resonance, i.e. Ω ≈ Ω0, by the complex Lorentzian
lineshape eχ(Ω) = −jχ0

1 + jQΩ−Ω0
Ω0

, (2.90)

where χ0 = Q
ω2p
2Ω20

will turn out to be related to the peak absorption of the
line, which is proportional to the density of atoms, Ω0 is the center frequency
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and ∆Ω = Ω0
Q
is the half width half maximum (HWHM) linewidth of the

transition. The real and imaginary part of the complex Lorentzian are

eχr(Ω) =
−χ0 (Ω−Ω0)∆Ω

1 +
¡
Ω−Ω0
∆Ω

¢2 , (2.91)

eχi(Ω) =
−χ0

1 +
¡
Ω−Ω0
∆Ω

¢2 , . (2.92)

In the derivation of the wave equation for the pulse envelope (2.61) in
section 2.1.7, there was no restriction to a real refractive index. Therefore,
the wave equation (2.61) also treats the case of a complex refractive index.
If we assume a medium with the complex refractive index (2.89), then the
wavenumber is given by

K(Ω) =
Ω

c0

µ
1 +

1

2
(eχr(Ω) + jeχi(Ω))¶ . (2.93)

Since we introduced a complex wavenumber, we have to redefine the group
velocity as the inverse derivative of the real part of the wavenumber with
respect to frequency. At line center, we obtain

υ−1g =
∂Kr(Ω)

∂Ω

¯̄̄̄
Ω0

=
1

c0

µ
1− χ0

2

Ω0
∆Ω

¶
. (2.94)

Thus, for a narrow absorption line, χ0 > 0 and Ω0
∆Ω

À 1, the absolute value
of the group velocity can become much larger than the velocity of light in
vacuum. The opposite is true for an amplifying medium, χ0 < 0. There is
nothing wrong with this finding, since the group velocity only describes the
motion of the peak of a Gaussian wave packet, which is not a causal wave
packet. A causal wave packet is identical to zero for some earlier time t < t0,
in some region of space. A Gaussian wave packet fills the whole space at any
time and can be reconstructed by a Taylor expansion at any time. Therefore,
the tachionic motion of the peak of such a signal does not contradict special
relativity.
The imaginary part in the wave vector (2.93) leads with K = Ω

c0
to ab-

sorption
α(Ω) = −Keχi(Ω). (2.95)
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In the envelope equation (2.60) for a wavepacket with carrier frequency ω0 =
Ω0 and K0 =

Ω0
c0
the loss leads to a term of the form

∂Ã(z, ω)

∂z

¯̄̄̄
¯
(loss)

= −α(Ω0 + ω)Ã(z, ω) =
−χ0K0

1 +
¡

ω
∆Ω

¢2 Ã(z, ω). (2.96)

In the time domain, we obtain up to second order in the inverse linewidth

∂A(z, t0)

∂z

¯̄̄̄
(loss)

= −χ0K0

µ
1 +

1

∆Ω2
∂2

∂t2

¶
A(z, t0), (2.97)

which corresponds to a parabolic approximation of the line shape at line
center, (Fig. 2.3). As we will see later, for an amplifying optical transition
we obtain a similar equation. We only have to replace the loss by gain

∂A(z, t0)

∂z

¯̄̄̄
(gain)

= g

µ
1 +

1

Ω2g

∂2

∂t2

¶
A(z, t0), (2.98)

where g = −χ0K0 is the peak gain at line center per unit length and Ωg is
the HWHM linewidth of a transition providing gain.

2.1.9 Sellmeier Equation and Kramers-Kroenig Rela-
tions

The linear susceptibility is the frequency response or impulse response of a
linear system to an applied electric field, see Eq.(2.41). For a real physical
system this response is causal, and therefore real and imaginary parts obey
Kramers-Kroenig Relations

χr(Ω) =
2

π

∞Z
0

ωχi(ω)

ω2 − Ω2
dω = n2r(Ω)− 1, (2.99)

χi(Ω) = −2
π

∞Z
0

Ωχr(ω)

ω2 − Ω2
dω. (2.100)

For optical media these relations have the consequence that the refractive
index and absorption of a medium are not independent, which can often
be exploited to compute the index from absorption data or the other way
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around. The Kramers-Kroenig Relations also give us a good understanding
of the index variations in transparent media, which means the media are used
in a frequency range far away from resonances. Then the imaginary part of
the susceptibility related to absorption can be approximated by

χi(Ω) =
X
i

Aiδ (ω − ωi) (2.101)

and the Kramers-Kroenig relation results in the Sellmeier Equation for the
refractive index

n2(Ω) = 1 +
X
i

Ai
ωi

ω2i − Ω2
= 1 +

X
i

ai
λ

λ2 − λ2i
. (2.102)

This formula is very useful in fitting the refractive index of various media
over a large frequency range with relatively few coefficients. For example
Table 2.3 shows the sellmeier coefficients for fused quartz and sapphire.

Fused Quartz Sapphire
a1 0.6961663 1.023798
a2 0.4079426 1.058364
a3 0.8974794 5.280792
λ21 4.679148·10−3 3.77588·10−3
λ22 1.3512063·10−2 1.22544·10−2
λ23 0.9793400·102 3.213616·102

Table 2.3: Table with Sellmeier coefficients for fused quartz and sapphire.

In general, each absorption line contributes a corresponding index change
to the overall optical characteristics of a material, see Fig. 2.14. A typical
situation for a material having resonances in the UV and IR, such as glass,
is shown in Fig. 2.15. As Fig. 2.15 shows, due to the Lorentzian line shape,
that outside of an absorption line the refractive index is always decreasing
as a function of wavelength. This behavior is called normal dispersion and
the opposite behavior abnormal dispersion.

dn

dλ
< 0 : normal dispersion (blue refracts more than red)

dn

dλ
> 0 : abnormal dispersion
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This behavior is also responsible for the mostly positive group delay disper-
sion over the transparency range of a material, as the group velocity or group
delay dispersion is closely related to dn

dλ
. Fig.2.16 shows the transparency

range of some often used media.

Figure 2.14: Each absorption line must contribute to an index change via
the Kramers-Kroenig relations.

Figure 2.15: Typcial distribution of absorption lines in a medium transparent
in the visible.
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Figure 2.16: Transparency range of some materials according to [6], p. 175.

Often the dispersion GVD and GDD needs to be calculated from the
Sellmeier equation, i.e. n(λ). The corresponding quantities are listed in Table
2.4. The computations are done by substituting the frequency with the
wavelength.

Dispersion Characteristic Definition Comp. from n(λ)

medium wavelength: λn λ
n

λ
n(λ)

wavenumber: k 2π
λn

2π
λ
n(λ)

phase velocity: υp ω
k

c0
n(λ)

group velocity: υg dω
dk
; dλ = −λ2

2πc0
dω c0

n

¡
1− λ

n
dn
dλ

¢−1
group velocity dispersion: GVD d2k

dω2
λ3

2πc20

d2n
dλ2

group delay: Tg = L
υg
= dφ

dω
dφ
dω
= d(kL)

dω
n
c0

¡
1− λ

n
dn
dλ

¢
L

group delay dispersion: GDD dTg
dω
= d2(kL)

dω2
λ3

2πc20

d2n
dλ2

L

Table 2.4: Table with important dispersion characteristics and how to com-
pute them from the wavelength dependent refractive index n(λ).
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2.2 Electromagnetic Waves and Interfaces

Many microwave and optical devices are based on the characteristics of elec-
tromagnetic waves undergoing reflection or transmission at interfaces be-
tween media with different electric or magnetic properties characterized by
and μ, see Fig. 2.17. Without restriction we can assume that the interface
is the (x-y-plane) and the plane of incidence is the (x-z-plane). An arbitrary
incident plane wave can always be decomposed into two components. One
component has its electric field parallel to the interface between the media,
i.e. it is polarized parallel to the interface and it is called the transverse elec-
tric (TE)-wave or also s-polarized wave. The other component is polarized
in the plane of incidence and its magnetic field is in the plane of the interface
between the media. This wave is called the TM-wave or also p-polarized
wave. The most general case of an incident monochromatic TEM-wave is a
linear superposition of a TE and a TM-wave.

x
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kr
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Θi Θr

Θt

z Et
Ht

kt
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ErEi

kr
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Θi Θr
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z Et

Ht

kt

Hr

a) Reflection of TE-Wave b) Reflection of TM-Wave

ε μ1 1, ε μ1 1,

ε μ2 2,ε μ2 2,

Figure 2.17: a) Reflection of a TE-wave at an interface, b) Reflection of
aTM-wave at an interface

The fields for both cases are summarized in table 2.5
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TE-wave TM-wave

Ei =Ei e
j(ωt−ki·r)ey Ei = −Ei e

j(ωt−ki·r)ei

Hi =Hi e
j(ωt−ki·r)hi Hi =Hi e

j(ωt−ki·r)ey

Er =Er e
j(ωt−kr·r)ey Er =Er e

j(ωt−kr·r)
r er

Hr =Hr e
j(ωt−kr·r)hr Hr =Er e

j(ωt−kr·r)ey

Et =Et e
j(ωt−kt·r)ey Et =Et e

j(ωt−kt·r)et
Ht =Ht e

j(ωt−kt·r)ht Ht =Ht e
j(ωt−kt·r)ey

Table 2.5: Electric and magnetic fields for TE- and TM-waves.

with wave vectors of the waves given by

ki = kr = k0
√

1μ1,

kt = k0
√

2μ2,

ki,t = ki,t (sin θi,t ex + cos θi,t ez) ,

kr = ki (sin θr ex − cos θr ez) ,

and unit vectors given by

hi,t = − cos θi,t ex + sin θi,t ez,
hr = cos θr ex + sin θr ez,

ei,t = −hi,t = cos θi,t ex − sin θi,t ez,

er = −hr = − cos θr ex − sin θr ez.

2.2.1 Boundary Conditions and Snell’s law

From 6.013, we know that Stoke’s and Gauss’ Law for the electric and mag-
netic fields require constraints on some of the field components at media
boundaries. In the absence of surface currents and charges, the tangential
electric and magnetic fields as well as the normal dielectric and magnetic
fluxes have to be continuous when going from medium 1 into medium 2 for
all times at each point along the surface, i.e. z = 0

E/Hi,x/ye
j(ωt−ki,xx) +E/Hr,x/ye

j(ωt−kr,xx) = E/Hi,x/ye
j(ωt−kt,xx). (2.103)

This equation can only be fulfilled at all times if and only if the x-component
of the k-vectors for the reflected and transmitted wave are equal to (match)
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the corresponding component of the incident wave

ki,x = kr,x = kt,x (2.104)

This phase matching condition is shown in Fig. 2.18 for the case
√

2μ2 >√
1μ1 or kt > ki.

x

krki
Θi Θr

Θt

z

kt

 ε μ1 1,

ε μ2 2 ,

Figure 2.18: Phase matching condition for reflected and transmitted wave

The phase matching condition Eq(2.104) results in θr = θi = θ1 and
Snell’s law for the angle θt = θ2 of the transmitted wave

sin θt =

√
1μ1√
2μ2

sin θi (2.105)

or for the case of non magnetic media with μ1 = μ2 = μ0

sin θt =
n1
n2
sin θi (2.106)
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2.2.2 Measuring Refractive Index with Minimum De-
viation

Snell’s law can be used for measuring the refractive index of materials. Con-
sider a prism prepared from a material with unknown refractive index n(λ),
see Fig. 2.19 (a).

Figure 2.19: (a) Beam propagating through a prism. (b) For the case of
minimum deviation [3] p. 65.

The prism is mounted on a rotation stage as shown in Fig. 2.20. The
angle of incidence α is then varied with a fixed incident beam path and
the transmitted light is observed on a screen. If one starts of with normal
incidence on the first prism surface one notices that after turning the prism
one goes through a minium for the deflection angle of the beam. This becomes
obvious from Fig. 2.19 (b). There is an angle of incidence α where the beam
path through the prism is symmetric. If the input angle is varied around this
point, it would be identical to exchange the input and output beams. From
that we conclude that the deviation δ must go through an extremum at the
symmetry point, see Figure 2.21. It can be shown (Recitations), that the
refractive index is then determined by

n =
sin α(δmin)+δmin

2

sin α(δmin)
2

. (2.107)

If the measurement is repeated for various wavelength of the incident radi-
ation the complete wavelength dependent refractive index is characterized,
see for example, Fig. 2.22.
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Figure 2.20: Refraction of a Prism with n=1.731 for different angles of in-
cidence alpha. The angle of incidence is stepwise increased by rotating the
prism clockwise. The angle of transmission first increases. After the angle
for minimum deviation is reached the transmission angle starts to decrease
[3] p67.
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Figure 2.21: Deviation versus incident angel [1]

Figure 2.22: Refractive index as a function of wavelength for various media
transmissive in the visible [1], p42.
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2.2.3 Fresnel Reflection

After understanding the direction of the reflected and transmitted light, for-
mulas for how much light is reflected and transmitted are derived by eval-
uating the boundary conditions for the TE and TM-wave. According to
Eqs.(2.103) and (2.104) we obtain for the continuity of the tangential E and
H fields:

TE-wave (s-pol.) TM-wave (p-pol.)
Ei+Er = Et Ei cos θi−Er cos θr =Et cos θt
Hi cos θi−Hr cos θr =Ht cos θt Hi +Hr = Ht

(2.108)

Introducing the characteristic impedances in both half spaces Z1/2 =
q

μ0μ1/2

0 1/2
,

and the impedances that relate the tangential electric and magnetic field
components ZTE/TM

1/2 in both half spaces the boundary conditions can be
rewritten in terms of the electric or magnetic field components.

TE-wave (s-pol.) TM-wave (p-pol.)

ZTE
1/2 =

Ei/t

Hi/t cos θi/t
=

Z1/2
cos θ1/2

ZTM
1/2 =

Ei/t cos θi/t
Hi/t

= Z1/2 cos θ1/2

Ei+Er = Et H i−Hr =
ZTM2
ZTM1

Ht

Ei−Er =
ZTE1
ZTE2

Et H i +Hr = Ht

(2.109)

Amplitude Reflection and Transmission coefficients

From these equations we can easily solve for the reflected and transmitted
wave amplitudes in terms of the incident wave amplitudes. By dividing
both equations by the incident wave amplitudes we obtain for the amplitude
reflection and transmission coeffcients. Note, that reflection and transmission
coefficients are defined in terms of the electric fields for the TE-wave and in
terms of the magnetic fields for the TM-wave.

TE-wave (s-pol.) TM-wave (p-pol.)

rTE = Er

Ei
; tTE = Et

Ei
rTM = Hr

Hi
; tTM = Ht

Hi

1 + rTE = tTE 1− rTM =
ZTM2
ZTM1

tTM

1 − rTE = ZTE1
ZTE2

tTE 1 + rTM = tTM

(2.110)
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or in both cases the amplitude transmission and reflection coefficients are

tTE/TM =
2

1 +
Z
TE/TM
1/2

Z
TE/TM
2/1

=
2Z

TE/TM
2/1

Z
TE/TM
1 + Z

TE/TM
2

(2.111)

rTE/TM =
Z
TE/TM
2/1 − Z

TE/TM
1/2

Z
TE/TM
1 + Z

TE/TM
2

(2.112)

Despite the simplicity of these formulas, they describe already an enormous
wealth of phenomena. To get some insight, consider the case of purely di-
electric and lossless media characterized by its real refractive indices n1 and
n2. Then Eqs.(2.111) and (2.112) simplify for the TE and TM case to

TE-wave (s-pol.) TM-wave (p-pol.)

ZTE
1/2 =

Z1/2
cos θ1/2

= Z0
n1/2 cos θ1/2

ZTM
1/2 = Z1/2 cos θ1/2 =

Z0
n1/2

cos θ1/2

rTE = n1 cos θ1−n2 cos θ2
n1 cos θ1+n2 cos θ2

rTM =
n2

cos θ2
− n1
cos θ1

n2
cos θ2

+
n1

cos θ1

tTE = 2n1 cos θ1
n1 cos θ1+n2 cos θ2

tTM =
2

n2
cos θ2

n2
cos θ2

+
n1

cos θ1

(2.113)

Figure 2.23 shows the evaluation of Eqs.(2.113) for the case of a reflection at
the interface of air and glass with n2 > n1 and (n1 = 1, n2 = 1.5).
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Figure 2.23: The amplitude coefficients of reflection and transmission as a
function of incident angle. These correspond to external reflection n2 > n1
at an air-glas interface (n1 = 1, n2 = 1.5).
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For TE-polarized light the reflected light changes sign with respect to the
incident light (reflection at the optically more dense medium). This is not
so for TM-polarized light under close to normal incidence. It occurs only
for angles larger than θB, which is called the Brewster angle. So for TM-
polarized light the amplitude reflection coefficient is zero at the Brewster
angle. This phenomena will be discussed in more detail later.
This behavior changes drastically if we consider the opposite arrange-

ment of media, i.e. we consider the glass-air interface with n1 > n2, see
Figure 2.24. Then the TM-polarized light experiences a π-phase shift upon
reflection close to normal incidence. For increasing angle of incidence this
reflection coefficient goes through zero at the Brewster angle θ

0

B different
from before. However, for large enough angle of incidence the reflection coef-
ficient reaches magnitude 1 and stays there. This phenomenon is called total
internal reflection and the angle where this occurs first is the critical angle
for total internal reflection, θtot. Total internal reflection will be discussed in
more detail later.
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Figure 2.24: The amplitude coefficients of reflection and transmission as a
function of incident angle. These correspond to internal reflection n1 > n2
at a glas-air interface (n1 = 1.5, n2 = 1).

Power reflection and transmission coefficients

Often we are not interested in the amplitude but rather in the optical power
reflected or transmitted in a beam of finite size, see Figure 2.25.
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Figure 2.25: Reflection and transmission of an incident beam of finite size
[1].

Note, that to get the power in a beam of finite size, we need to integrated
the corresponding Poynting vector over the beam area, which means multi-
plication by the beam crosssectional area for a homogenous beam. Since the
angle of incidence and reflection are equal, θi = θr = θ1 this beam crosssec-
tional area drops out in reflection

RTE/TM =
I
TE/TM
r A cos θi

I
TE/TM
i A cos θr

=
¯̄
rTE/TM

¯̄2
=

¯̄̄̄
¯ZTE/TM

2 − Z
TE/TM
1

Z
TE/TM
1 + Z

TE/TM
2

¯̄̄̄
¯
2

(2.114)

However, due to the different angles for the incident and the transmitted
beam θt = θ2 6= θ1, we arrive at

T TE/TM =
I
TE/TM
t A cos θt

I
TE/TM
i A cos θr

(2.115)

=
cos θ2
cos θ1

Re

(
1

Z2/1

)
Re

(
1

Z1/2

)−1 ¯̄
tTE/TM

¯̄2
.
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Using in the case of TE-polarization
Z1/2
cos θ1/2

= ZTE
1/2 and analogously for TM-

polarization Z1/2 cos θ1/2 = ZTM
1/2 , we obtain

T TE/TM = Re

(
1

Z
TE/TM
1/2

)−1
Re

⎧⎪⎨⎪⎩ 4Z
TE/TM
2/1¯̄̄

Z
TE/TM
1 + Z

TE/TM
2

¯̄̄2
⎫⎪⎬⎪⎭ (2.116)

Note, for the case where the characteristic impedances are complex this can
not be further simplified. If the characteristic impedances are real, i.e. the
media are lossless, the transmission coefficient simplifies to

T TE/TM =
4Z

TE/TM
1/2 Z

TE/TM
2/1³

Z
TE/TM
1 + Z

TE/TM
2

´2
.

(2.117)

To summarize for lossless media the power reflection and transmission coef-
ficients are

TE-wave (s-pol.) TM-wave (p-pol.)

ZTE
1/2 =

Z1/2
cos θ1/2

= Z0
n1/2 cos θ1/2

ZTM
1/2 = Z1/2 cos θ1/2 =

Z0
n1/2

cos θ1/2

RTE =
¯̄̄
n2 cos θ2−n1 cos θ1
n1 cos θ1+n2 cos θ2

¯̄̄2
RTM =

¯̄̄̄
n2

cos θ2
− n1
cos θ1

n2
cos θ2

+
n1

cos θ1

¯̄̄̄2
T TE = 4n1 cos θ1n2 cos θ2

|n1 cos θ1+n2 cos θ2|2
T TM =

4
n2

cos θ2

n1
cos θ1¯̄̄

n2
cos θ2

+
n1

cos θ1

¯̄̄2
T TE +RTE = 1 T TM +RTM = 1

(2.118)

A few phenomena that occur upon reflection at surfaces between different
media are especially noteworthy and need a more indepth discussion because
they enhance or enable the construction of many optical components and
devices.

2.2.4 Brewster’s Angle

As Figures 2.23 and 2.24 already show, for light polarized parallel to the
plane of incidence, p-polarized light, the reflection coefficient vanishes at a
given angle θB, called the Brewster angle. Using Snell’s Law Eq.(2.106),

n2
n1
=
sin θ1
sin θ2

, (2.119)



52 CHAPTER 2. CLASSICAL ELECTROMAGNETISM AND OPTICS

we can rewrite the reflection and transmission coefficients in Eq.(2.118) only
in terms of the angles. For example, we find for the reflection coefficient

RTM =

¯̄̄̄
¯ n2n1 − cos θ2

cos θ1
n2
n1
+ cos θ2

cos θ1

¯̄̄̄
¯
2

=

¯̄̄̄
¯ sin θ1sin θ2

− cos θ2
cos θ1

sin θ1
sin θ2

+ cos θ2
cos θ1

¯̄̄̄
¯
2

(2.120)

=

¯̄̄̄
sin 2θ1 − sin 2θ2
sin 2θ1 + sin 2θ2

¯̄̄̄2
(2.121)

where we used in the last step in addition the relation sin 2α = 2 sinα cosα.
Thus by forcing RTM = 0, the Brewster angle is reached for

sin 2θ1,B − sin 2θ2,B = 0 (2.122)

or
2θ1,B = π − 2θ2,B or θ1,B + θ2,B =

π

2
(2.123)

This relation is illustrated in Figure 2.26. The reflected and transmitted
beams are orthogonal to each other, so that the dipoles induced in the
medium by the transmitted beam, shown as arrows in Fig. 2.26, can not
radiate into the direction of the reflected beam. This is the physical origin
of the zero in the reflection coefficient, only possible for a p-polarized or
TM-wave.
The relation (2.123) can be used to express the Brewster angle as a func-

tion of the refractive indices, because if we substitute (2.123) into Snell’s law
we obtain

sin θ1
sin θ2

=
n2
n1

sin θ1,B

sin
¡
π
2
− θ1,B

¢ =
sin θ1,B
cos θ1,B

= tan θ1,B,

or
tan θ1,B =

n2
n1

. (2.124)

Using the Brewster angle condition one can insert an optical component with
a refractive index n 6= 1 into a TM-polarized beam in air without having
reflections, see Figure 2.27. Note, this is not possible for a TE-polarized
beam.
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Figure 2.26: Conditions for reflection of a TM-Wave at Brewster’s angle.
The reflected and transmitted beams are orthogonal to each other, so that
the dipoles excited in the medium by the transmitted beam can not radiate
into the direction of the reflected beam.

Figure 2.27: A plate under Brewster’s angle does not reflect TM-light. The
plate can be used as a window to introduce gas filled tubes into a laser beam
without insertion loss (ideally), [6] p. 209.
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2.2.5 Total Internal Reflection

Another striking phenomenon, see Figure 2.24, occurs for the case where
the beam hits the surface from the side of the optically denser medium, i.e.
n1 > n2. There is obviously a critical angle of incidence, beyond which all
light is reflected. How can that occur? This is easy to understand from the
phase matching diagram at the surface, see Figure 2.18, which is redrawn for
this case in Figure 2.28.

x

krki
θi θr

θtot

z

n n2 > 1

k2

k1

Figure 2.28: Phase matching diagram for total internal reflection.

There is no real wavenumber in medium 2 possible as soon as the angle of
incidence becomes larger than the critical angle for total internal reflection

θi > θtot (2.125)

with
sin θtot =

n2
n1

. (2.126)

Figure 2.29 shows the angle of refraction and incidence for the two cases of
external and internal reflection, when the angle of incidence approaches the
critical angle.
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Figure 2.29: Relation between angle of refraction and incidence for external
refraction and internal refraction ([6], p. 11).

Figure 2.30: Relation between angle of refraction and incidence for external
refraction and internal refraction ([1], p. 81).

Total internal reflection enables broadband reflectors. Figure 2.30 shows
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again what happens when the critical angle of reflection is surpassed. Fig-
ure 2.31 shows how total internal reflection can be used to guide light via
reflection at a prism or by multiple reflections in a waveguide.

Figure 2.31: (a) Total internal reflection, (b) internal reflection in a prism,
(c) Rays are guided by total internal reflection from the internal surface of
an optical fiber ([6] p. 11).

Figure 2.32 shows the realization of a retro reflector, which always returns
a parallel beam independent of the orientation of the prism (in fact the prism
can be a real 3D-corner so that the beam is reflected parallel independent
from the precise orientation of the corner cube). A surface patterned by little
corner cubes constitute a "cats eye" used on traffic signs.

Figure 2.32: Total internal reflection in a retro reflector.

More on reflecting prisms and its use can be found in [1], pages 131-136.
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Evanescent Waves

What is the field in medium 2 when total internal reflection occurs? Is it
identical to zero? It turns out phase matching can still occur if the propaga-
tion constant in z-direction becomes imaginary, k2z = −jκ2z, because then we
can fulfill the wave equation in medium 2. This is equivalent to the dispersion
relation

k22x + k22z = k22,

or with k2x = k1x = k1 sin θ1, we obtain for the imaginary wavenumber

κ2z =
q
k21 sin

2 θ1 − k22, (2.127)

= k1
p
sin2 θ1 − sin2 θtot. (2.128)

The electric field in medium 2 is then, for the example for a TE-wave, given
by

Et = Et ey e
j(ωt−kt·r), (2.129)

Et ey e
j(ωt−k2,xx)e−κ2zz. (2.130)

Thus the wave penetrates into medium 2 exponentially with a 1/e-depth δ,
given by

δ =
1

κ2z
=

1

k1
p
sin2 θ1 − sin2 θtot

(2.131)

Figure 2.33 shows the penetration depth as a function of angle of incidence
for a silica/air interface and a silicon/air interface. The figure demonstrates
that light from inside a semiconductor material with a relatively high index
around n=3.5 is mostly captured in the semiconductor material (Problem of
light extraction from light emitting diodes (LEDs)), see problem set 2.
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Figure 2.33: Penetration depth for total internal reflection at a silica/air and
a silicon/air interface for λ = 0.633nm.

As the magnitude of the reflection coefficient is 1 for total internal re-
flection, the power flowing into medium 2 must vanish, i.e. the transmission
is zero. Note, that the transmission and reflection coefficients in Eq.(2.113)
can be used beyond the critical angle for total internal reflection. We only
have to be aware that the electric field in medium 2 has an imaginary depen-
dence in the exponent for the z-direction, i.e. k2z = k2 cos θ2 = −jκ2z. Thus
cos θ2 in all formulas for the reflection and transmission coefficients has to be
replaced by the imaginary number

cos θ2 =
k2z
k2
= −jk1

k2

p
sin2 θ1 − sin2 θtot (2.132)

= −jn1
n2

p
sin2 θ1 − sin2 θtot

= −j

sµ
sin θ1
sin θtot

¶2
− 1.
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Then the reflection coefficients in Eq.(2.113) change to all-pass functions

TE-wave (s-pol.) TM-wave (p-pol.)

rTE = n1 cos θ1−n2 cos θ2
n1 cos θ1+n2 cos θ2

rTM =
n2

cos θ2
− n1
cos θ1

n2
cos θ2

+
n1

cos θ1

rTE =
cos θ1+j

n2
n1

r³
sin θ1
sin θtot

´2
−1

cos θ1−jn2n1

r³
sin θ1
sin θtot

´2
−1

rTM =
cos θ1+j

n1
n2

r³
sin θ1
sin θtot

´2
−1

cos θ1−jn1n2

r³
sin θ1
sin θtot

´2
−1

tan φTE

2
= 1

cos θ1

n2
n1

r³
sin θ1
sin θtot

´2
− 1 tan φTM

2
= 1

cos θ1

n1
n2

r³
sin θ1
sin θtot

´2
− 1
(2.133)

Thus the magnitude of the reflection coefficient is 1. However, there is
a non-vanishing phase shift for the light field upon total internal reflection,
denoted as φTE and φTM in the table above. Figure 2.34 shows these phase
shifts for the glass/air interface and for both polarizations.
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Figure 2.34: Phase shifts for TE- and TM- wave upon reflection from a
silica/air interface, with n1 = 1.45 and n2 = 1.

Goos-Haenchen-Shift

So far, we looked only at plane waves undergoing reflection at surface due to
total internal reflection. If a beam of finite transverse size is reflected from
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such a surface it turns out that it gets displaced by a distance ∆z, see Figure
2.35 (a), called Goos-Haenchen-Shift.

Figure 2.35: (a) Goos-Haenchen Shift and related beam displacement upon
reflection of a beam with finite size; (b) Accumulation of phase shifts in a
waveguide.

Detailed calculations show (problem set 2), that the displacement is given
by

∆z = 2δTE/TM tan θ1, (2.134)

as if the beam was reflected at a virtual layer with depth δTE/TM into medium
2. It turns out, that for TE-waves

δTE = δ, (2.135)

where δ is the penetration depth according to Eq.(2.131) for evanescent
waves. But for TM-waves

δTM =
δ∙

1 +
³
n1
n2

´2¸
sin2 θ1 − 1

(2.136)
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These shifts accumulate when the beam is propagating in a waveguide, see
Figure 2.35 (b) and is important to understand the dispersion relations of
waveguide modes. The Goos-Haenchen shift can be observed by reflection at
a prism partially coated with a silver film, see Figure 2.36. The part reflected
from the silver film is shifted with respect to the beam reflected due to total
internal reflection, as shown in the figure.

Figure 2.36: Experimental proof of the Goos-Haenchen shift by total in-
ternal reflection at a prism, that is partially coated with silver, where the
penetration of light can be neglected. [3] p. 486.

Frustrated total internal reflection

Another proof for the penetration of light into medium 2 in the case of
total internal reflection can be achieved by putting two prisms, where total
internal reflection occurs back to back, see Figure 2.37. Then part of the
light, depending on the distance between the two interfaces, is converted
back into a propagating wave that can leave the second prism. This effect is
called frustrated internal reflection and it can be used as a beam splitter as
shown in Figure 2.37.
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Figure 2.37: Frustrated total internal reflection. Part of the light is picked
up by the second surface and converted into a propagating wave.

2.3 Mirrors, Interferometers and Thin-Film
Structures

One of the most striking wave phenomena is interference. Many optical de-
vices are based on the concept of interfering waves, such as low loss dielectric
mirrors and interferometers and other thin-film optical coatings. After having
a quick look into the phenomenon of interference, we will develope a powerful
matrix formalism that enables us to evaluate efficiently many optical (also
microwave) systems based on interference.

2.3.1 Interference and Coherence

Interference

Interference of waves is a consequence of the linearity of the wave equation
(2.13). If we have two individual solutions of the wave equation

E1(r, t) = E1 cos(ω1t− k1 · r + ϕ1) e1, (2.137)

E2(r, t) = E2 cos(ω2t− k1 · r + ϕ2) e2, (2.138)

with arbitrary amplitudes, wave vectors and polarizations, the sum of the
two fields (superposition) is again a solution of the wave equation

E(r, t) = E1(r, t) +E2(r, t). (2.139)
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If we look at the intensity, wich is proportional to the amplitude square of
the total field

E(r, t)2 =
³
E1(r, t) +E2(r, t)

´2
, (2.140)

we find

E(r, t)2 = E1(r, t)
2 +E2(r, t)

2 + 2E1(r, t) ·E2(r, t) (2.141)

with

E1(r, t)
2 =

E2
1

2

³
1 + cos 2(ω1t− k1 · r + ϕ1)

´
, (2.142)

E2(r, t)
2 =

E2
2

2

³
1 + cos 2(ω2t− k2 · r + ϕ2)

´
, (2.143)

E1(r, t) · E2(r, t) = (e1 · e2)E1E2 cos(ω1t− k1 · r + ϕ1) · (2.144)

· cos(ω2t− k2 · r + ϕ2)

E1(r, t) ·E2(r, t) =
1

2
(e1 · e2)E1E2 · (2.145)

·

⎡⎣ cos
³
(ω1 − ω2) t−

³
k1 − k2

´
· r + (ϕ1 − ϕ2)

´
+cos

³
(ω1 + ω2) t−

³
k1 + k2

´
· r + (ϕ1 + ϕ2)

´ ⎤⎦ (2.146)

Since at optical frequencies neither our eyes nor photo detectors, can ever
follow the optical frequency itself and certainly not twice as large frequencies,
we drop the rapidly oscillating terms. Or in other words we look only on the
cycle-averaged intensity, which we denote by a bar

E(r, t)2 =
E2
1

2
+

E2
2

2
+ (e1 · e2)E1E2 ·

· cos
³
(ω1 − ω2) t−

³
k1 − k2

´
· r + (ϕ1 − ϕ2)

´
(2.147)

Depending on the frequencies ω1 and ω2 and the deterministic and stochastic
properties of the phases ϕ1 and ϕ2, we can detect this periodically varying
intensity pattern called interference pattern. Interference of waves can be
best visuallized with water waves, see Figure 2.38. Note, however, that water
waves are a scalar field, whereas the EM-waves are vector waves. Therefore,
the interference phenomena of EM-waves are much richer in nature than
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for water waves. Notice, from Eq.(2.147), it follows immedicatly that the
interference vanishes in the case of orthogonally polarized EM-waves, because
of the scalar product involved. Also, if the frequencies of the waves are not
identical, the interference pattern will not be stationary in time.

Figure 2.38: Interference of water waves from two point sources in a ripple
tank [1] p. 276.

If the frequencies are identical, the interference pattern depends on the
wave vectors, see Figure 2.39. The interference pattern which has itself a
wavevector given by

k1 − k2 (2.148)

shows a period of

Λ =
2π¯̄̄

k1 − k2

¯̄̄ . (2.149)
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Figure 2.39: Interference pattern generated by two monochromatic plane
waves.

Coherence

The ability of waves to generate an interference pattern is called coherence.
Coherence can be quantified both temporally or spatially. For example, if we
are at a certain position r in the interference pattern described by Eq.(2.147),
we will only have stationary conditions over a time interval

Tcoh <<
2π

ω1 − ω2
.

Thus the spectral width of the waves determines the temporal coherence.
However, it depends very often on the expermental arrangement whether a
given situation can still lead to interference or not. Even so the interfering
light may be perfectly temporally coherent, i.e. perfectly monochromatic,
ω1 = ω2,yet the wave vectors may not be stable over time and the spatial
inteference pattern may wash out, i.e. there is insufficient spatial coherence.
So for stable and maximum interference three conditions must be fulfilled:

• stable and identical polarization

• small change in the relative phase between the beams involved over the
observation time, temporal coherence, often achieved by using narrrow
linewidth light

• stable beam propagation or guiding of light to achieve spatial coherence.
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It is by no means trivial to arrive at a light source and an experimen-
tal setup that enables good coherence and strong interference of the beams
involved.
Interference of beams can be used to measure relative phase shifts between

them which may be proportional to a physical quantity that needs to be
measured. Such phase shifts between two beams can also be used to modulate
the light output at a given position in space via interference. In 6.013, we
have already encountered interference effects between forward and backward
traveling waves on transmission lines. This is very closely related to what we
use in optics, therefore, we quickly relate the TEM-wave progagation to the
transmission line formalism developed in Chapter 5 of 6.013.

2.3.2 TEM-Waves and TEM-Transmission Lines

The motion of voltage V and current I along a TEM transmission line with
an inductance L0 and a capacitance C0 per unit length is satisfies

∂V (t, z)

∂z
= −L0∂I(t, z)

∂t
(2.150)

∂I(t, z)

∂z
= −C 0∂V (t, z)

∂t
(2.151)

Substitution of these equations into each other results in wave equations for
either the voltage or the current

∂2V (t, z)

∂z2
− 1

c2
∂2V (t, z)

∂t2
= 0, (2.152)

∂2I(t, z)

∂z2
− 1

c2
∂2I(t, z)

∂t2
= 0, (2.153)

where c = 1/
√
L0C 0 is the speed of wave propagation on the transmission

line. The ratio between voltage and current for monochomatic waves is the
characteristic impedance Z =

p
L0/C 0.

The equations of motion for the electric and magnetic field of a x-polarized
TEM wave according to Figure 2.1, with E−field along the x-axis and H-
fields along the y- axis follow directly from Faraday’s and Ampere’s law

∂E(t, z)

∂z
= −μ∂H(t, z)

∂t
, (2.154)

∂H(t, z)

∂z
= −ε∂E(t, z)

∂t
, (2.155)
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which are identical to the transmission line equations (2.150) and (2.151).
Substitution of these equations into each other results again in wave equations
for electric and magnetic fields propagating at the speed of light c = 1/

√
με

and with characteristic impedance ZF =
p
μ/ε.

The solutions of the wave equation are forward and backward traveling
waves, which can be decoupled by transforming the fields to the forward and
backward traveling waves

a(t, z) =

r
Aeff

2ZF
(E(t, z) + ZFoH(t, z)) , (2.156)

b(t, z) =

r
Aeff

2ZF
(E(t, z)− ZFoH(t, z)) , (2.157)

which fulfill the equationsµ
∂

∂z
+
1

c

∂

∂t

¶
a(t, z) = 0, (2.158)µ

∂

∂z
− 1

c

∂

∂t

¶
b(t, z) = 0. (2.159)

Note, we introduced that cross section Aeff such that |a|2 is proportional to
the total power carried by the wave. Clearly, the solutions are

a(t, z) = f(t− z/c0), (2.160)

b(t, z) = g(t+ z/c0), (2.161)

which resembles the D’Alembert solutions of the wave equations for the elec-
tric and magnetic field

E(t, z) =

s
ZFo

2Aeff
(a(t, z) + b(t, z)) , (2.162)

H(t, z) =

s
1

2ZFoAeff
(a(t, z)− b(t, z)) . (2.163)

Here, the forward and backward propagating fields are already normalized
such that the Poynting vector multiplied with the effective area gives already
the total power transported by the fields in the effective cross section Aeff

P = S · (Aeff ez) = AeffE(t, z)H(t, z) = |a(t, z)|2 − |b(t, z)|2 . (2.164)
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In 6.013, it was shown that the relation between sinusoidal current and
voltage waves

V (t, z) = Re
©
V (z)ejωt

ª
and I(t, z) = Re

©
I(z)ejωt

ª
(2.165)

along the transmission line or corresponding electric and magnetic fields in
one dimensional wave propagation is described by a generalized complex
impedance Z(z) that obey’s certain transformation rules, see Figure 2.40
(a).

Figure 2.40: (a) Transformation of generalized impedance along transmission
lines, (b) Transformation of generalized impedance accross free space sections
with different characterisitc wave impedances in each section.

Along the first transmission line, which is terminated by a load impedance,
the generalized impedance transforms according to

Z1(z) = Z1 ·
Z0 − jZ1 tan (k1z)

Z1 − jZ0 tan (k1z)
(2.166)

with k1 = k0n1 and along the second transmission line the same rule applies
as an example

Z2(z) = Z2 ·
Z1(−L1)− jZ2 tan (k2z)

Z2 − jZ1(−L1) tan (k2z)
(2.167)
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with k2 = k0n2. Note, that the media can also be lossy, then the character-
istic impedances of the transmission lines and the propagation constants are
already themselves complex numbers. The same formalism can be used to
solve corresponding one dimensional EM-wave propagation problems.

Antireflection Coating

The task of an antireflection (AR-)coating, analogous to load matching in
transmission line theory, is to avoid reflections between the interface of two
media with different optical properties. One method of course could be to
place the interface at Brewster’s angle. However, this is not always possible.
Let’s assume we want to put a medium with index n into a beam under
normal incidence, without having reflections on the air/medium interface.
The medium can be for example a lens. This is exactly the situation shown
in Figure 2.40 (b). Z2 describes the refractive index of the lense material,
e.g. n2 = 3.5 for a silicon lense, we can deposit on the lens a thin layer
of material with index n1 corresponding to Z1 and this layer should match
to the free space index n0 = 1 or impedance Z0 = 377Ω. Using (2.166) we
obtain

Z2 = Z1(−L1) = Z1
Z0 − jZ1 tan (−k1L1)
Z1 − jZ0 tan (−k1L1)

(2.168)

If we choose a quarter wave thick matching layer k1L1 = π/2, this simplifies
to the famous result

Z2 =
Z21
Z0
, (2.169)

or n1 =
√
n2n0 and L1 =

λ

4n1
. (2.170)

Thus a quarter wave AR-coating needs a material which has an index cor-
responding to the geometric mean of the two media to be matched. In the
current example this would be n2 =

√
3.5 ≈ 1.87

2.3.3 Scattering and Transfer Matrix

Another formalism to analyze optical systems (or microwave circuits) can
be formulated using the forward and backward propagating waves, which
transform much simpler along a homogenous transmission line than the total
fields, i.e. the sum of forward adn backward waves. However, at interfaces
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scattering of these waves occurs whereas the total fields are continuous. For
monochromatic forward and backward propagating waves

a(t, z) = a(z)ejωt and b(t, z) = b(z)ejωt (2.171)

propagating in z-direction over a distance z with a propagation constant k,
we find from Eqs.(2.158) and (2.159)

µ
a(z)
b(z)

¶
=

µ
e−jkz 0
0 ejkz

¶µ
a(0)
b(0)

¶
. (2.172)

A piece of transmission line is a two port. The matrix transforming the
amplitudes of the waves at the input port (1) to those of the output port (2)
is called the transfer matrix, see Figure 2.41

T

Figure 2.41: Definition of the wave amplitudes for the transfer matrix T.

For example, from Eq.(2.172) follows that the transfer matrix for free
space propagation is

T =

µ
e−jkz 0
0 ejkz

¶
. (2.173)

This formalism can be expanded to arbitrary multiports. Because of its
mathematical properties the scattering matrix that describes the transfor-
mation between the incoming and outgoing wave amplitudes of a multiport
is often used, see Figure 2.42.
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S

Figure 2.42: Scattering matrix and its port definition.

The scattering matrix defines a linear transformation from the incoming
to the outgoing waves

b = Sa, with a = (a1,a2, ...)
T , b = (b1,b2, ...)

T . (2.174)

Note, that the meaning between forward and backward waves no longer co-
incides with a and b, a connection, which is difficult to maintain if several
ports come in from many different directions.
The transfer matrix T has advantages, if many two ports are connected

in series with each other. Then the total transfer matrix is the product of
the individual transfer matrices.

2.3.4 Properties of the Scattering Matrix

Physial properties of the system reflect itself in the mathematical properties
of the scattering matrix.

Reciprocity

A system with constant scalar dielectric and magnetic properties must have
a symmetric scattering matrix (without proof)

S = ST . (2.175)
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Losslessness

In a lossless system the total power flowing into the system must be equal to
the power flowing out of the system in steady state

|a|2 =
¯̄̄
b
¯̄̄2
, (2.176)

i.e.
S+S = 1 or S−1=S+. (2.177)

The scattering matrix of a lossless system must be unitary.

Time Reversal

To find the scattering matrix of the time reversed system, we realize that
incoming waves become outgoing waves under time reversal and the other
way around, i.e. the meaning of a and b is exchanged and on top of it the
waves become negative frequency waves.

aej(ωt−kz)
time reversal→ aej(−ωt−kz). (2.178)

To obtain the complex amplitude of the corresponding positive frequency
wave, we need to take the complex conjugate value. So to obtain the equa-
tions for the time reversed system we have to perform the following substi-
tutions

Original system Time reversed system
b = Sa a∗ = Sb

∗ → b =
¡
S−1

¢∗
a
. (2.179)

2.3.5 Beamsplitter

As an example, we look at the scattering matrix for a partially transmitting
mirror, which could be simply formed by the interface between two media
with different refractive index, which we analyzed in the previous section,
see Figure 2.43. (Note, for brevity we neglect the reflections at the normal
surface input to the media, or we put an AR-coating on them.) In principle,
this device has four ports and should be described by a 4x4 matrix. However,
most often only one of the waves is used at each port, as shown in Figure
2.43.
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Figure 2.43: Port definitions for the beam splitter

The scattering matrix is determined by

b = Sa, with a = (a1,a2)
T , b = (b3, b4)

T (2.180)

and

S=

µ
r jt
jt r

¶
, with r2 + t2 = 1. (2.181)

The matrix S was obtained using using the S-matrix properties described
above. From Eqs.(2.113) we could immediately identify r as a function of
the refractive indices, angle of incidence and the polarization used. Note,
that the off-diagonal elements of S are identical, which is a consequence of
reciprocity. That the main diagonal elements are identical is a consequence
of unitarity for a lossless beamsplitter and furthermore t =

√
1− r2. For a

given frequency r and t can always be made real by choosing proper reference
planes at the input and the output of the beam splitter. Beamsplitters can
be made in many ways, see for example Figure 2.37.

2.3.6 Interferometers

Having a valid description of a beamsplitter at hand, we can build and ana-
lyze various types of interferometers, see Figure 2.44.
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Figure 2.44: Different types of interferometers: (a) Mach-Zehnder Interfer-
ometer; (b) Michelson Interferometer; (c) Sagnac Interferometer [6] p. 66.

Each of these structures has advantages and disadvantages depending
on the technology they are realized. The interferometer in Figure 2.44 (a)
is called Mach-Zehnder interferometer, the one in Figure 2.44 (b) is called
Michelson Interferometer. In the Sagnac interferometer , Figure 2.44 (c) both
beams see identical beam path and therefore errors in the beam path can be
balance out and only differential changes due to external influences lead to
an output signal, for example rotation, see problem set 3.
To understand the light transmission through an interferometer we ana-

lyze as an example the Mach-Zehnder interferometer shown in Figure 2.45.
If we excite input port 1 with a wave with complex amplitude a0 and no
input at port 2 and assume 50/50 beamsplitters, the first beam splitter will
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φ3

φ4

Figure 2.45: Mach-Zehnder Interferometer

produce two waves with complex amplitudes

b3 =
1√
2
a0

b4 = j 1√
2
a0

(2.182)

During propagation through the interferometer arms, both waves pick up a
phase delay φ3 = kL3 and φ4 = kL4, respectively

a5 =
1√
2
a0e

−jφ3 ,

a6 = j 1√
2
a0e

−jφ4 .
(2.183)

After the second beam splitter with the same scattering matrix as the first
one, we obtain

b7 =
1
2
a0
¡
e−jφ3 − e−jφ4

¢
,

b8 = j 1
2
a0
¡
e−jφ3 + e−jφ4

¢
.

(2.184)

The transmitted power to the output ports is

|b7|2 = |a0|
2

4

¯̄
1− e−j(φ3−φ4)

¯̄2
= |a0|

2

2
[1− cos (φ3 − φ4)] ,

|b8|2 = |a0|
2

4

¯̄
1 + e−j(φ3−φ4)

¯̄2
= |a0|

2

2
[1 + cos (φ3 − φ4)] .

(2.185)

The total output power is equal to the input power, as it must be for a lossless
system. However, depending on the phase difference ∆φ = φ3 − φ4 between
both arms, the power is split differently between the two output ports, see
Figure 2.46.With proper biasing, i.e. φ3 − φ4 = π/2 +∆φ, the difference in
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Figure 2.46: Output power from the two arms of an interfereometer as a
function of phase difference.

output power between the two arms can be made directly proportional to
the phase difference ∆φ.

Opening up the beam size in the interferometer and placing optics into
the beam enables to visualize beam distortions due to imperfect optical com-
ponents, see Figures 2.47 and 2.48.

Figure 2.47: Twyman-Green Interferometer to test optics quality [1] p. 324.
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Figure 2.48: Interference pattern with a hot iron placed in one arm of the
interferometer ([1], p. 395).

2.3.7 Fabry-Perot Resonator

Interferometers can act as filters. The phase difference between the interfer-
ometer arms depends on frequency, therefore, the transmission from input to
output depends on frequency, see Figure 2.46. However, the filter function is
not very sharp. The reason for this is that only a two beam interference is
used. Much more narrowband filters can be constructed by multipass inter-
ferences such as in a Fabry-Perot Resonator, see Figure 2.49. The simplest
Fabry Perot is described by a sequence of three layers where at least the mid-
dle layer has an index different from the other two layers, such that reflections
occur on these interfaces.
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Figure 2.49: Multiple intereferences in a Fabry Perot resonator. In the sim-
plest implementation a Fabry Perot only consists of a sequence of three layers
with different refractive index so that two reflections occur with multiple in-
terferences. Each of this discontinuites can be described by a scattering
matrix.

Any kind of device that has reflections at two parallel interfaces may
act as a Fabry Perot such as two semitransparent mirrors. A thin layer
of material against air can act as a Fabry-Perot and is often called etalon.
Given the reflection and transmission coefficients at the interfaces 1 and 2,
we can write down the scattering matrices for both interfaces according to
Eqs.(2.180) and (2.181).µ

b̃1
b̃2

¶
=

µ
r1 jt1
jt1 r1

¶µ
ã1
ã2

¶
and

µ
b̃3
b̃4

¶
=

µ
r2 jt2
jt2 r2

¶µ
ã3
ã4

¶
.

(2.186)
If we excite the Fabry-Perot with a wave from the right with amplitude.
ã1 6= 0, then a fraction of that wave will be transmitted to the interface into
the Fabry-Perot as wave b̃2 and part will be already reflected into b̃1,

b̃
(0)

1 = r1ã1. (2.187)

The transmitted wave will then propagate and pick up a phase factor e−jφ/2,
with φ = 2k2L and k2 =

2π
λ
n2,

ã3=jtã1e
−jφ/2. (2.188)
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After propagation it will be reflected off from the second interface which has
a reflection coefficient

Γ2 =
b̃3
ã3

¯̄̄̄
¯
a4=0

= r2. (2.189)

Then the reflected wave b̃3 propagates back to interface 1, picking up another
phase factor e−jφ/2 resulting in an incoming wave after one roundtrip of ã(1)2 =
jt1r2e

−jφã1. Upon reflection on interface 1, part of this wave is transmitted
leading to an output

b̃
(1)

1 =jt1jt1r2e−jφã1. (2.190)

The partial wave a(1)2 is reflected again and after another roundtrip it arrives
at interface 1 as ã(2)2 = (r1r2) e

−jφ · jt1r2e−jφã1. Part of this wave is trans-
mitted and part of it is reflected back to go through another cycle. Thus in
total if we sum up all partial waves that contribute to the output at port 1
of the Fabry-Perot filter, we obtain

b̃1 =
∞X
n=0

b̃
(n)

1

=

Ã
r1 − t21r2e

−jφ
∞X
n=0

r1r2e
−jφ

!
ã1

=

µ
r1 − t21r2

e−jφ

1− r1r2e−jφ

¶
ã1

=
r1 − r2e

−jφ

1− r1r2e−jφ
ã1 (2.191)

Note, that the coefficient in front of Eq.(2.191) is the coefficient S11 of the
scattering matrix of the Fabry-Perot. In a similar manner, we obtainµ

b̃3
b̃4

¶
= S

µ
ã1
ã2

¶
(2.192)

and

S=
1

1− r1r2e−jφ

µ
r1 − r2e

−jφ −t1t2e−jφ/2
−t1t2e−jφ/2 r2 − r1e

−jφ

¶
(2.193)

In the following, we want to analyze the properties of the Fabry-Perot for
the case of symmetric reflectors, i.e. r1 = r2 and t1 = t2. Then we obtain for
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the power transmission coefficient of the Fabry-Perot, |S21|2 in terms of the
power reflectivity of the interfaces R = r2

|S21|2 =
¯̄̄̄
1−R

1−Re−jφ

¯̄̄̄2
=

(1−R)2

(1−R)2 + 4R sin2(φ/2)
(2.194)

Figure 2.50 shows the transmission |S21|2 of the Fabry-Perot interferometer
for equal reflectivities |r1|2 = |r2|2 = R.
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Figure 2.50: Transmission of a lossless Fabry-Perot interferometer with
|r1|2 = |r2|2 = R

At very low reflectivity R of the mirror the transmission is almost every-
where 1, there is only a slight sinusoidal modulation due to the first order
interferences which are periodically in phase and out of phase, leading to
100% transmission or small reflection. For large reflectivity R, due to the
then multiple interference operation of the Fabry-Perot Interferometer, very
narrow transmission resonances emerge at frequencies, where the roundtrip
phase in the resonator is equal to a multiple of 2π

φ =
2πf

c0
n22L = 2πm, (2.195)
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which occurs at a comb of frequencies, see Figure 2.51

fm = m
c0
2n2L

. (2.196)
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Figure 2.51: Developement of a set of discrete resonances in a one-
dimensionsal resonator.

On a large frequency scale, a set of discrete frequencies, resonances or
modes arise. The frequency range between resonances is called free spectral
range (FSR) of the Fabry-Perot Interferometer

FSR =
c0
2n2L

=
1

TR
, (2.197)

which is the inverse roundtrip time TR of the light in the one-dimensonal
cavity or resonator formed by the mirrors. The filter characteristic of each
resonance can be approximately described by a Lorentzian line derived from
Eq.(2.194) by substituting f = fm +∆f with ∆f ¿ FSR,

|S21|2 =
(1−R)2

(1−R)2 + 4R sin2
¡£
m2π + 2π ∆f

FSR

¤
/2
¢

≈ 1

1 +
³
2π
√
R

1−R
∆f
FSR

´2 , (2.198)

≈ 1

1 +
³

∆f
∆fFWHM/2

´2 , (2.199)
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where we introduced the FWHM of the transmission filter

∆fFWHM =
FSR

F
, (2.200)

with the finesse of the interferometer defined as

F =
π
√
R

1−R
≈ π

T
. (2.201)

The last simplification is valid for a highly reflecting mirror R ≈ 1 and T is
the mirror transmission. From this relation it is immediately clear that the
finesse has the additional physical meaning of the optical power enhancement
inside the Fabry-Perot at resonance besides the factor of π, since the power
inside the cavity must be larger by 1/T , if the transmission through the
Fabry-Perot is unity.

2.3.8 Quality Factor of Fabry-Perot Resonances

Another quantity often used to characterize a resonator or a resonance is
its quality factor Q, which is defined as the ratio between the resonance
frequency and the decay rate for the energy stored in the resonator, which is
also often called inverse photon lifetime, τ−1ph

Q = τ phfm. (2.202)

Lets assume, energy is stored in one of the resonator modes which occupies a
range of frequencies [fm − FSR/2, fm + FSR/2] as indicated in Figure 2.52.
Then the fourier integral

am(t) =

Z +FSR/2

−FSR/2
b̃2(f)e

j2π(f−fm)t df, (2.203)

where
¯̄̄
b̃2(f)

¯̄̄2
is normalized such that it describes the power spectral density

of the forward traveling wave in the resonator gives the mode amplitude of the
m-th mode and its magnitude square is the energy stored in the mode. Note,
that we could have taken any of the internal waves ã2, b̃2, ã3, and b̃3. The time
dependent field we create corresponds to the field of the forward or backward
traveling wave at the corresponding reference plane in the resonator.
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Figure 2.52: Integration over all frequency components within the frequency
range [fm − FSR/2, fm + FSR/2] defines a mode amplitude a(t) with a slow
time dependence

We now make a "Gedanken-Experiment". We switch on the incoming
waves ã1(ω) and ã4(ω) to load the cavity with energy and evaluate the in-
ternal wave b̃2(ω). Instead of summing up all the multiple reflections like
we did in constructing the scattering matrix (2.192), we exploit our skills
in analyzing feedback systems, which the Fabry-Perot filter is. The scat-
tering equations set force by the two scattering matrices characterizing the
resonator mirrors in the Fabry-Perot can be visuallized by the signal flow
diagram in Figure 2.53
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Figure 2.53: Representation of Fabry-Perot resonator by a signal flow dia-
gram
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For the task to find the relationship between the internal waves feed by
the incoming wave only the dashed part of the signal flow is important. The
internal feedback loop can be clearly recognized with a closed loop transfer
function

r2e−jφ,

which leads to the resonance denominator

1− r2e−jφ

in every element of the Fabry-Perot scattering matrix (2.192). Using Blacks
formula from 6.003 and the superposition principle we immediately find for
the internal wave

b̃2 =
jt

1− r2e−jφ
¡
ã1 + re−jφ/2ã4

¢
. (2.204)

Close to one of the resonance frequencies, Ω = 2πfm + ω, using t = 1− r2,
(2.204) can be approximated by

b̃2(ω) ≈
j

1 + j R
1−RωTR

¡
ã1(ω) + r(−1)me−jωTR/2ã4(ω)

¢
, (2.205)

≈ j

1 + jωTR/T

¡
ã1(ω) + r(−1)me−jωTR/2ã4(ω)

¢
(2.206)

for high reflectivity R. Multiplication of this equation with the resonant de-
nominator

(1 + jωTR/T ) b̃2(ω) ≈ j
¡
ã1(ω) + r(−1)me−jωTR/2ã4(ω)

¢
(2.207)

and inverse Fourier-Transform in the time domain, while recognizing that
the internal fields vanish far off resonance, i.e.

am(t) =

Z +π·FSR

−π·FSR
b̃2(ω)e

jωt dω =

Z +∞

−∞
b̃2(ω)e

jωt dω, (2.208)

we obtain the following differential equation for the mode amplitude slowly
varying in time

TR
d

dt
am(t) = −T (am(t) + ja1(t) + j(−1)ma4(t− TR/2)) (2.209)
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with the input fields

a1/4(t) =

Z +π·FSR

−π·FSR
ã1/4(ω)e

jωt dω. (2.210)

Despite the pain to derive this equation the physical interpretation is remark-
ably simple and far reaching as we will see when we apply this equation later
on to many different situations. Lets assume, we switch off the loading of
the cavity at some point, i.e. a1/4(t) = 0, then Eq.(2.209) results in

am(t) = am(0)e
−t/(TR/T ) (2.211)

And the power decays accordingly

|am(t)|
2 = |am(0)|

2 e−t/(TR/2T ) (2.212)

twice as fast as the amplitude. The energy decay time of the cavity is often
called the cavity energy decay time, or photon lifetime, τ ph, which is here

τ ph =
TR
2T

.

Note, the factor of two comes from the fact that each mirror of the Fabry-
Perot has a transmission T per roundtrip time. For exampl a L = 1.5m long
cavity with mirrors of 0.5% transmission, i.e. TR = 10ns and 2T = 0.01 has a
photon lifetime of 1μs. It needs hundred bounces on the mirror for a photon
to be essentially lost from the cavity.
Highest quality dielectric mirrors may have a reflection loss of only 10−5...−6,

this is not really transmission but rather scattering loss in the mirror. Such
high reflectivity mirrors may lead to the construction of cavities with photon
lifetimes on the order of milliseconds.
Now, that we have an expression for the energy decay time in the cavity,

we can evaluate the quality factor of the resonator

Q = fm · τ ph =
m

2T
. (2.213)

Again for a resonator with the same parameters as before and at optical
frequencies of 300THz corresponding to 1μm wavelength, we obtain Q =
2 · 108.
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2.3.9 Thin-Film Filters

Transfer matrix formlism is an efficient method to analyze the reflection and
transmission properties of layered dielectric media, such as the one shown
in Figure 2.54. Using the transfer matrix method, it is an easy task to
compute the transmission and reflection coefficients of a structure composed
of layers with arbitrary indices and thicknesses. A prominent example of a
thin-film filter are Bragg mirrors. These are made of a periodic arrangement
of two layers with low and high index n1 and n2, respectively. For maximum
reflection bandwidth, the layer thicknesses are chosen to be quarter wave for
the wavelength maximum reflection occures, n1d1 =λ0/4 and n2d2 =λ0/4

a2_~

a1_~ b2_~

b1_~

....
n1 n1 n1n2n2 n2

d1 d1 d1d2 d2 d2

Figure 2.54: Thin-Film dielectric mirror composed of alternating high and
low index layers.

As an example Figure 2.55 shows the reflection from a Bragg mirror with
n1 = 1.45, n2 = 2.4 for a center wavelength of λ0 = 800nm. The layer
thicknesses are then d1 =134nm and d2 =83nm.
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Figure 2.55: Reflectivity of an 8 pair quarter wave Bragg mirror with n1 =
1.45 and n2 = 2.4 designed for a center wavelength of 800nm. The mirror is
embedded in the same low index material.
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2.4 Paraxial Wave Equation and Gaussian Beams

So far, we have only treated optical systems operating with plane waves,
which is an idealization. In reality plane waves are impossible to generate
because of there infinite amount of energy required to do so. The simplest
(approximate) solution of Maxwell’s equations describing a beam of finite size
is the Gaussian beam. In fact many optical systems are based on Gaussian
beams. Most lasers are designed to generate a Gaussian beam as output.
Gaussian beams stay Gaussian beams when propagating in free space. How-
ever, due to its finite size, diffraction changes the size of the beam and lenses
are imployed to reimage and change the cross section of the beam. In this sec-
tion, we want to study the properties of Gaussian beams and its propagation
and modification in optical systems.

2.4.1 Paraxial Wave Equation

We start from the Helmholtz Equation (2.18)

¡
∆+ k20

¢ e
E(x, y, z, ω) = 0, (2.214)

with the free space wavenumber k0 = ω/c0. This equation can easily be
solved in the Fourier domain, and one set of solutions are of course the plane
waves with wave vector |k|2 = k20. We look for solutions which are polarized
in x-direction e

E(x, y, z, ω) = eE(x, y, z) ex. (2.215)

We want to construct a beam with finite transverse extent into the x-y-plane
and which is mainly propagating into the positive z-direction. As such we
may try a superposition of plane waves with a dominant z-component of the
k-vector, see Figure 2.56. The k-vectors can be written as

kz =
q
k20 − k2x − k2y,

≈ k0

µ
1−

k2x − k2y
2k20

¶
. (2.216)

with kx, ky << k0.
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Figure 2.56: Construction of a paraxial beam by superimposing many plane
waves with a dominante k-component in z-direction.

Then we obtain for the propagating field

eE(x, y, z) =

Z +∞

−∞

Z +∞

−∞
eE0(kx, ky) ·

exp

∙
−jk0

µ
1−

k2x + k2y
2k20

¶
z − jkxx− jkyy

¸
dkxdky,

=

Z +∞

−∞

Z +∞

−∞
eE0(kx, ky) ·

exp

∙
j

µ
k2x + k2y
2k0

¶
z − jkxx− jkyy

¸
dkxdkye

−jk0z, (2.217)

where eE0(kx, ky) is the amplitude for the waves with the corresponding trans-
verse k-component. This function should only be nonzero within a small
range kx, ky ¿ k0. The function

eE0(x, y, z) = Z +∞

−∞

Z +∞

−∞
eE0(kx, ky) exp ∙j µk2x + k2y

2k0

¶
z − jkxx− jkyy

¸
dkxdky

(2.218)
is a slowly varying function in the transverse directions x and y, and it can
be easily verified that it fulfills the paraxial wave equation

∂

∂z
eE0(x, y, z) = −j

2k0

µ
∂2

∂x2
+

∂2

∂x2

¶ eE0(x, y, z). (2.219)

Note, that this equation is in its structure identical to the dispersive spreading
of an optical pulse. The difference is that this spreading occurs now in the
two transverse dimensions and is called diffraction.
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2.4.2 Gaussian Beams

Since the kernel in Eq.(2.218) is quadratic in the transverse k-components
using a two-dimensional Gaussian for the amplitude distribution leads to a
beam in real space which is also Gaussian in the radial direction because of
the resulting Gaussian integral. By choosing for the transverse amplitude
distribution eE0(kx, ky) = exp ∙−k2x + k2y

2k2T

¸
, (2.220)

Eq.(2.218) can be rewritten as

eE0(x, y, z) = Z +∞

−∞

Z +∞

−∞
exp

∙
j

µ
k2x + k2y
2k0

¶
(z + jzR)− jkxx− jkyy

¸
dkxdky,

(2.221)
with the parameter zR = k0/k

2
T , which we will later identify as the Rayleigh

range. Thus, Gaussian beam solutions with different finite transverse width
in k-space and real space behave as if they propagate along the z-axis with
different imaginary z-component zR. Carrying out the Fourier transformation
results in the Gaussian Beam in real space

eE0(x, y, z) = j

z + jzR
exp

∙
−jk0

µ
x2 + y2

2(z + jzR)

¶¸
. (2.222)

The Gaussian beam is often formulated in terms of the complex beam pa-
rameter or q-parameter.
The propagation of the beam in free space and later even through optical

imaging systems can be efficiently described by a proper transformation of
the q-parameter

eE0(r, z) = 1

q(z)
exp

∙
−jk0

µ
r2

2q(z)

¶¸
. (2.223)

Free space propagation is then described by

q(z) = z + jzR (2.224)

Using the inverse q-parameter, decomposed in real and imagniary parts,

1

q(z)
=

1

R(z)
− j

λ

πw2(z)
. (2.225)
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leads to

eE0(r, z) = √
2P√

πw(z)
exp

∙
− r2

w2(z)
− jk0

r2

2R(z)
+ jζ(z)

¸
. (2.226)

Thus w(z) is the waist of the beam and R(z) is the radius of the phase
fronts. We normalized the beam such that the Gaussian beam intensity

I(z, r) =
¯̄̄ eE0(r, z)¯̄̄2 expressed in terms of the power P carried by the beam

is given by

I(r, z) =
2P

πw2(z)
exp

∙
− 2r2

w2(z)

¸
, (2.227)

i.e. P =

Z ∞

0

Z 2π

0

I(r, z) rdr dϕ. (2.228)

The use of the q-parameter simplifies the description of Gaussian beam prop-
agation. In free space propagation from z1 to z2, the variation of the beam
parameter q is simply governed by

q2 = q1 + z2 − z1. (2.229)

where q2 and q1 are the beam parameters at z1 and z2.
If the beam waist, at which the beam has a minimum spot size w0 and

a planar wavefront (R = ∞), is located at z = 0, the variations of the
beam spot size and the radius of curvature of the phase fronts are explicitly
expressed as

w(z) = wo

"
1 +

µ
z

zR

¶2#1/2
, (2.230)

and

R(z) = z

∙
1 +

³zR
z

´2¸
, (2.231)

where zR is called the Rayleigh range. The Rayleigh range is the distance
over which the cross section of the beam doubles. The Rayleigh range is
related to the initial beam waist and the wavelength of light according to

zR =
πw2o
λ

. (2.232)
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Intensity

Figure 2.57 shows the intensity of the Gaussian beam according to Eq.(2.227)
for different propagation distances.

Figure 2.57: The normalized beam intensity I/I0 as a function of the radial
distance r at different axial distances: (a) z=0, (b) z=zR, (c) z=2zR.

The beam intensity can be rewritten as

I(r, z) = I0
w20

w2(z)
exp

∙
− 2r2

w2(z)

¸
, with I0 =

2P

πw20
. (2.233)

For z > zR the beam radius growth linearly and therefore the area expands
quadratically, which brings down the peak intensity quadratically with prop-
agation distance.
On the beam axis (r = 0) the intensity is given by

I(r, z) = I0
w20

w2(z)
=

I0

1 +
³

z
zR

´2 . (2.234)

The normalized beam intensity as a function of propagation distance is shown
in Figure 2.58
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Figure 2.58: The normalized Beam intensity I(r = 0)/I0 on the beam axis
as a function of propagation distance z [6], p. 84.

Power

The fraction of the total power contained in the beam up to a certain radius
is

P (r < r0)

P
=

2π

P

Z r0

0

I(r, z)rdr

=
4

w2(z)

Z r0

0

exp

∙
− 2r2

w2(z)

¸
rdr (2.235)

= 1− exp
∙
− 2r20
w2(z)

¸
.

Thus, there is a certain fraction of power within a certain radius of the
beam

P (r < w(z))

P
= 0.86, (2.236)

P (r < 1.5w(z))

P
= 0.99. (2.237)

Beam radius

Due to diffraction, the smaller the spot size at the beam waist, the faster the
beam diverges according to 2.230 as illustrated in Figure ??.
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Planes of const.
 Phase

Beam Waist

z/z R

Figure 2.59: Gaussian beam and its characteristics.

Beam divergence

The angular divergence of the beam is inversely proportional to the beam
waist. In the far field, the half angle divergence is given by

θ =
λ

πwo
, (2.238)

see Figure 2.59.

Confocal parameter and depth of focus

In linear microscopy, only a layer which has the thickness over which the
beam is focused, called depth of focus, will contribute to a sharp image. In
nonlinear microscopy (see problem set) only a volume on the order of beam
cross section times depth of focus contributes to the signal. Therefore, the
depth of focus or confocal parameter of the Gaussian beam, is the distance
over which the beam stays focused and is defined as twice the Rayleigh range

b = 2zR =
2πw2o
λ

. (2.239)

The confocal parameter depends linear on the spot size (area) of the beam
and is inverse to the wavelength of light. At a wavelength of 1μm a beam
with a radius of wo = 1cm,.the beam will stay focussed ove distances as long
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600m. However, if the beam is stronlgy focussed down to wo = 10μm the
field of depth is only 600μm.

Phase

The phase delay of the Gaussian beam is

Φ(r, z) = k0z − ζ(z) + k0
r2

2R(z)
(2.240)

ζ(z) = arctan

µ
z

zR

¶
. (2.241)

On beam axis, there is the additional phase ζ(z) when the beam undergoes
focussing as shown in Figure 2.60. This is in addition to the phase shift that
a uniform plane wave already aquires.

Figure 2.60: Phase delay of a Gaussian beam relative to a uniform plane wave
on the beam axis [6], p. 87. This phase shift is known as Guoy-Phase-Shift.

This effect is known as Guoy-Phase-Shift. The third term in the phase
shift is parabolic in the radius and describes the wavefront (planes of constant
phase) bending due to the focusing, i.e. distortion from the uniform plane
wave.
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Figure 2.61: The radius of curvature R(z) of the wavefronts of a Gaussian
beam [6], p. 89.

The surfaces of constant phase are detemined by k0z − ζ(z) + k0
r2

2R(z)
=

const. Since the radius of curvature R(z) and the additional phase ζ(z) are
slowly varying functions of z, i.e. they are constant over the radial variation
of the wavefront, the wavefronts are paraboloidal surfaces with radius R(z),
see Figures 2.61 and 2.62.

Figure 2.62: Wavefronts of a Gaussian beam, [6] p. 88.

For comparison, Figure 2.63 shows the wavefront of (a) a uniform plane
wave, (b) a spherical wave and (c) a Gaussian beam. At points near the
beam center, the Gaussian beam resembles a plane wave. At large z, the
beam behaves like a spherical wave except that the phase fronts are delayed
by a quarter of the wavlength due to the Guoy-Phase-Shift.
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Figure 2.63: Wavefronts of (a) a uniform plane wave;(b) a spherical wave;
(c) a Gaussian beam [5], p. 89.

2.5 Rays and Optical Systems

Now, that we understand how a beam of finite size as a solution of Maxwell’s
Equations can be constructed, we are interested how such a beam can be
imaged by an optical system. Propagation of a Gaussian beam in free space
leads to spreading of the beam because of the diffraction. We need means
to focus the beam again. The output beam from a laser may have a certain
size but we may need a different size for a given experiment. We can change
the size or focus the beam by an optical imaging system. Optical systems
are studied and analyzed using ray optics. What is a ray? We have already
discussed that diffraction of a beam is similar to dispersion of an optical
pulse. Dispersion of a pulse we understood because of the different group
velocity of different frequency components or sub-pulses. It turns out that
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these sub-pulses are the temporal analog to the rays. In the same way we
can construct a short pulse by a superposition of sub-pulses with different
center frequencies, we can construct a Gaussian beam by sub-beams with
different center transverse k-vectors and a very narrow spread in transverse
k-vectors. These are Gaussian beams with a large beam diameter such that
diffraction is not any longer important. These beams are called rays. The
ray only experiences a phase shift during propagation depending on the local
refractive index n(r). Therefore, we can completely understand the imaging
of Gaussian beams in paraxial optical systems by the imaging properties of
rays.

2.5.1 Ray Propagation

A ray propagating in an optical system, see Figure 2.64, can be described
by its position r with respect to the optical axis and its inclination with
respect to the optical axis r0. It is advantageous to use not (r, r0) as the
ray coordinates but the combination (r, n r0), where n is the local refractive
index at the position of the ray. Due to propagation, the ray coordinates
may change, which can be desribed by a marix, that maps initial position
and inclination into the corresponding quantitaties after the propagationµ

r2
n2r

0
2

¶
=

µ
A B
C D

¶µ
r1
n1r

0
1

¶
. (2.242)

This imaging matrix is called an ABCD-matrix.

Z

r’1

r2

r’2r1

1 2

Optical

System

Figure 2.64: Description of optical ray propagation by its distance and incli-
nation from the optical axis
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The advantage in using (r, n r0) as the ray coordinates is that it preserves
the phase space volume, i.e. for lossless optical systems the determinant of
the ABCD-matrix must be 1. Also Snell’s law for paraxial rays has then a
simple form, see Figure 2.65. For paraxial rays the angles to the interface
normal, θ1 and θ2, are much smaller than 1, and we can write

r01 = tan θ1 ≈ sin θ1 ≈ θ1, and r02 = tan θ2 ≈ sin θ2 ≈ θ2.

Then Snell’s law is
n1 r

0
1 = n2 r

0
2. (2.243)

Z

r’1 r2

r’2
r1

1 2

n1 n2

θ2

θ1

Figure 2.65: Snell’s law for paraxial rays

The ABCD-matrix describing a ray going from a medium with index n1
to a medium with index n2 is the unity matrix

r2 = r1 (2.244)

n2 r
0
2 = n1 r

0
1. (2.245)

Free space propagation

For propagation in free space, see Figure 2.66, the relationship between input
and output ray parameters is

r2 = r1 + r01 · L
r02 = r01
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or the propagation matrix is

M =

µ
1 L
0 1

¶
. (2.246)

Z

r’1
r2

r’2

r1

1 2

L

Figure 2.66: Free space propagation

Propagation in medium with length L and index n

Free propagation through a medium with index n does result in a reduced
position shift with respect to the optical axis in comparison to free space,
because the beam is first bent to the optical axis according to Snell’s law,
see Figure 2.67. Therefore the corresponding ABCD-matrix is

M =

µ
1 L/n
0 1

¶
. (2.247)

Z

r’1 r2

r’2

r1

1 2

L

Figure 2.67: Ray propagation through a medium with refractive index n,
shortens the path length of the beam by a factor of n.
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Parbolic surface or thin lens

Plano-Convex Lens When a ray penetrates a parabolic surface between
two media with refractive indices n1 and n2, it changes its inclination. A
parabolic surface can be closely approximated by the surface of a sphere, see
Figure 2.68. Snells law in paraxial approximation is

n1 (r
0
1 + α) = n2 (r

0
2 + α) . (2.248)

Z

r’1 r2

r’2

r1

n2

0

α

α

R

Figure 2.68: Derivation of ABCD-matrix of a thin plano-convex lens.

The small angle α can be approximated by α ≈ r1/R. In total we then
obtain the mapping

r2 = r1 (2.249)

n2 r
0
2 = n1 r

0
1 +

n1 − n2
R

r1 (2.250)

or

M =

µ
1 0

n1−n2
R

1

¶
. (2.251)

Note, the second normal interface does not change the ray propagation matrix
and therefore Eq.(2.251) describes correctly the ray propagation through a
thin plano-convex lens.
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Biconvex Lens If the lens would have a second convex surface, this would
refract the ray twice as strongly and we would obtain

M =

µ
1 0

2n1−n2
R

1

¶
. (2.252)

The quantity 2n2−n1
R

is called the refractive strength of the biconvex lense
or inverse focal length 1/f.Because the system of a thin lens plus free space
propagation results in the matrix (calculated in the reverse order)

Mtot =

µ
1 f
0 1

¶µ
1 0
− 1

f
1

¶
=

µ
0 f
− 1

f
1

¶
, (2.253)

which ensures that each ray parallel to the optical axis goes through the on
axis focal point at the end of the free space section, see Figure 2.69.

f

r1

z

Figure 2.69: Imaging of parallel rays through a lens with focal length f.

Curved Mirrors

Other often used optical components in imaging systems are curved mirrors
with radius of curvature ROC = R, see Figure 2.70. The advantage of
reflective optics is that the rays don’t have to pass through dispersive material
like through a lense, which is very disturbing for ultrashort pulses.
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Z
r’1

r2

r’2

r1

0
α

-R

α

r’1

Figure 2.70: Derivation of ray matrix for concave mirror with Radius R.

As in the case of the thin lens,e the imaging does not change the distance
of the ray from the optical axis, however, the slope of the rays obey

r01 − α = r02 + α. (2.254)

with α ≈ r1/R in paraxial approximation. Therefore the ABCD matrix
describing the reflection of rays at a curved mirror with ROC = R is

M =

µ
1 0
− 1

f
1

¶
, with f =

R

2
. (2.255)

2.5.2 Gauss’ Lens Formula

As a simple application of the ray matrices for optical system design, we
derive Gauss’ lens formula, which says that all rays emitted from an orignial
placed a distance d1 from a lens with focal length f form an image at a
distance d2, which is related to d1 by

1

d1
+
1

d2
=
1

f
, (2.256)

see Figure 2.71.
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fr1

z

d1 d2

r2

I II

Figure 2.71: Gauss’ lens formula.

The magnification of the lens system is Mr =
r2
r1
= d2

d1
=
¯̄̄

f
d1−f

¯̄̄
. The ray

matrix that describes the imagaing from the orignal plane I to the image
plane II is described by the productµ

A B
C D

¶
=

µ
1 d2
0 1

¶µ
1 0
− 1

f
1

¶µ
1 d1
0 1

¶
=

Ã
1− d2

f

³
1− d2

f

´
d1 + d2

− 1
f

1− d1
f

!
. (2.257)

In order that the distance r2 only depends on r1, but not on r01, B must be
0, which is Eq. (2.256). Thus in total we have

Magnification Mr =
¯̄̄

f
d1−f

¯̄̄
Distance to focus d2 − f =M2

r (d1 − f)
(2.258)

More complicated imaging systems, such as thick lenses, can be described
by ray matrices and arbitrary paraxial optical systems can be analyzed with
them, which shall not be pursued further here. Rather, we want to study
how Gaussian beams are imaged by paraxial optical systems

2.6 Gaussian Beams and Resonators

2.6.1 Gaussian Beam Propagation

The propagation of Gaussian beams through paraxial optical systems can
be efficiently evaluated using the ABCD-law [4], which states that the q-
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parameter of a Gaussian beam passing a optical system described by an
ABCD-marix is given by

q2 =
Aq1 +B

Cq1 +D
, (2.259)

where q1 and q2 are the beam parameters at the input and the output planes
of the optical system or component, see Figure 2.72

Figure 2.72: Gaussian beam transformation by ABCD law, [6], p. 99.

To proove this law, we realize that it is true for the case of free space prop-
agation, i.e. pure diffraction, comparing (2.259) with (2.229) and (2.246). If
we can proove that it is additionally true for a thin lens, then we are finished,
because every ABCD matrix (2x2 matrix) can be written as a product of a
lower and upper triangular matrix (LR-decomposition) like the one for free
space propagation and the thin lens. Note, the action of the lens is identi-
cal to the action of free space propagation, but in the Fourier-domain. In
the Fourier domain the Gaussian beam parameter is replaced by its inverse
(2.222)

eE0(x, y, z) =
j

q(z)
exp

∙
−jk0

µ
x2 + y2

2q(z)

¶¸
. (2.260)

eE0(kz, ky, z) = 2πj exp

∙
−jq(z)

µ
k2z + k2y
2k0

¶¸
(2.261)

But the inverse q-parameter transforms according to (2.259)

1

q2
=

D 1
q1
+ C

B 1
q1
+A

, (2.262)
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which leads for a thin lens to

1

q2
=
1

q1
−1
f
. (2.263)

This is exactly what a thin lens does, see Eq.(2.225), it changes the radius
of curvature of the phase front but not the waist of the beam according to

1

R2
=
1

R1
−1
f
. (2.264)

With that finding, we have proven the ABCD law for Gaussian beam prop-
agation through paraxial optical systems.
The ABCD-matrices of the optical elements discussed so far including

nonnomal incidence are summarized in Table 2.6. As an application of the

Optical Element ABCD-Matrix
Propagation in Medium with
index n and length L

µ
1 L/n
0 1

¶
Thin Lens with
focal length f

µ
1 0
−1/f 1

¶
Mirror under Angle
θ to Axis and Radius R
Sagittal Plane

µ
1 0

−2 cos θ
R

1

¶
Mirror under Angle
θ to Axis and Radius R
Tangential Plane

µ
1 0
−2

R cos θ
1

¶
Brewster Plate under
Angle θ to Axis and Thickness
d, Sagittal Plane

µ
1 d

n

0 1

¶
Brewster Plate under
Angle θ to Axis and Thickness
d, Tangential Plane

µ
1 d

n3

0 1

¶

Table 2.6: ABCD matrices for commonly used optical elements.

Gaussian beam propagation, lets consider the imaging of a Gaussian beam
with a waist w01 by a thin lens at a distance d1 away from the waist to a
beam with a different size w02, see Figure 2.73.
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d1 d2

zR1 zR2

Figure 2.73: Focusing of a Gaussian beam by a lens.

There will be a new focus at a distance d2.The corresponding ABCD
matrix is of course the one from Eq.(2.257), which is repeated hereµ

A B
C D

¶
=

Ã
1− d2

f

³
1− d2

f

´
d1 + d2

− 1
f

1− d1
f

!
. (2.265)

The q-parameter of the Gaussian beam at the position of minimum waist is
purely imaginary q1 = jzR1 = j

πw201
λ
and q2 = jzR2 = j

πw202
λ

, where

q2 =
A q1 +B

C q1 +D
=
jzR1A+B

jzR1C +D
=

jzR1A+B

jzR1C +D
= jzR2. (2.266)

In the limit of ray optics, where the beam waists can be considered to by
zero, i.e. zR1 = zR2 = 0 we obtain B = 0, i.e. the imaging rule of classical
ray optics Eq.(2.256). It should not come at a surprise that for the Gaus-
sian beam propagation this law does not determine the exact distance d2
of the position of the new waist. Because, in the ray analysis we neglected
diffraction. Therefore, the Gaussian beam analysis, although it uses the same
description of the optical components, gives a slightly different and improved
answer for the position of the focal point. To find the position d2, we request
that the real part of the right hand side of (2.266) is zero,

BD − z2R1AC = 0 (2.267)

which can be rewritten as

1

d2
=
1

f
− 1

d1+
z2R1
d1−f

. (2.268)
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Again for zR1 → 0, we obtain the ray optics result. And the imaginary part
of Eq.(2.266) leads to

1

zR2
=

1

zR1

¡
D2 + z2R1C

2
¢
, (2.269)

or
1

w202
=

1

w201

µ
1− d1

f

¶2 "
1 +

µ
zR1

d1 − f

¶2#
. (2.270)

With the magnification M for the spot size, with is closely related to the
Magnification Mr of ray optics, we can rewrite the results as

Magnification M =Mr/
p
1 + ξ2, with ξ = zR1

d1−f and Mr =
¯̄̄

f
d1−f

¯̄̄
Beam waist w02 =M · w01
Confocal parameter 2zR2 =M2 2zR2
Distance to focus d2 − f =M2 (d1 − f)
Divergence θ02 = θ01/M

(2.271)

2.6.2 Resonators

With the Gaussian beam solutions, we can finally construct optical resonators
with finite transverse extent, i.e. real Fabry-Perots, by inserting into the
Gaussian beam, see Figure 2.74, curved mirrors with the proper radius of
curvature, such that the beam is imaged upon itself.

z1

L

z2

R1 R2

Figure 2.74: Fabry-Perot resonator with finite beam cross section by inserting
curved mirrors into the beam to back reflect the beam onto itself.
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Any resonator can be unfolded into a sequence of lenses and free space
propagation. Here, we replace the curved mirrors by equivalent lenses with
f1 = R1/2, and f2 = R2/2, see Figure 2.75.

Figure 2.75: Two-mirror resonator unfolded. Note, only one half of the
focusing strength of mirror 1 belongs to a fundamental period describing one
resonator roundtrip.

The product of ABCD matrices describing one roundtrip of the beam in
the resonator according to Figure 2.75 is

M =

µ
1 0
−1
2f1

1

¶µ
1 L
0 1

¶µ
1 0
−1
f2

1

¶µ
1 L
0 1

¶µ
1 0
−1
2f1

1

¶
. (2.272)

To carry out this product and to formulate the cavity stability criteria, it is
convenient to use the cavity parameters gi = 1−L/Ri, i = 1, 2. The resulting
cavity roundtrip ABCD-matrix can be written in the form

M =

µ
(2g1g2 − 1) 2g2L

2g1 (g1g2 − 1) /L (2g1g2 − 1)

¶
=

µ
A B
C D

¶
. (2.273)

Resonator Stability

The ABCD matrices describe the dynamics of rays propagating inside the
resonator. The resonator is stable if no ray escapes after many round-trips,
which is the case when the magnitude of the eigenvalues of the matrix M
are less than one. Since we have a lossless resonator, i.e. det|M | = 1, the
product of the eigenvalues has to be 1 and, therefore, the stable resonator
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corresponds to the case of a complex conjugate pair of eigenvalues with a
magnitude of 1. The eigenvalue equation to M is given by

det |M − λ · 1| = det
¯̄̄̄µ

(2g1g2 − 1)− λ 2g2L
2g1 (g1g2 − 1) /L (2g1g2 − 1)− λ

¶¯̄̄̄
= 0, (2.274)

λ2 − 2 (2g1g2 − 1)λ+ 1 = 0. (2.275)

The eigenvalues are

λ1/2 = (2g1g2 − 1)±
q
(2g1g2 − 1)2 − 1, (2.276)

=

½
exp (±θ) , cosh θ = 2g1g2 − 1, for |2g1g2 − 1| > 1
exp (±jψ) , cosψ = 2g1g2 − 1, for |2g1g2 − 1| ≤ 1

.(2.277)

The case of a complex conjugate pair corresponds to a stable resontor. There-
fore, the stability criterion for a stable two mirror resonator is

|2g1g2 − 1| ≤ 1. (2.278)

The stable and unstable parameter ranges are given by

stable : 0 ≤ g1 · g2 = S ≤ 1 (2.279)

unstable : g1g2 ≤ 0; or g1g2 ≥ 1. (2.280)

where S = g1 · g2, is the stability parameter of the cavity. The stability
criterion can be easily interpreted geometrically. Of importance are the dis-
tances between the mirror mid-points Mi and the cavity end points, i.e.
gi = (Ri − L)/Ri = −Si/Ri, as shown in Figure 2.76.

Figure 2.76: The stability criterion involves distances between the mirror
mid-points Mi and the cavity end points. i.e. gi = (Ri − L)/Ri = −Si/Ri.
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The following rules for a stable resonator can be derived from Figure 2.76
using the stability criterion expressed in terms of the distances Si. Note, that
the distances and radii can be positive and negative

stable : 0 ≤ S1S2
R1R2

≤ 1. (2.281)

The rules are:

• A resonator is stable if the mirror radii, laid out along the optical axis,
overlap.

• A resonator is unstable if the radii do not overlap or one lies within the
other.

Figure 2.77 shows stable and unstable resonator configurations.

Figure 2.77: Illustration of stable and unstable resonator configurations.

For a two-mirror resonator with concave mirrors and R1 ≤ R2, we obtain
the general stability diagram as shown in Figure 2.78.
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Figure 2.78: Stabile regions (black) for the two-mirror resonator.

There are two ranges for the mirror distance L, within which the cavity
is stable, 0 ≤ L ≤ R1 and R2 ≤ L ≤ R1 +R2. It is interesting to investigate
the spot size at the mirrors and the minimum spot size in the cavity as a
function of the mirror distance L.

Resonator Mode Characteristics

The stable modes of the resonator reproduce themselves after one round-trip,
i.e.

q1 =
Aq1 +B

Cq1 +D
(2.282)

The inverse q-parameter, which is directly related to the phase front curva-
ture and the spot size of the beam, is determined byµ

1

q

¶2
+

A−D

B

µ
1

q

¶
+
1−AD

B2
= 0. (2.283)

The solution is µ
1

q

¶
1/2

= −A−D

2B
± j

2 |B|

q
(A+D)2 − 1 (2.284)

If we apply this formula to (2.273), we find the spot size on mirror 1µ
1

q

¶
1/2

= − j

2 |B|

q
(A+D)2 − 1 = −j λ

πw21
. (2.285)

or

w41 =

µ
2λL

π

¶2
g2
g1

1

1− g1g2
(2.286)

=

µ
λR1
π

¶2
R2 − L

R1 − L

µ
L

R1 +R2 − L

¶
. (2.287)
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By symmetry, we find the spot size on mirror 3 by switching index 1 and 2:

w42 =

µ
2λL

π

¶2
g1
g2

1

1− g1g2
(2.288)

=

µ
λR2
π

¶2
R1 − L

R2 − L

µ
L

R1 +R2 − L

¶
. (2.289)

The intracavity focus can be found by transforming the focused Gaussian
beam with the propagation matrix

M =

µ
1 z1
0 1

¶µ
1 0
−1
2f1

1

¶
=

µ
1− z1

2f1
z1

−1
2f1

1

¶
, (2.290)

to its new focus by properly choosing z1, see Figure 2.74. A short calculation
results in

z1 = L
g2 (g1 − 1)

2g1g2 − g1 − g2
(2.291)

=
L(L−R2)

2L−R1 −R2
, (2.292)

and, again, by symmetry

z2 = L
g1 (g2 − 1)

2g1g2 − g1 − g2
(2.293)

=
L(L−R1)

2L−R1 −R2
= L− z1. (2.294)

The spot size in the intracavity focus is

w4o =

µ
λL

π

¶2
g1g2 (1− g1g2)

(2g1g2 − g1 − g2)2
(2.295)

=

µ
λ

π

¶2
L(R1 − L)(R2 − L)(R1 +R2 − L)

(R1 +R2 − 2L)2
. (2.296)

All these quantities for the two-mirror resonator are shown in Figure 2.79.
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Figure 2.79: From top to bottom: Cavity parameters, g1, g2, S, w0, w1, w2,
z1 and z2 for the two-mirror resonator with R1 = 10 cm and R2 = 11 cm.
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Hermite-Gaussian-Beams (TEMpq-Beams)

It turns out that the Gaussian Beams are not the only solution to the parax-
ial wave equation (2.219). The stable modes of the resonator reproduce
themselves after one round-trip,

eEl,m(x, y, z) = Al,m

∙
w0
w(z)

¸
Gl

"√
2x

w(z)

#
Gm

∙√
2y

w(z)

¸
· (2.297)

exp

∙
−jk0

µ
x2 + y2

2R(z)

¶
+ j(l +m+ 1)ζ(z)

¸
where

Gl [u] = Hl [u] exp

∙
−u

2

2

¸
, for l = 0, 1, 2, ... (2.298)

are the Hermite-Gaussians with the Hermite-Polynomials

H0 [u] = 1,

H1 [u] = 2u,

H2 [u] = 4u2 − 1, (2.299)

H3 [u] = 8u3 − 12u,

and ζ(z) is the Guoy-Phase-Shift according to Eq.(2.241). The lower order
Hermite Gaussians are depicted in Figure 2.80

Figure 2.80: Hermite-Gauissians Gl(u) for l = 0, 1, 2 and 3.

and the intensity profile of the first higher order resonator modes are
shown in Figure 2.81.
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Figure 2.81: Intensity profile of TEMlm-beams, [6], p. 103.

Besides the different mode profiles, the higher order modes experience
greater phase advances during propogation, because they are made up of
k-vectors with larger transverse components.

Axial Mode Structure

As we have seen for the Fabry-Perot resonator, the longitudinal modes are
characterized by a roundtrip phase that is a multiple of 2π. Back then, we
did not consider transverse modes. Thus in a resonator with finite transverse
beam size, we obtain an extended family of resonances, with distinguish-
able field patterns. The resonance frequencies ωpmn are determined by the
roundtrip phase condition

φpmn = 2pπ, for p = 0,±1,±2, ... (2.300)
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For the linear resonator according to Figure 2.74, the roundtrip phase of a
Hermite-Gaussian Tpmn-beam is

φpmn = 2kL− 2(m+ n+ 1) (ζ(z2)− ζ(z1)) , (2.301)

where ζ(z2)− ζ(z1) is the additional Guoy-Phase-Shift, when the beam goes
through the focus once on its way from mirror 1 to mirror 2. Then the
resonance frequences are

ωpmn =
c

L
[πp+ (m+ n+ 1) (ζ(z2)− ζ(z1))] . (2.302)

If the Guoy-Phase-Shift is not a rational number times π, then all resonance
frequencies are non degenerate. However, for the special case where the
two mirrors have identical radius of curvature R and are spaced a distance
L = R apart, which is called a confocal resonator, the Guoy-Phase-shift is
ζ(z2)− ζ(z1) = π/2, with resonance frequencies

ωpmn =
c

L

h
πp+ (m+ n+ 1)

π

2

i
. (2.303)

In that case all even, i.e. m + n, transverse modes are degenerate to the
longitudinal or fundamental modes, see Figure 2.82.

Figure 2.82: Resonance frequencies of the confocal Fabry-Perot resonator,
[6], p. 128.

The odd modes are half way inbetween the longitudinal modes. Note, in
contrast to the plan parallel Fabry Perot all mode frequencies are shifted by
π/2 due to the Guoy-Phase-Shift.
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2.7 Waveguides and Integrated Optics

As with electronics, miniaturization and integration of optics is desired to
reduce cost while increasing functionality and reliability. One essential el-
ement is the guiding of the optical radiation in waveguides for integrated
optical devices and optical fibers for long distance transmission. Waveguides
can be as short as a few millimeters. Guiding of light with exceptionally low
loss in fiber (0.1dB/km) can be achieved by using total internal reflection.
Figure 2.83 shows different optical waveguides with a high index core mate-
rial and low index cladding. The light will be guided in the high index core.
Similar to the Gaussian beam the guided mode is made up of mostly paraxial
plane waves that hit the high/low-index interface at grazing incidence and
therefore undergo total internal reflections. The concomittant lensing effect
overcomes the diffraction of the beam that would happen in free space and
leads to stationary mode profiles fof the radiation.
Depending on the index profile and geometry one distinguishes between

different waveguide types. Figure 2.83 (a) is a planar slab waveguide, which
guides light only in one direction. This case is analyzed in more detail,
as it has simple analytical solutions that show all phenomena associated
with waveguiding such as cutoff, dispersion, single and multimode operation,
coupling of modes and more, which are used later in devices and to achieve
certain device properties. The other two cases show complete waveguiding
in the transverse direction; (b) planar strip waveguide and (c) optical fiber.

Saleh 239

Figure 2.83: Dark shaded area constitute the high index regions. (a) planar
slab waveguide; (b) strip waveguide; (c) optical fiber [6], p. 239.

In integrated optics many components are fabricated on a single sub-
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strate, see Figure 2.84 with fabrication processes similar to those in micro-
electronics.

Figure 2.84: Integrated optical device resembling an optical transmit-
ter/receiver, [6], p. 2.83.

As this example shows, the most important passive component to under-
stand in an integrated optical circuit are waveguides and couplers.

2.7.1 Planar Waveguides

To understand the basic physics and phenomena in waveguides, we look at
a few examples of guiding in one transverse dimension. These simple cases
can be treated analytically.

Planar-Mirror Waveguides

The planar mirror waveguide is composed of two ideal metal mirrors a dis-
tance d apart, see Figure 2.85
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yx

Figure 2.85: Planar mirror waveguide, [6], p. 240.

We consider a TE-wave, whose electric field is polarized in the y−direction
and that propagates in the z−direction. The reflections of the light at the
ideal lossless mirrors will guide or confine the light in the x−direction. The
field will be homogenous in the y−direction, i.e. will not depend on y. There-
fore, we make the following trial solution for the electric field of a monochro-
matic complex TE-wave

E(x, z, t) = Ey(x, z) e
jωt ey. (2.304)

Note, this trial solution also satisfies the condition ∇ ·E = 0, see (2.12)

Modes of the planar waveguide Furthermore, we are looking for solu-
tions that do not change their field distribution transverse to the direction
of propagation and experience only a phase shift during propagation. We
call such solutions modes of the waveguide, because they don’t change its
transverse field profile. The modes of the above planar waveguide can be
expressed as

Ey(x, z) = u(x) e−jβz ey, (2.305)

where β is the propagation constant of the mode. This solution has to obey
the Helmholtz Eq.(2.18) in the free space section between the mirrors

d2

dx2
uy(x) =

¡
β2 − k2

¢
uy(x) with k2 =

ω2

c2
. (2.306)

The presence of the metal mirrors requires that the electric fields vanish at
the metal mirrors, otherwise infinitely strong currents would start to flow to
shorten the electric field.

uy(x = ±d/2) = 0 (2.307)
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.Note, that Eq.(2.306) is an eigenvalue problem to the differential operator
d2

dx2

d2

dx2
u(x) = λu(x) with u(x = ±d/2) = 0. (2.308)

in a space of functions u, that satisfies the boundary conditions (2.307). The
eigenvalues λ are for the moment arbitrary but constant numbers. Depending
on the sign of the eigenvalues the solutions can be sine or cosine functions
(λ < 0) or exponentials with real exponents for (λ > 0). In the latter case, it is
impossible to satiesfy the boundary conditions. Therefore, the eigensolutions
are

um(x) =

⎧⎨⎩
q

2
d
cos (kx,mx) with , kx,m =

π
d
m, m = 1, 3, 5, ..., even modesq

2
d
sin (kx,mx) with , kx,m =

π
d
m, m = 2, 4, 6, ..., odd modes

(2.309)

Propagation Constants The propagation constants for these modes fol-
low from comparing (2.306) with (2.308) to be

β2 = k2 − k2x,m (2.310)

or

β = ±
r

ω2

c2
−
³π
d
m
´2
= ±

sµ
2π

λ

¶2
−
³π
d
m
´2

(2.311)

where λ = λ0/n(λ0) is the wavelength in the medium between the mirrors.
This relationship is shown in Figure 2.86. The lowest order mode with index
m = 1 has the smallest k-vector component in x-direction and therefore the
largest k-vector component into z-direction. The sum of the squares of both
components has to be identical to the magnitude sqaure of the k-vector in
the medium k. Higher order modes have increasingly more nodes in the
x-direction, i.e. largest kx-components and the wave vector component in
z-direction decreases, until there is no real solution anymore to Eq.(??) and
the corresponding propagation constants βm become imaginary. That is, the
corresponding waves become evanescent waves, i..e they can not propagate
in a waveguide with the given dimensions.
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Figure 2.86: Determination of propagation constants for modes

Field Distribution The transverse electric field distributions for the var-
ious TE-modes is shown in Figure 2.87

y
x

Figure 2.87: Field distributions of the TE-modes of the planar mirror waveg-
uide [6], p. 244.

CutoffWavelength/Frequency For a given planar waveguide with sep-
aration d, there is a lowest frequency, i.e. longest wavelength, beyond which
no propagating mode exists. This wavelenth/frequency is refered to as cutoff
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wavelength/frequency which is

λcutoff = 2d (2.312)

fcutoff =
c

2d
. (2.313)

The physical origin for the existence of a cutoff wavelength or frequency is
that the guided modes in the mirror waveguide are a superposition of two
plane waves, that propagate under a certain angle towards the z-axis, see
Figure 2.88

x

Figure 2.88: (a) Condition for self-consistency: as a wave reflects twice it
needs to be in phase with the previous wave. (b) The angles for which self-
consistency is achieved determine the x-component of the k-vectors involved.
The corresponding two plane waves setup an interference pattern with an
extended node at the position of the metal mirrors satisfying the boundary
conditions, [6], p. 241.
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In order that the sum of the electric field of the two plane waves fulfills
the boundary conditions, the phase of one of the plane waves after reflection
on both mirrors needs to be inphase with the other plane wave, i.e. the
x-component of the k-vectors involved, kx, must be a multiple of 2π

2kxd = ±2πm.

If we superimpose two plane waves with kx,m = ±πm/d, we obtain an in-
terference pattern which has nodes along the location of the metal mirrors,
which obviously fulfills the boundary conditions. It is clear that the mini-
mum distance between these lines of nodes for waves of a given wavelength λ
is λ/2, hence the separation dmust be greater than λ/2 otherwise no solution
is possible.

Single-Mode Operation For a given separation d, there is a wavelength
range over which only a single mode can propagate, we call this wavelength
range single-mode operation. From Figure 2.86 it follows for the planar
mirror waveguide

π

d
< k <

π

d
2 (2.314)

or
d < λ < 2d (2.315)

Waveguide Dispersion Due to the waveguiding, the relationship between
frequency and propagation constant is no longer linear. This does not imply
that the waveguide core, i.e. here the medium between the plan parallel
mirrors, has dispersion. For example, even for n = 1, we find for phase and
group velocity of the m-th mode

1

vp
=

β(ω)

ω
=
1

c

r
1−

³ cπ
dω

m
´2

(2.316)

=
1

c

s
1−

µ
λ

2d
m

¶2
(2.317)

and
1

vg
=

dβ(ω)

dω
=

1

2
q

ω2

c2
−
¡
π
d
m
¢22ωc2 (2.318)
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or
vg · vp = c2. (2.319)

Thus different modes have different group and phase velocities. Figure 2.89
shows group and phase velocity for the different modes as a function of the
normalized wave number kd/π.
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Figure 2.89: Group and phase velocity of propagating modes with index m
as a function of normailzed wave number.

TM-Modes The planar mirror waveguide does not only allow for TE-
waves to propagate. There are also TM-waves, which have only a magnetic
field component transverse to the propagation direction and parallel to the
mirrors, i.e. in y-direction

H(x, z, t) = Hy(x, z) e
jωt ey, (2.320)

and now H(x, z) has to obey the Helmholtz equation for the magnetic field.
The corresponding electric field can be derived from Ampere’s law

E(x, z) =
−1
jωε
∇×

¡
Hy(x, z) ey

¢
(2.321)

=
1

jωε

∂Hy(x, z)

∂z
ex +

−1
jωε

∂Hy(x, z)

∂x
ez. (2.322)
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The electric field tangential to the metal mirrors has to vanish again, which
leads to the boundary condition

∂Hy(x, z)

∂x
(x = ±d/2) = 0. (2.323)

After an analysis very similar to the discussion of the TE-waves we find for
the TM-modes with

Hy(x, z) = u(x) e−jβz ey, (2.324)

the transverse mode shapes

um(x) =

⎧⎨⎩
q

2
d
cos (kx,mx) with , kx,m =

π
d
m, m = 2, 4, 6, ..., even modesq

2
d
sin (kx,mx) with , kx,m =

π
d
m, m = 1, 3, 5, ..., odd modes

(2.325)
Note, that in contrast to the electric field of the TE-waves being zero at the
metal surface, the transverse magnetic field of theTM-waves is at a maxi-
mum at the metal surface. We will not consider this case further, because
the discussion of cutoff frequencies and dispersion can be worked out very
analogous to the case for TE-modes.

Multimode Propagation Depending on the boundary conditions at the
input of the waveguide at z = 0 many modes may be excited. Eventually
there are even excitations with such high transverse wavevectors kx present,
that are below cutoff. Depending on the excitation amplitudes of each mode,
the total field in the waveguide will be the superposition of all modes. Lets
assume that there are only TE-modes excited, then the total field is

E(x, z, t) =
∞X

m=1

¡
am e−jβmz + bm ejβmz

¢
um(x) e

jωt ey, (2.326)

where the amplitudes am and bm are the excitations of the m-th mode in
forward and backward direction, respectively. It is easy to show that these
excitation amplitudes are determined by the transverse electric and magnetic
fields at z = 0 and t = 0. In many cases, the excitation of the waveguide will
be such that only the forward propagating modes are excited.

E(x, z, t) =
∞X

m=1

am um(x) e
−jβmz ejωt ey, (2.327)
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When many modes are excited, the transverse field distribution will change
during propagation, see Figure 2.90

x

x

x

Figure 2.90: Variation of the intensity distribution in the transverse direction
x at different distances z. Intensity profile of (a) the fundamental mode
m = 1, (b) the second mode with m = 2 and (c) a linear combination of the
fundamental and second mode, [6], p. 247.

Modes which are excited below cutoff will decay rapidly as evanescent
waves. The other modes will propagate, but due to the different propaga-
tion constants these modes superimpose differently at different propagation
distances along the waveguide. This dynamic can be used to build many
kinds of important integrated optical devices, such as multimode interfer-
ence couplers (see problem set 5). Depending on the application, undesired
multimode excitation may be very disturbing due to the large group delay
difference between the different modes. This effect is called modal dispersion.
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Mode Orthogonality

It turns out that the transverse modes determined by the functions um(x)
build an orthogonal set of basis functions into which any function in a cer-
tain function space can be decomposed. This is obvious for the case of the
planar-mirror waveguide, where the um(x) are a subset of the basis functions
for a Fourier series expansion of an arbitrary function f(x) in the interval
[−d/2, 3d/2] which is antisymmetric with respect to x = d/2 and fullfills the
boundary condition f(x = ±d/2) = 0. It is

Z d/2

−d/2
um(x) un(x) dx = δmn, (2.328)

f(x) =
X
m

am um(x) (2.329)

with am =

Z d/2

−d/2
um(x) f(x) dx (2.330)

From our familiarity with Fourier series expansions of periodic functions,
we can accept these relations here without proof. We will return to these
equations later in Quantum Mechanics and discuss in which mathematical
sense Eqs.(2.328) to (2.329) really hold.

Besides illustrating many important concepts, the planar mirror waveg-
uide is not of much practical use. More in use are dielectric waveguides.

Planar Dielectric Slab Waveguide

In the planar dielectric slab waveguide, waveguiding is not achieved by real
reflection on a mirror but rather by total internal reflection at interfaces
between two dielectric materials with refractive indices n1 > n2, see Figure
2.91
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x

y

Figure 2.91: Symmetric planar dielectric slab waveguide with n1 > n2. The
light is guided by total internal reflection. The field is evanescent in the
cladding material and oscillatory in the core, [6], p. 249.

Waveguide Modes As in the case of the planar mirror waveguide, there
are TE and TM-modes and we could find them as a superposition of cor-
respondingly polarized TEM waves propagating with a certain transverse
k-vector such that total internal reflection occurs. We do not want to follow
this procedure here, but rather use immediately the Helmholtz Equation. We
again write the electric field

Ey(x, z) = u(x) e−jβz ey. (2.331)

The field has to obey the Helmholtz Eq.(2.18) both in the core and in the
cladding

core :
d2

dx2
u(x) =

¡
β2 − k21

¢
u(x) with k21 =

ω2

c20
n21, (2.332)

cladding :
d2

dx2
u(x) =

¡
β2 − k22

¢
u(x) with k22 =

ω2

c20
n22 (2.333)

The boundary conditions are given by the continuity of electric and magnetic
field components tangential to the core/cladding interfaces as in section 2.2.
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Since the guided fields must be evanescent in the cladding and oscillatory in
the core, we rewrite the Helmholtz Equation as

core :
d2

dx2
u(x) = −k2xu(x) with k2x =

¡
k21 − β2

¢
, (2.334)

cladding :
d2

dx2
u(x) = κ2xu(x) with κ2x =

¡
β2 − k22

¢
(2.335)

where κx is the decay constant of the evanescent waves in the cladding. It
is obvious that for obtaining guided modes, the propagation constant of the
mode must be between the two propagation constants for core and cladding

k22 < β2 < k21. (2.336)

Or by defining an effective index for the mode

β = k0neff , with k0 =
ω

c0
(2.337)

we find

n1 > neff > n2, (2.338)

and Eqs.(2.334), (2.335) can be rewritten as

core : − d2

dx2
u(x)− k20

¡
n21 − n2eff

¢
u(x) = 0 (2.339)

cladding : − d2

dx2
u(x) + κ20

¡
n2eff − n22

¢
u(x) = 0 (2.340)

For reasons, which will become more obvious later, we draw in Figure 2.92
the negative refractive index profile of the waveguide.
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Figure 2.92: Negative refractive index profile and shape of electric field for
the fundamental and first higher order transverse TE-mode

From Eq.(2.339) we find that the solution has the general form

u(x) =

⎧⎨⎩ A exp (−κxx) + B exp (κxx) , for x < −d/2
C cos (kxx) + D sin (kxx) , for |x| < d/2

E exp (−κxx) + F exp (κxx) , for |x| > d/2
(2.341)

For a guided wave, i.e. um(x → ±∞) = 0 the coefficients A and F must
be zero. It can be also shown from the symmetry of the problem, that the
solutons are either even or odd (proof later)

u(e)(x) =

⎧⎨⎩ B exp (κxx) , for x < −d/2
C cos (kxx) , for |x| < d/2
E exp (−κxx) , for |x| > d/2

, (2.342)

u(o)(x) =

⎧⎨⎩ B exp (κxx) , for x < −d/2
D sin (kxx) , for |x| < d/2
E exp (−κxx) , for |x| > d/2

. (2.343)

The coefficients B and E in each case have to be determined from the bound-
ary conditions. From the continuity of the tangential electric field Ey, and
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the tangential magnetic field Hz, which follows from Faraday’s Law to be

Hz(x) =
1

−jωμ0
∂Ey

∂x
∼ du

dx
(2.344)

we obtain the boundary conditions for u(x)

u(x = ±d/2 + ) = u(x = ±d/2− ), (2.345)
du

dx
(x = ±d/2 + ) =

du

dx
(x = ±d/2− ). (2.346)

Note, these are four conditions determining the coefficients B,D,E and the
propagation constant β or refractive index neff . These conditions solve for
the parameters of even and odd modes separately. For the case of the even
modes, where B = E, we obtain

B exp

µ
−κx

d

2

¶
= C cos

µ
kx
d

2

¶
(2.347)

B κx exp

µ
−κx

d

2

¶
= Ckx sin

µ
kx
d

2

¶
(2.348)

or by division of the both equations

κx = kx tan

µ
kx
d

2

¶
. (2.349)

Eqs.(2.334) and (2.335) can be rewritten as one equation

k2x + κ2x =
¡
k21 − k22

¢
= k20

¡
n21 − n22

¢
(2.350)

Eq.(2.349) together with Eq.(2.350) determine the propagation constant β
via the two relations.

κx
d

2
= kx

d

2
tan

µ
kx
d

2

¶
, and (2.351)µ

kx
d

2

¶2
+

µ
κx

d

2

¶2
=

µ
k0
d

2
NA

¶2
(2.352)

where
NA =

q
(n21 − n22) (2.353)
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is called the numerical apperture of the waveguide. We will discuss the
physical significance of the numerical apperture shortly. A graphical solution
of these two equations can be found by showing both relations in one plot,
see Figure 2.93.

10

8

6

4

2

0

κd
/2

1086420
kxd/2

m=0
m=1

m=2
m=3

m=4 m=5

k0d/2 NA

Figure 2.93: Graphical solution of Eqs.(2.351) and ( 2.352), solid line for
even modes and Eq.(2.354) for the odd modes. The dash dotted line shows
(2.352) for different values of the product

¡
k0

d
2

¢
NA

Each crossing in Figure 2.93 of a solid line (2.351) with a circle (2.352)
with radius k0 d2NA represents an even guided mode. Similarly one finds for
the odd modes from the boundary conditions the relation

κx
d

2
= −kx

d

2
cot

µ
kx
d

2

¶
, (2.354)

which is shown in Figure 2.93 as dotted line. The corresponding crossings
with the circle indicate the existence of an odd mode.
There are also TM-modes, which we don’t want to discuss for the sake of

brevity.

Numerical Aperture Figure 2.93 shows that the number of modes guided
is determined by he product k0 d2NA, where NA is the numerical apperture
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defined in Eq.(2.353)

M = Int

∙
k0
d

2
NA/(π/2)

¸
+ 1, (2.355)

= Int

∙
2
d

λ0
NA

¸
+ 1, (2.356)

where the function Int[x]means the largest integer not greater than x. Note,
that there is always at least one guided mode no matter how small the sized
and the refractive index contrast between core and cladding of the waveguide
is. However, for small size and index contrast the mode may extend very far
into the cladding and the confinement in the core is low.
The numberical apperture also has an additional physical meaning that

becomes obvious from Figure 2.94.

Figure 2.94: Maximum angle of incoming wave guided by a waveguide with
numerical apperture NA, [6], p. 262.

The maximum angle of an incoming ray that can still be guided in the
waveguide is given by the numerical apperture, because according to Snell’s
Law

n0sin (θa) = n1sin (θ) , (2.357)

where n0 is the refractive index of the medium outside the waveguide. The
maximum internal angle θ where light is still guided in the waveguide by
total internal reflection is determined by the critical angle for total internal
reflection (2.126) , i.e. θmax = π/2− θtot with

sin (θtot) =
n2
n1

. (2.358)
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Thus for the maximum angle of an incoming ray that can still be guided we
find

n0sin (θa,max) = n1sin (θmax) = n1

s
1−

µ
n2
n1

¶2
= NA. (2.359)

Most often the external medium is air with n0 ≈ 1 and the refractive index
contrast is week, so that θa,max ¿ 1 and we can replace the sinusoid with its
argument, which leads to

θa,max = NA. (2.360)

Field Distributions Figure 2.95 shows the field distribution for the TE
guided modes in a dielectric waveguide. Note, these are solutions of the
second order differential equations (2.339) and (2.340) for an effective index
neff , that is between the core and cladding index. These guided modes have
a oscillatory behavior in those regions in space where the negative effective
index is larger than the negative local refractive index, see Figure 2.92 and
exponentially decaying solutions where the negative effective index is smaller
than than the negative local refractive index.

x

Figure 2.95: Field distributions for TE guided modes in a dielectric waveg-
uide. These results should be compared with those shown in Figure 2.87 for
the planar-mirror waveguide [6], p. 254.

Figure 2.96 shows a comparison of the guided modes in a waveguide
with a Gaussian beam. In contrast to a the Gaussian beam which diffracts,
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in a waveguide diffraction is balanced by the guiding action of the index
discontinuity, i.e. total internal reflection. Most importantly the cross section
of a waveguide mode stays constant and therefore a waveguide mode can
efficiently interact with the medium constituting the core or a medium that
is incorporated in the core.

Figure 2.96: Comparison of Gaussian beam in free space and a waveguide
mode, [6], p. 255.

Besides integration, this prolong interaction disctance is one of the major
reasons for using waveguides. The interaction lenght can be arbitrarily long,
only limited by the waveguide loss, in contrast to a Gaussian beam, which
stays focused only over the confocal distance or Rayleigh range.
As in the case of a planar-mirror waveguide, one can show that the trans-

verse mode functions are orthogonal to each other. At first, a striking dif-
ference here is that we have only a finite number of guided modes and one
might worry about the completeness of the transverse mode functions. The
answer is that in addition to the guided modes, there are unguided modes
or leaky modes, which together with the guided modes from a complete set.
Each initial field can be decomposed into these modes. The leaky modes
rapidly loose energy because of radiation and after a relatively short propa-
gation distance only the field of guided modes remains in the waveguide. We
will not pursue this further in this introductory class. The interested reader
should consult with [11].
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Confinement Factor

A very important quantity for a waveguide mode is its confinement in the
core, which is called the confinement factor

Γm =

R d/2
0

u2m(x) dxR∞
0

u2m(x) dx
. (2.361)

The confinement factor quantifies the fraction of the mode energy propagat-
ing in the core of the waveguide. This is very important for the interaction
of the mode with the medium of the core, which may be used to amplify the
mode or which may contain nonlinear media for frequency conversion.

Waveguide Dispersion

For the guided modes the effective refractive indices of the modes and there-
fore the dispersion relations must be between the indices or dispersion rela-
tions of core and cladding, see Figure 2.97

Figure 2.97: Dispersion relations for the different guided TE-Modes in the
dielectric slab waveguide.

The different slopes dω/dβ for each mode indicate the difference in group
velocity between the modes. Note, that there is at least always one guided
mode.
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2.7.2 Two-Dimensional Waveguides

Both the planar-mirror waveguide and the planar dielectric slab waveguide
confine light only in one direction. It is straight forward to analyze the modes
of the two-dimensional planar-mirror waveguide, which you have already done
in 6.013. Figure 2.98 shows various waveguides that are used in praxis for
various devices. Here, we do not want to analyze them any further, because
this is only possible by numerical techniques.

Figure 2.98: Various types of waveguide geometries: (a) strip: (b) embedded
strip: (c) rib ro ridge: (d) strip loaded. The darker the shading, the higher
the refractive index [6], p. 261.

2.7.3 Waveguide Coupling

The core size of a waveguide can range from a fraction of the free space
wavelength to many wavelength for a multimode fiber. For example a typical
high-index contrast waveguide with a silicon core and a silica cladding for
1550 nm has a cross section of 0.2μm × 0.4μm, single-mode fiber, which we
will discuss in the next section with an index contrast of 0.5-1% between core
and cladding has a typical mode-field radius of 6μm.

If the mode cross section is not prohibitively small the simplest approach
to couple light into a waveguide is by using a proper lens, see Figure 2.99
(a) or direct butt coupling of the source to the waveguide if the source is a
waveguide based device itself.
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Figure 2.99: Coupling to a waveguide by (a) a lens; (b) direct butt coupling
of an LED or laser diode, [6], p. 262

The lens and the beam size in free space must be chosen such that the
spot size matches the size of the waveguide mode while the focusing angle in
free space is less than the numerical aperture of the waveguide, (see problem
set). Other alternatives are coupling to the evanscent field by using a prism
coupler, see Figure 2.100

Figure 2.100: Prism coupler, [6], p. 263.
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Figure 2.101: Grating Coupler

The coupling with the prism coupler is maximum if the propagation con-
stant of the waveguide mode matches the longitudinal component of the
k-vector

β = knp cos θp,

Another way to match the longitudinal component of the k-vector of the
incoming light to the propagation constant of the waveguide mode is by a
grating coupler, see Figure 2.101

2.7.4 Coupling of Modes

If two dielectric waveguides are placed closely together their fields overlap.
This situation is shown in Figure 2.102 at the example of the planar dielectric
slab waveguide. Of course this situation can be achieved with any type of
two dimensional dielectric waveguide shown in Figure 2.98
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x

Figure 2.102: Coupling between the two modes of the dielectric slab waveg-
uide, [6], p. 264.

Once the fields significantly overlap the two modes interact. The shape
of each mode does not change very much by the interaction. Therefore, we
can analyze this situation using perturbation theory. We assume that in
zero-th order the mode in each waveguide is independent from the presence
of the other waveguide. We consider only the fundamental TE-modes in
each of the waveguide which have excitation amplitudes a1(z) and a2(z),
respectively. The dynamics of each mode can be understood in terms of this
wave amplitude. In the absence of the second waveguide, each waveguide
amplitude undergoes only a phase shift during propagation according to its
dispersion relations

da1(z)

dz
= −jβ1a1(z), (2.362)

da2(z)

dz
= −jβ2a2(z). (2.363)

The polarization generated by the field of mode 2 in waveguide 1 acts as a
source for the field in waveguide 1 and the other way arround. Therefore,
the coupling of the modes can be described by adding a source term in each
equation proportional to the free propagation of the corresponding wave in
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the other guide

da1(z)

dz
= −jβ1a1(z)− jκ12a2(z), (2.364)

da2(z)

dz
= −jκ21a1(z)− jβ2a2(z). (2.365)

κ12 and κ21 are the coupling constants of the modes. An expression in terms
of waveguide properties is derived in the appendix. These coupled mode
equations describe a wealth of phenomena and are of fundamental importance
in many areas.
As we will see, there is only a significant interaction of the two modes if

the two propagation constants are not much different from each other (phase
matching). Therefore, we write the propagation constants in terms of the
average β0 and the phase mismatch ∆β

β1/2 = β0 ±∆β with (2.366)

β0 =
β1 + β2
2

and ∆β =
β1 − β2
2

. (2.367)

and we take the overall trivial phase shift of both modes out by introducing
the slowly varying relative field amplitudes

ã1(z) = a1(z)e
jβ0z and ã2(z) = a2(z)e

jβ0z (2.368)

which obey the equation

d

dz
ã1(z) = −j∆βã1(z)− jκ12ã2(z), (2.369)

d

dz
ã2(z) = −jκ21ã1(z) + j∆βã2(z). (2.370)

Power conservation during propagation demands

d

dz

¡
|ã1(z)|

2 + |ã2(z)|
2¢ = 0 (2.371)

which requests that κ21 = κ212, i.e. the two coupling coefficients are not
independent from each other (see problem set).
Note, Eqs.(2.369) and (2.370) are a system of two linear ordinary differ-

ential equations with constant coefficients, which is straight forward to solve.
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Given the excitation amplitudes ã1(0) and ã2(0) = 0 at the input of the
waveguides, i.e. no input in waveguide 2 the solution is

ã1(z) = ã1(0)

µ
cos γz − j

∆β

γ
sin γz

¶
, (2.372)

ã2(z) = −jã1(0)
κ21
γ
sin γz, (2.373)

with

γ =

q
∆β2 + |κ12|2. (2.374)

The optical powers after a propagation distance z in both waveguides are
then

P1(z) = |ã1(z)|
2 = P1(0)

Ã
cos2 γz +

µ
∆β

γ

¶2
sin2 γz

!
, (2.375)

P2(z) = P1(0)

Ã
|κ21|2

γ

!2
sin2 γz. (2.376)

This solution shows, that depending on the difference in phase velocity be-
tween the two-waveguides more or less power is coupled back and fourth
between the two waveguides, see Figure 2.103.
The period at which the power exchange occurs is

L =
2π

γ
. (2.377)

If both waveguides are identical, i.e. ∆β = 0 and γ = |κ12|, the waves are
phase matched, Eqs.(2.375) and (2.376) simplify to

P1(z) = P1(0) cos
2 γz (2.378)

P2(z) = P1(0) sin
2 γz. (2.379)

Complete transfer of power occurs between the two waveguides after a dis-
tance

L0 =
π

2γ
, (2.380)

see Figure 2.104
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Figure 2.103: Periodic exchange of power between guides 1 and 2 [6], p. 266.

Figure 2.104: Exchange of power between guides 1 and 2 in the phase-
matched case, [6], p. 266.

Depending on the length of the coupling region the coupling ratio can be
chosen. A device with a distance L0/2 and L0 achieves 50% and 100% power
transfer into waveguide two, respectively, see Figure 2.105
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Figure 2.105: Optical couplers: (a) 100% coupler, (b) 3dB coupler, [6], 267.

2.7.5 Switching by Control of Phase Mismatch

If we keep the interaction length of the waveguides fixed at a length L0, then
the power tranfer from waveguide 1 to waveguide 2 depends critically on the
phase mismatch ∆β

T (∆β) =
P2
P1
=
³π
2

´2
sin c2

⎛⎝1
2

s
1 +

µ
2∆βL0

π

¶2⎞⎠ , (2.381)

where sinc(x) = sin(πx)/(πx). Figure 2.106 shows the transfer characteristic
as a function of normalized phase mismatch. The phase mismatch between
waveguides can be controlled for example by the linear electro-optic or Pock-
els effect, which we will investigate later.
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Figure 2.106: Dependence of power transfer from waveguide 1 to waveguide
2 as a function of phase mismatch, [6], p. 267.

The implementation of such a waveguide coupler switch is shown in Figure
2.107.

Figure 2.107: Integrated waveguide coupler switch, [6], p. 708
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2.7.6 Optical Fibers

Optical fibers are cylindrical waveguides, see Figure 2.108, made of low-loss
materials such as silica glass.

Figure 2.108: Optical fibers are cylindrical dielectric waveguides, [6], p. 273.

Similar to the waveguides studied in the last section the most basic fibers
consist of a high index core and a lower index cladding. Today fiber technol-
ogy is a highly developed art which has pushed many of the physical param-
eters of a waveguide to values which have been thought to be impossible a
few decades ago:

• Fiber with less than 0.16dB/km loss

• Photonic crystal fiber (Nanostructured fiber)

• Hollow core fiber

• Highly nonlinear fiber

• Er-doped fiber for amplifiers

• Yb-doped fiber for efficient lasers and amplifiers

• Raman gain fiber

• Large area single mode fibers for high power (kW) lasers.

Figure 2.109 shows the ranges of attenuation coefficients of silica glass
single-mode and multimode fiber.
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Figure 2.109: Ranges of attenuation coefficients of silica glass single-mode
and multimode fiber, [10], p. 298.

For the purpose of this introductory class we only give an overview about
the mode structure of the most basic fiber, the step index fiber, see Figure
2.110 (b)

Figure 2.110: Geometry, refractive index profile, and typical rays in: (a) a
multimode step-index fiber, (b) a single-mode step-index fiber, (c) a multi-
mode graded-index fiber [6], p. 274
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Step-index fiber is a cylindrical dielectric waveguide specified by its core
and cladding refractive indices, n1 and n2 and the core radius a, see Fig-
ure 2.108. Typically the cladding is assumed to be so thick that the finite
cladding radius does not need to be taken into account. The guided modes
need to be sufficiently decaded before reaching the cladding boundary, which
is usually strongly scattering or absorbing. In standard fiber, the cladding
indices differ only slightly, so that the relative refractive-index difference

∆ =
n1 − n2

n1
(2.382)

is small, typically 10−3 < ∆ < 2 ·10−2. Most fibers currently used in medium
to long optical communication systems are made of fused silica glass (SiO2) of
high chemical purity. The increase in refractive index of the core is achieved
by doping with titanium, germanium or boron, among others. The refractive
index n1 ranges from 1.44 to 1.46 depending on the wavelength utilized in
the fiber. The acceptance angle of the rays coupling from free space into
guided modes of the waveguide is determined by the numerical apperture as
already discussed for the dielectric slab waveguide, see Figure 2.111

θa ∼ sin(θa) = NA =
q
n21 − n22 ≈ n1

√
2∆. (2.383)

Figure 2.111: The acceptance angle of a fiber and numerical aperture NA
[6], p. 276.
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Guided Waves

Again the guided waves can be found by looking at solutions of the Helmholtz
equations in the core and cladding where the index is homogenous and by
additionally requesting the continuity of the tangential electric and magnetic
fields at the core-cladding boundary. In general the fiber modes are not any-
longer pure TE or TM modes but rather are hybrid modes, i.e. the modes
have both transverse and longitudinal electric andmagnetic field components.
Only the radial symmetric modes are still TE or TM modes. To determine
the exact mode solutions of the fiber is beyond the scope of this class and
the interested reader may consult reference [2]. However, for weakly guiding
fibers, i.e. ∆¿ 1, the modes are actually very much TEM like, i.e. the longi-
tudinal field components are much smaller than the radial field components.
The linear in x and y directions polarized modes form orthogonal polariza-
tion states. The linearly polarized (l,m) mode is usually denoted as the
LPlm-mode.The two polarizations of the mode with indices (l,m) travel with
the same propagation constant and have identical intensity distributions.
The generic solutions to the Helmhotz equation in cylindrical coordinates

are the ordinary, Jm(kr), and modified, Km(kr), Bessel functions (analogous
to the cos(x)/ sin(x) and exponential functions e±κx, that are solutions to the
Helmholtz equation in cartesian coordinates). Thus, a generic mode function
for a cylinder symmetric fiber has the form

ul,m(r, ϕ) =

⎧⎪⎪⎨⎪⎪⎩
Jl(kl,mr)

½
cos(lϕ)
sin(lϕ)

, for r < a, core

Kl(kl,mr)

½
cos(lϕ)
sin(lϕ)

, for r > a, cladding
(2.384)

For large r, the modified Bessel function approaches an exponential,Kl(kl,mr) ∼

e−κlnmr

½
cos(lϕ)
sin(lϕ)

.The propagation constants for this two dimensional waveg-

uide have to fullfil the additional constraints

k2l,m =
¡
n21k

2
0 − β2

¢
, (2.385)

κ2l,m =
¡
β2 − n22k

2
0

¢
, (2.386)

k2l,m + κ2l,m = k20NA2. (2.387)

Figure 2.112 shows the radial dependence of the mode functions
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Figure 2.112: Radial dependence of mode functions u(r),[6], p.279.

The transverse intensity distribution of the linearly polarized LP0,1 and
LP3,4 modes are shown in Figure 2.113.

Figure 2.113: Intensity distribtuion of the (a) LP01 and (b) LP3,4 modes in
the transverse plane. The LP01 has a intensity distribution similar to the
Gaussian beam, [6], p. 283.

Number of Modes

It turns out, that as in the case of the dielectric slab waveguide the number of
guided modes critically depends on the numerical aperture or more precisely
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on the V-parameter, see Eq.(2.355)

V = k0
d

2
NA. (2.388)

Without proof the number of modes is

M ≈ 4

π2
V 2, for V À 1. (2.389)

which is similar to Eq.(2.355) for the one-dimensional dielectric slab waveg-
uide, but the number of modes here is now related to the square of the
V-parameter, because of the two-dimensional transverse confinement of the
modes in the fiber. As in the case of the dielectric waveguide, there is al-
ways at least one guided mode (two polarizations). However, the smaller the
V-parameter the more the mode extends into the cladding and the guiding
properties become weak, i.e. small bending of the fiber may already lead to
high loss.

2.8 Wave Propagation in Anisotropic Media

So far we have always assumed that the medium in which the electromagnetic
wave propagates is isotropic. This causes the induced polarization to be
parallel to the applied electric field. In crystaline materials or materials with
microscopic fine structure in general, this is no longer the case. Instead of
the simple relation

P = 0χ · E, (2.390)

where the susceptibility is a scalar, the induced polarization may have a
general lineare dependence on E not necessarily parallel to the applied field

P x = 0

³
χ
xx
Ex + χ

xy
Ey + χ

xz
Ez

´
, (2.391)

P y = 0

³
χ
yx
Ex + χ

yy
Ey + χ

yz
Ez

´
, (2.392)

P z = 0

³
χ
zx
Ex + χ

zy
Ey + χ

zz
Ez

´
. (2.393)

The tensor χ is called the electric susceptibility tensor. As shown in Table
2.7 the crytaline structure determines to a large extend the values of the
susceptibility tensor elements or in other words the symmetry properties of
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isotropic

⎡⎣ xx 0 0
0 xx 0
0 0 xx

⎤⎦ cubic

uniaxial

⎡⎣ xx 0 0
0 xx 0
0 0 zz

⎤⎦ Tetragonal
Trigonal
Hexagonal

biaxial

⎡⎣ xx 0 0
0 yy 0
0 0 zz

⎤⎦ Orthorhombic⎡⎣ xx 0 xz
0 yy 0
xz 0 zz

⎤⎦ Monoclinic⎡⎣ xx xy xz
xy yy yz
xz yz zz

⎤⎦ Triclinic

Table 2.7: Form of the electric susceptibility tensor for various crystal sys-
tems.

the crystal reflect themselves in the symmetry properties of the susceptibility
tensor.
Elementary algebra tells us that we can choose a new coordinate system

with axis x0, y0, z0, such that the susceptibility tensor has diagonal form

P x0 = 0χx0x0Ex0 , (2.394)

P y0 = 0χy0y0Ey0 , (2.395)

P z0 = 0χz0z0Ez0 . (2.396)

These directions are called the principle axes of the crystal. In the following,
we consider that the crystal axes are aligned with the principle axes. If a
TEM-wave is launched along the z−axis with the elecric field polarized along
one of the prinicple axes, lets say x, the wave will experience a refractive index

n2x = 1 + χ
xx

(2.397)

and the wave will have a phase velocity

c = c0/nx. (2.398)
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If on the other hand the wave is polarized along the y-axis it will have a dif-
ferent phase velocity corresponding to ny. If the wave propagates along the
z−axis with electric field components along both the x- and y-axis, the wave
can be decomposed into the two polarization components. During propaga-
tion of the wave the will experience a differential phase shift with respect to
each other and the state of polarization may change. Later, this phenomenon
will be exploited for the construction of modulators and switches.

2.8.1 Birefringence and Index Ellipsoid

If we consider the propagation of a wave into an arbitrary direction of the
crystal it is no longer obvious what the plane wave solution and its phase
velocity is. We have

D = εE (2.399)

with

ε =ε0

⎡⎣ εx 0 0
0 εy 0
0 0 εz

⎤⎦ . (2.400)

Let’s assume there are plane wave solutions

E = E0e
−jk·r

then Ampere’s and Faraday’s law give

k ×H = −ωεE, (2.401)

k ×E = ωμ0H, (2.402)

resulting in the wave equation

k × k ×E = −ω2μ0εE. (2.403)

Note, that the wavevector k is orthogonal to the dielectric displacement D
and the magnetic field H, but not necessarily to the electric field E. There is

k⊥
³
εE = D

´
⊥B. (2.404)

This situation is reflected in Figure 2.114



154 CHAPTER 2. CLASSICAL ELECTROMAGNETISM AND OPTICS

Figure 2.114: Wave propagation in anisotropic media. KDB-system.

One distinguishes between isotropic, uniaxial und biaxial media. We have
extensively studied the isotropic case. The most general case is the biaxial
case, where the dielectric constants along the three axes are all different.
These dielectic constants, or corresponding indices, define an index ellipsoid

x2

n2x
+

y2

n2y
+

z2

n2z
= 1, (2.405)

see Figure 2.115.
Here we want to consider the case of an uniaxial crystal, where

εxx = εyy = ε1 6= εzz = ε3. (2.406)

The refractive indices corresponding to these susceptibilities are called ordi-
nary and extraordinary indices

n1 = no 6= n3 = ne. (2.407)

Further, there is a distinction between positive, ne > no, and negative, ne <
no, uniaxial crystals. The uniaxial case corresponds to an index ellipsoid that
has rotational symmectry around the z-axis, see Figure 2.115.
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Figure 2.115: Index Ellipsoid

The general case is then a wave with wave vector k propagating under
an angle θ with respect to the z-axis; the z-axis is also often called the fast
axis or c-axis or optical axis. Without restrictions, we assume that the wave
vector is in the x − z−plane. If the wave vector is aligned with the fast
axis, there is no birefringence, because the index experienced by the wave
is independent from its polarization. If there is a finite angle, θ 6= 0, then
there are two waves with different phase velocity and group velocity as we
will show now, see 2.115, and birefringence occurs. With the identity A

×
³
B × C

´
=
³
A · C

´
B −

³
A ·B

´
C, when applied to Eq.(2.403), follows³

k ·E
´
k − k2E + ω2μ0εE = 0. (2.408)

This equation determines the dispersion relation and polarization of the pos-
sible waves with wave vector k. Since the wave vector is in the x− z−plane
this equation reads⎛⎝ k20n

2
o + k2x−k2 kxkz

k20n
2
o−k2

kzkx k20n
2
e + k2z−k2

⎞⎠E = 0 (2.409)

This equation clearly shows that a wave polarized along the y−axis or in
general orthogonal to the plane composed of the wave vector and the fast
axis decouples from the other components.
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2.8.2 Ordinary Wave

This wave is called the ordinary wave, because it has the dispersion relation

k2 = k20n
2
o. (2.410)

As with the TEM waves in an isotropic medium, the wave vector and the
field components build an orthogonal trihedral, k⊥E⊥H.

2.8.3 Extraordinary Wave

Eq.(2.409) allows for another wave with a polarization in the x − z−plane,
and therefore this wave has a longitudinal electric field component. This
wave is called extraordinary wave and its dispersion relation follows from

det

¯̄̄̄
k20n

2
o + k2x−k2 kxkz

kzkx k20n
2
e + k2z−k2

¯̄̄̄
= 0. (2.411)

Calculating the determinant and simplifying we find

k2z
n2o
+

k2x
n2e
= k20. (2.412)

With kx = k sin (θ) , kz = k cos (θ) and k = n (θ) k0 we obtain for the
refractive index seen by the extraordinary wave

1

n (θ)2
=
cos2 (θ)

n2o
+
sin2 (θ)

n2e
. (2.413)
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Figure 2.116: Cut through the surface with a constant free space wave num-
ber ko(kx, ky, kz) or frequency, which is also an ellipsoid, but with exchanged
principle axis when compared with Figure 2.114

Eqs.(2.412) and (2.413) also describe an ellipse. This ellipse is the location
of a constant free space wave number or frequency, ω = k0c0, and therefore
determines the refractive index, n (θ) , of the extraordinary wave, see Figure
2.115. The group velocity is found to be parallel to the Poynting vector

υg = ∇kω(k) k S, (2.414)

and is orthogonal to the surface. For completeness, we give a derivation of
the walk-off angle between the ordinary and extraordinary wave

tan θ =
kx
kz

(2.415)

tanφ = −dkz
dkx

(2.416)
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From Eq.(2.412) we obtain by differentiation along the surface of the ellipsoid

2kzdkz
n2o

+
2kxdkx
n2e

= 0. (2.417)

tanφ =
n2okx
n2ekz

=
n2o
n2e
tan θ

Thus, we obtain for the walk-off-angle between Poynting vector and wave
vector

tan = tan (θ − φ) =
tan θ − tanφ
1 + tan θ tanφ

(2.418)

or

tan = −

³
n20
n2e
− 1
´
tan θ

1 +
n20
n2e
tan2 θ

. (2.419)

2.8.4 Example: Calcite

One example of a birefringent materialis calcite, which is also often used in
optical devices, such as polarizers for example. Figure 2.117 and 2.118 show
the arrangement of atoms in calcite.

Figure 2.117: Arrangement of atoms in calcite, [1], p. 231.
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Figure 2.118: Atomic arrangement of calcite looking down the optical axis
[1], p. 232.

Figure 2.119 shows a crystal cleaved along the crystal axis (cleavage
form).

Figure 2.119: Calcite cleavage form [1], p. 232.

Figure 2.120 shows the light path of two orthogonally polarized light
beams where one propagates as an ordinary and the other as an extraordinary
wave through the crystal. This leads to a double image when an object is
viewed through the crystal, see Figure 2.121.
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Figure 2.120: A light beam with two orthogonal field components traversing
a calcite principal section [1], p. 234.

Figure 2.121: Double image formed by a calcite crystal (not cleavage form)
[1], p. 233.

Table 2.8 gives the ordinary and extraordinary refractive indices of some
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uniaxial crystals. Birefringent materials enable the construction of wave

Crystal no ne
Tourmaline 1.669 1.638
Calcite 1.6584 1.4864
Quartz 1.5443 1.5534
Sodim Nitrate 1.5854 1.3369
Ice 1.309 1.313
Rutile (TiO2) 2.616 1.903

Table 2.8: Refractive indices of some uniaxial birefringent crystals (λ =
589.3nm) [1], p.236

plates or retardation plates, which enable the manipulation of polarization
in a very unique way.

2.9 Polarization and Crystal Optics

So far we have discussed linearly polarized electromagnetic waves, where the
electric field of a TEM-wave propagating along the z−direction was either
polarized along the x− or y−axis. The most general TEM-wave has simul-
taneously electric fields in both polarizations and the direction of the electric
field in space, i.e. its polarization, can change during propagation. A de-
scription of polarization and polarization evolution in optical systems can be
based using Jones vectors and matrices.

2.9.1 Polarization

A general complex TEM-wave propagating along the z−direction is given by

E(z, t) =

⎛⎝ E0x

E0y

0

⎞⎠ ej(ωt−kz), (2.420)

where E0x = E0xe
jϕx and E0y = E0ye

jϕy are the complex field amplitudes of
the x− and y− polarized components of the wave. The real electric field is
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given by

E(z, t) =

⎛⎝ E0x cos (ωt− kz + ϕx)
E0y cos

¡
ωt− kz + ϕy

¢
0

⎞⎠ , (2.421)

Both components are periodic functions in ωt− kz = ω (t− z/c) .

Linear Polarization

If the phases of the complex field amplitudes along the x− and y−axis are
equal, i.e.

E0x = |E0x| ejϕ and E0y =
¯̄
E0y

¯̄
ejϕ

then the real electric field

E(z, t) =

⎛⎝ E0x

E0y

0

⎞⎠ cos (ωt− kz + ϕ) (2.422)

always oscillates along a fixed direction in the x-y-plane, see Figure 2.122

Figure 2.122: Linearly polarized light. (a) Time course at a fixed position z.
(b) A snapshot at a fixed time t, [6], p. 197.

The angle between the polarization direction and the x-axis, α, is given
by α = arctan (E0y/E0x) . If there is a phase difference of the complex field
amplitudes along the x− and y−axis, the direction and magnitude of the
electric field amplitude changes periodically in time at a given position z.
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Circular Polarization

Special cases occur when the magnitude of the fields in both linear polariza-
tions are equal E0x = E0y = E0, but there is a phase difference ∆ϕ = ±π

2
in

both components. Then we obtain

E(z, t) = E0Re

⎧⎨⎩
⎛⎝ ejϕ

ej(ϕ−∆ϕ)

0

⎞⎠ ej(ωt−kz)

⎫⎬⎭ (2.423)

= E0

⎛⎝ cos (ωt− kz + ϕ)
sin (ωt− kz + ϕ)

0

⎞⎠ . (2.424)

For this case, the tip of the electric field vector describes a circle in the
x− y−plane, as

|Ex(z, t)|2 + |Ey(z, t)|2 = E2
0 for all z, t, (2.425)

see Figure 2.123.

Figure 2.123: Trajectories of the tip of the electric field vector of a right and
left circularly polarized plane wave. (a) Time course at a fixed position z.
(b) A snapshot at a fixed time t. Note, the sense of rotation in (a) is opposite
to that in (b) [6], p. 197.
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Right Circular Polarization If the tip of the electric field at a given time,
t, rotates counter clockwise with respect to the phase fronts of the wave, here
in the positive z−direction, then the wave is called right circularly polarized
light, i.e.

Erc(z, t) = E0Re

⎧⎨⎩
⎛⎝ 1

j
0

⎞⎠ ej(ωt−kz+ϕ)

⎫⎬⎭ = E0

⎛⎝ cos (ωt− kz + ϕ)
− sin (ωt− kz + ϕ)

0

⎞⎠ .

(2.426)
A snapshot of the lines traced by the end points of the electric-field vec-

tors at different positions is a right-handed helix, like a right-handed screw
pointing in the direction of the phase fronts of the wave, i.e. k−vector see
Figure 2.123 (b).

Left Circular Polarization If the tip of the electric field at a given fixed
time, t, rotates clockwise with respect to the phase fronts of the wave, here
in the again in the positive z−direction, then the wave is called left circularly
polarized light, i.e.

Elc(z, t) = E0Re

⎧⎨⎩
⎛⎝ 1
−j
0

⎞⎠ ej(ωt−kz+ϕ)

⎫⎬⎭ = E0

⎛⎝ cos (ωt− kz + ϕ)
sin (ωt− kz + ϕ)

0

⎞⎠ .

(2.427)

Eliptical Polarization The general polarization case is called eliptical
polarization, as for arbitrary E0x = E0xe

jϕx and E0y = E0ye
jϕy , we obtain

for the locus of the tip of the electric field vector from

E(z, t) =

⎛⎝ E0× cos (ωt− kz + ϕx)
E0y cos

¡
ωt− kz + ϕy

¢
0

⎞⎠ . (2.428)

the relations

Ey

E0y
= cos

¡
ωt− kz + ϕy

¢
(2.429)

= cos (ωt− kz + ϕx) cos
¡
ϕy − ϕx

¢
(2.430)

− sin (ωt− kz + ϕx) sin
¡
ϕy − ϕx

¢
.
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and

Ex

E0x
= cos (ωt− kz + ϕx) . (2.431)

These relations can be combined to
Ey

E0y
− Ex

E0x
cos
¡
ϕy − ϕx

¢
= − sin (ωt− kz + ϕx) sin

¡
ϕy − ϕx

¢
(2.432)

sin (ωt− kz + ϕx) =

s
1−

µ
Ex

E0x

¶2
(2.433)

Substituting Eq.(2.433) in Eq.(2.432) and building the square results in

µ
Ey

E0y
− Ex

E0x
cos
¡
ϕy − ϕx

¢¶2
=

Ã
1−

µ
Ex

E0x

¶2!
sin2

¡
ϕy − ϕx

¢
. (2.434)

After reordering of the terms we obtainµ
Ex

E0x

¶2
+

µ
Ey

E0y

¶2
− 2 Ex

E0x

Ey

E0y
cos
¡
ϕy − ϕx

¢
= sin2

¡
ϕy − ϕx

¢
. (2.435)

This is the equation of an ellipse making an angle α with respect to the x-axis
given by

tan 2α =
2E0xE0y cos

¡
ϕy − ϕx

¢
E2
0x −E2

0y

. (2.436)

see Figure 2.124.

Figure 2.124: (a) Rotation of the endpoint of the electric field vector in the
x-y-plane at a fixed position z. (b) A snapshot at a fixed time t [6], p. 197.
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Elliptically polarized light can also be understood as a superposition of a
right and left cicular polarized light, see Figure 2.125.

Figure 2.125: Elliptically polarized light as a superposition of right and left
circularly polarized light [1], p. 223.

2.9.2 Jones Calculus

As seen in the last section, the information about polarization of a TEM-wave
can be tracked by a vector that is proportional to the complex electric-field
vector. This vector is called the Jones vector

µ
E0x

E0y

¶
∼ V =

µ
V x

V y

¶
: Jones Vector (2.437)

Jones Matrix

Figure 2.126 shows a light beam that is normally incident on a retardation
plate along the z−axis with a polarization state described by a Jones vector
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Figure 2.126: A retardation plate rotated at an angle ψ about the z-axis.
f("fast") and s("slow") are the two principal dielectric axes of the crystal for
light propagating along the z−axis [2], p. 17.

The principle axis (s− for slow and f− for fast axis) of the retardation
plate are rotated by an angle ψ with respect to the x− and y−axis. Let ns
and nf be the refractive index of the slow and fast principle axis, respectively.
The polarization state of the emerging beam in the crystal coordinate system
is thus given by µ

V 0
s

V 0
f

¶
=

µ
e−jkonsL 0
0 e−jkonfL

¶µ
Vs
Vf

¶
, (2.438)

The phase retardation is defined as the phase difference between the two
components

Γ = (ns − nf) koL. (2.439)

In birefringent crystals the difference in refractive index is much smaller
than the index itself, |ns − nf | ¿ ns, nf , therefore parallel to the evolving
differential phase a large absolute phase shift occurs. Taking the mean phase
shift

φ =
1

2
(ns + nf) koL, (2.440)

out, we can rewrite (2.438) asµ
V 0
s

V 0
f

¶
= e−jφ

µ
e−jΓ/2 0
0 ejΓ/2

¶µ
Vs
Vf

¶
. (2.441)
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The matrix connecting the Jones vector at the input of an optical component
with the Jones vector at the output is called a Jones matrix.
If no coherent additon with another field is planned at the output of the

system, the average phase φ can be dropped. With the rotation matrix, R,
connecting the (x, y) coordinate system with the (s, f) coordinate system

R (ψ) =

µ
cosψ sinψ
− sinψ cosψ

¶
, (2.442)

we find the Jones matrix W describing the propagation of the field compo-
nents through the retardation plate asµ

V 0
x

V 0
y

¶
=W

µ
Vx
Vy

¶
. (2.443)

with
W = R (−ψ)W0R (ψ) . (2.444)

and

W0 =

µ
e−jΓ/2 0
0 ejΓ/2

¶
. (2.445)

Carrying out the matix multiplications leads to

W =

µ
e−jΓ/2 cos2(ψ) + ejΓ/2 sin2(ψ) −j sin Γ

2
sin (2ψ)

−j sin Γ
2
sin (2ψ) e−jΓ/2 sin2(ψ) + ejΓ/2 cos2(ψ)

¶
.

(2.446)
Note that the Jones matrix of a wave plate is a unitary matrix, that is

W †W = 1.

Unitary matrices have the property that they transform orthogonal vectors
into another pair of orthogonal vectors. Thus two orthogonal polarization
states remain orthogonal when propagating through wave plates.

Polarizer

A polarizer is a device that absorbs one component of the polarization vector.
The Jones matrix of polarizer along the x-axis or y-axis is

Px =

µ
1 0
0 0

¶
, and Py =

µ
0 0
0 1

¶
. (2.447)
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Half-Wave Plate

A half-wave plate has a phase retardation of Γ = π, i.e. its thickness is
t = λ/2(ne − no). The corresponding Jones matrix follows from Eq.(2.446)

W = −j
µ
cos(2ψ) sin (2ψ)
sin (2ψ) − cos(2ψ)

¶
. (2.448)

For the special case of ψ = 45o, see Figure 2.127, the half-wave plate rotates
a linearly polarized beam exactly by 900, i.e. it exchanges the polarization
axis. It can be shown, that for a general azimuth angle ψ, the half-wave
plate will rotate the polarization by an angle 2ψ, see problem set. When
the incident light is circularly polarized a half-wave plate will convert right-
hand circularly polarized light into left-hand circularly polarized light and
vice versa, regardless of the azimuth angle ψ.

Figure 2.127: The effect of a half-wave plate on the polarziation state of a
beam, [2], p.21.

Quarter-Wave Plate

A quarter-wave plate has a phase retardation of Γ = π/2, i.e. its thickness
is t = λ/4(ne − no). The corresponding Jones matrix follows again from
Eq.(2.446)
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W =

Ã
1√
2
[1− j cos(2ψ)] −j 1√

2
sin (2ψ)

−j 1√
2
sin (2ψ) 1√

2
[1 + j cos(2ψ)]

!
. (2.449)

and for the special case of ψ = 45o, see Figure 2.127 we obtain

W =
1√
2

µ
1 −j
−j 1

¶
, (2.450)

see Figure 2.128.

Figure 2.128: The effect of a quarter wave plate on the polarization state of
a linearly polarized input wave [2], p.22.

If the incident beam is vertically polarized, i.e.µ
Vx
Vy

¶
=

µ
0
1

¶
, (2.451)

the effect of a 45o -oriented quarter-wave plate is to convert vertically polar-
ized light into left-handed circularly polarized light. If the incident beam is
horizontally polarized the outgoing beam is a right-handed circularly polar-
ized, see Figure 2.128. µ

V 0
x

V 0
y

¶
=
−j√
2

µ
1
j

¶
. (2.452)
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Chapter 3

Quantum Nature of Light and
Matter

We understand classical mechanical motion of particles governed by New-
ton’s law. In the last chapter we examined in some detail the wave nature
of electromagnetic fields. We understand the occurance of guided traveling
modes and of resonator modes. There are characteristic dispersion relations
or resonance frequencies associated with that. In this chapter, we want to
summarize some experimental findings at the turn of the 19th century that
ultimately lead to the discover of quantum mechanics, which is that matter
has in addition to its particle like properties wave properties and electromag-
netic waves have in addition to its wave properties particle like properties.
As turns out the final theory, which will be developed in subsequent chapters
is much more than just that because the quantum mechanical wave function
has a different physical interpretation than a electromagnetic wave only the
mathematical concepts used is in many cases very similar. However, this is a
tremendous help and guideance in doing and finally understanding quantum
mechanics.

3.1 Black Body Radiation

In 1900 the physicist Max Planck found the law that governs the emission of
electromagnetic radiation from a black body in thermal equilibrium. More
specifically Planck’s law gives the energy stored in the electromagntic field in
a unit volume and unit frequency range, [f, f +df ] with df = 1Hz, when the

173
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electromagnetic field is in thermal equilibrium with its surrounding that is
at temperature T. A black body is simply defined as an object that absorbs
all light. The best implementation of a black body is the Ulbricht sphere,
see Figure 3.1.

Figure 3.1: The Ulbricht sphere, is a sphere with a small opening, where
only a small amount of radiation can escape, so that the interior of the
sphere is in thermal equilibrum with the walls, which are kept at a constant
tremperature. The inside walls are typically made of diffuse material, so that
after multiple scattering of the walls any incoming ray is absorbed, i.e. the
wall opening is black.

Figure 3.2 shows the energy density w(f) of electromagnetic radiation in
a black body at temperature T . Around the turn of the 19th century w(f)
was measured with high precision and one was able to distinguish between
various approximations that were presented by other researchers earlier, like
the Rayleigh-Jeans law and Wien’s law, which turned out to be asymptotic
approximations to Planck’s Law for low and high frequencies.
In order to find the formula describing the graphs shown in Figure 3.2

Planck had to introduce the hypothesis that harmonic oscillators with fre-
quency f can not exchange arbitrary amounts of energy but rather only
in discrete portions, so called quanta. Planck modelled atoms as classical
oscillators with frequency f . Therefore, the energy of an oscillator must be
quantized in energy levels corresponding to these energy quanta, which he
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found to be equal to hf, where h is Planck’s constant

h = 6.62620± 5 · 10−34Js. (3.1)
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Figure 3.2: Spectral energy density of the black body radiation according to
Planck’s Law.

As a model for a black body we use now a cavity with perfectly reflecting
walls, somewhat different from the Ulbricht sphere. In order to tap of a small
but negligible amount of radiation from the inside, a small opening is in the
wall. We can make this opening so small that it does essentially not change
the internal radiation field. Then the radiation in the cavity is the sum over
all possible resonator modes in the cavity. If the cavity is at temperature
T all the modes are thermally excited by emission and absorption of energy
quanta from the atoms of the wall.
For the derivation of Planck’s law we consider a cavity with perfectly

conducting walls, see Figure 3.3.
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Figure 3.3: (a) Cavity resonator with metallic walls. (b) Resonator modes
characterized by a certain k-vector.

If we extend the analysis of the plan parallel mirror waveguide to find the
TE and TM modes of a three-dimensional metalic resonator, the resonator
modes are TEmnp− and THmnp−modes characterized by its wave vector com-
ponents in x−, y−, and z−direction. The resonances are standing waves in
three dimensions

kx =
mπ

Lx
, ky =

nπ

Ly
, kz =

pπ

Lz
, for m,n, p = 0, 1, 2, ... (3.2)

An expression for the number of modes in a frequency interval [f, f + df ]
can be found by recognizing that this is identical to the number of points in
Figure 3.3(b) that are in the first octant of a spherical shell with thickness
dk at k = 2πf/c.The volume occupied by one mode in the space of wave
numbers k is ∆V = π

Lx
· π
Ly
· π
Lz
= π3

V
with the volume V = LxLyLz. Then the

number of modes dN in the frequency interval [f, f + df ] in volume V are

dN = 2 · 4πk
2dk

8π
3

V

= V
k2dk

π2
, (3.3)

where the factor of 2 in front accounts for the two polarizations or TE and
TH-modes of the resonator and the 8 in the denominator accounts for the
fact that only one eighth of the sphere, an octand, is occupied by the positive
wave vectors. With k = 2πf/c and dk = 2πdf/c, we obtain for the number
of modes finally
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dN = V
8π

c3
f2df (3.4)

Note, that the same density of states is obtained using periodic boundary
conditions in all three dimensions, i.e. then we can represent all fields in
terms of a three dimensional Fourier series. The possible wave vectors would
range from negative to positive values

kx =
2mπ

Lx
, ky =

2nπ

Ly
, kz =

2pπ

Lz
f or m, n, p = 0, ±1, ±2. . . . (3.5)

However, these wavevectors fill the whole sphere and not just one 8-th, which
compensates for the 8-times larger volume occupied by one mode. If we imply
periodic boundary conditions, we have forward and backward running waves
that are independent from each other. If we use the boundary conditions of
the resonator, the forward and backward running waves are connected and
not independent and form standing waves. One should not be disturbed by
this fact as all volume properties, such as the energy density, only depends
on the density of states, and not on surface effects, as long as the volume is
reasonably large.

3.1.1 Rayleigh-Jeans-Law

The excitation amplitude of each mode obeys the equation of motion of a
harmonic oscillator. Therefore, classically one expects that each of mode is
in thermal equilibrium excute with a thermal energy kT according to the
equipartition theorem, where k is Boltzmann’s constant with

k = 1.38062± 6 · 10−23J/K. (3.6)

If that is the case the spectral energy density is given by the Rayleigh-Jeans-
Law, see Figure 3.2.

w(f) =
1

V

dN

df
kT =

8π

c3
f2kT. (3.7)

As can be seen from Figure 3.2, this law describes very well the black body
radiation for frequencies hf ¿ kT but there is an arbitrary large deviation
for high frequencies. This formula can not be correct, because it predicts
infinite energy density for the high frequency modes resulting in an "ultravi-
olet catastrophy", i.e. the electromagnetic field contains an infinite amount
of energy at thermal equilibrium.
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3.1.2 Wien’s Law

The high frequency or short wavelength region of the black body radiation
was first empirically described by Wien’s Law

w(f) =
8πhf3

c3
e−hf/kT . (3.8)

Wien’s law is surprisingly close to Planck’s law, however it slightly fails to
correctly predicts the asympthotic behaviour at low frequencies or long wave-
lengths.

3.1.3 Planck’s Law

In the winter of 1900, Max Planck found the correct law for the black body
radiation by assuming that each oscillator can only exchange energy in dis-
crete portions or quanta. We rederive it by assuming that each mode can
only have the discrete energie values

Es = s · hf, for s = 0, 1, 2, ... (3.9)

Thus s is the number of energy quanta stored in the oscillator. If the oscillator
is a mode of the electromagnetic field we call s the number of photons. For the
probability ps, that the oscillator has the energy Es we assume a Boltzmann-
distribution

ps =
1

Z
exp

µ
−Es

kT

¶
=
1

Z
exp

µ
−hf

kT
s

¶
, (3.10)

where Z is a normalization factor such that the total propability of the os-
cillator to have any of the allowed energy values is

∞X
s=0

ps = 1. (3.11)

Note, due to the fact th∠t the oscillator energy is proportional to the number
of photons, the statistics are exponential statistics. From Eqs.(3.10) and
(3.11) we obtain for the normalization factor

Z =
∞X
s=0

exp

µ
−hf

kT
s

¶
=

1

1− exp
¡
− hf

kT

¢ , (3.12)
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which is also called the partition function. The photon statistics are then
given by

ps = exp

µ
−Es

kT

¶ ∙
1− exp

µ
−hf

kT

¶¸
−1 (3.13)

or with β = hf
kT

ps =
1

Z(β)
e−βs , with Z (β) =

∞X
s=0

e−βs =
1

1− e−β
. (3.14)

Given the statistics of the photon number, we can compute moments of the
probability distribution, such as the average number of photons in the mode


s1
®
=

∞X
s=0

s1ps. (3.15)

This first moment of the photon statistics can be computed from the partition
function, using the "trick"

s1
®
=

1

Z(β)

∂1

∂ (−β)1
Z(β) = Z(β) e−β , (3.16)

which is
hsi = 1

exp hf
kT
− 1

. (3.17)

With the average photon number hsi , we obtain for the average energy stored
in the mode

hEsi = hsihf, (3.18)

and the energy density in the frequency intervall [f, f + df ] is then given by

w (f) = hEsi
dN

V df
. (3.19)

With the density of modes from Eq.(3.4) we find Planck’s law for the black
body radiation

w (f) =
8π f 2

c3
hf

exp hf
kT
− 1

, (3.20)

which was used to make the plots shown in Figure 3.2. In the limits of low
and high frequencies, i.e. hf ¿ kT and hf À kT , respectively Planck’s law
asympthotically approaches the Rayleigh-Jeans law and Wien’s law.
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3.1.4 Thermal Photon Statistics

It is interesting to further investigate the intensity fluctuations of the thermal
radiation emitted from a black body. If the wall opening in the Ulbricht
sphere, see Figure 3.1, is small enough very little radiation escapes through
it. If the Ulbricht sphere is kept at constant temperature the radiation inside
the Ulbricht sphere stays in thermal equilibrium and the intensity of the
radiation emitted from the wall opening in a frequency interval [f, f + df ] is

I(f) = c · w (f) . (3.21)

Thus the intensity fluctuations of the emitted black body radiation is directly
related to the photon statistics or quantum statistics of the radiation modes
at freuqency f , i.e. related to the stochastic variable s : the number of
photons in a mode with frequency f . This gives us direclty experimental
access to the photon statistics of an ensemble of modes or even a single mode
when proper spatial and spectral filtering is applied.

Using the expectation value of the photon number 3.17, we can rewrite
the photon statistics for a thermally excited mode in terms of its average
photon number in the mode as

ps =
hsis

(hsi+ 1)s+1
=

1

(hsi+ 1)

µ
hsi

(hsi+ 1)

¶s

, (3.22)

The thermal photon statistics display an exponential distribution, see Figure
3.4. Before we move on, lets see how the average photon number in a given
mode depends on temperature and the frequency range considered. Figure
3.5 shows the relationship between average number of photons in a mode
with frequency f or wavelength λ and temperature T.
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Figure 3.4: Photon statistics of a mode in thermal equilibrium with a mean
photon number < s >= 10 (a) and < s >= 1000 (b).

Figure 3.5: Average photon number in a mode at frequency f or wavelength
λ and temperature.

Figure 3.5 shows that at room temperature and micorwave frequencies
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large numbers of photons are present due to the thermal excitation of the
mode. This is the reason that at room temperature the thermal noise over-
whelms eventual quantum fluctuations. However, quantum fluctuations are
important at high frequencies, which start for room temperature in the far to
mid infrared range, where on average much less than one photon is thermally
excited.
The variance of the photon number distribution is

σ2s =

s2
®
− hsi2 . (3.23)

By generalizing Eq.(3.12) to the m-th moment by replacing the exponent 1
by m

hsmi =
∞X
s=0

smps (3.24)

=
1

Z

∂m

∂ (−β)mZ (β) , (3.25)

we obtain for the second moment
s2
®
= 2Z (β) 2e−2β − Z (β) 2e−2β = 2


s2
®
+ hsi . (3.26)

and therefore for the variance of the photon number using Eq.(3.23) is

σ2s = hsi
2 + hsi . (3.27)

As expected from the wide distribution of photon numbers the variance is
larger than the square of the expectation value. This means that if we look
at the light intensity of a single mode the intensity is subject to extremly
strong fluctuations as large as the mean value. So why don’t we see this rapid
thermal fluctuations when we look at the black body radiation coming, for
example, from the surface of the sun? Well we don’t look at a single mode
but rather at a whole multitude of modes. Even when we restrict us to a
certain narrow frequency range and spatial direction, there is a multitude
of transverse modes presence. We obtain for the average total number of
photons in a group of modes and its variance

hstoti =
NX
i=1

hsii , (3.28)

σ2tot =
NX
i=1

σ2i . (3.29)
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Since these modes are independent identical systems, we have

hstoti = N · hsi . (3.30)

σ2tot = N
¡
hsi2 + hsi

¢
=
1

N
hstoti2 + hstoti .

Due to the averaging over many modes, the photon number fluctuations in
a large number of modes is reduced compared to its mean value

SNR =
σ2tot
hstoti2

=
1

N
+

1

hstoti
. (3.31)

Thus if one averages over many modes and has many photons in these modes
the intensity fluctuations become small.

3.1.5 Mode Counting

It is interested to estimate the number of modes one is averaging over given
a certain emitting surface and a certain measurement time, see Figure 3.6.

x

y
z

Lx

Ly

Lz

As AD
kAcΩc

Figure 3.6: Counting of longitudinal and transverse modes excited from a
radiating surface of size As.

If the area As is emitting light, it will couple to the modes of the free
field. To count the modes we put a large box (universe) over the experi-
mental arrangement under consideration. The emitting surface is one side of
the box. The light from this surface, i.e. specifying the transverse electric
and magnetic fields, couples to the modes of the universe with wave vectors
according to Eq.(3.5).
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Longitudinal Modes

The number of longitudinal modes, that propagate along the positive z-
direction in the frequency interval∆f can be derived from∆k = (2π/Lz)∆N
and ∆k = (2π/c0)∆f

∆N =
Lz

c0
∆f, (3.32)

or using the propagation or measurement time over which the experiment
extends

τ = Lz/c0, (3.33)

we obtain for the number of longitudinal modes that are involved in the
measurement that is carried out over a time intervall τ and a frequency
range ∆f

∆N = τ∆f . (3.34)

Transverse Modes

The free space modes that arrive at the detector area AD will not only have
wave vectors with a z−component, but also transverse components. Lets as-
sume that the detector area is far from the emitting surface, and we consider
only the paraxial plane waves. The wave vectors of these waves at a given
frequency or free space wave number k0 can be approximated by

kmn =

µ
2πm

Lx
,
2πn

Ly
, k0

¶
with m,n = 0, 1, 2, ... (3.35)

where m and n are transverse mode indices. Then one mode occupies the
volume angle

Ωc =
4π2

LxLy k20
,

= λ20/As . (3.36)

If the modes are thermally excited, the radiation in individual modes is
uncorrelated. Therefore, if there is a detector at a distance r then only
the field within an area

Ac = r2Ωc , (3.37)
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is correlated. If the photodetector has an area Ad, then the number of
transverse modes detected is

Nt = Ad/Ac. (3.38)

The total number of modes detected is

Ntot =
Ad

Ac
τ∆f =

AdAs

r2λ20
τ∆f . (3.39)

Note, that there is perfect symmetry between the area of the emitting and
receiving surface. The emitter and the receiver could both be black bodies.
If one of them is at a higher temperature than the other, there is a net flow of
energy from the warmer body to the colder body until equilibrium is reached.
This would not be possible without interaction over the same number of
modes. Thus the formula which is completely unrelated to thermodynamics
is necessary to fulfill one of the main theorems of thermodynamcis, that is
that energy flows from warmer to colder bodies.

3.2 Photo-electric Effect

Another strong indication for the quantum nature of light was the photoelec-
tric effect by Lenard in 1903. He discovered that when ultra violet light is
radiated on a photo cathode electrons are emitted, see Figure 3.7.

Figure 3.7: Photo-electric effect: (a) Schematic setup and (b) dependence of
the necessary grid voltage to supress the electron current as a funtion of light
frequency.
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Lenard surrounded the photo cathode by a grid, which is charged by the
emitted electrons up to a voltage U, which blocks the emission of further
electrons. Figure 3.7 shows the blocking voltage as a function of the fre-
quency of the incoming light. Depending on the cathode material there is a
cutoff frequency. For lower frequencies no electrons are emitted at all. This
frequency as well as the blocking voltage does not depend on the intensity
of the light. In 1905, this effect was explained by Einstein introducing the
quantum hypothesis for radiation. According to him, each electron emission
is caused by a light quantum, now called photon. This photon has an energy
hf and this quantum energy must be larger than the work functionWe of the
material. The remainder of the energy mev

2/2 is transfered to the electron
in form of kinetic energy. The resulting energy balance is

hf =We +
1

2
mev

2 (3.40)

The kinetic energy of the electron can be used to reach the grid surrounding
the photo cathode until the charging energy due to the grid potential is equal
to the kinetic energy of the electrons

eU =
1

2
mev

2hf =We +
1

2
mev

2 (3.41)

or
−U = 1

e
(hf −We), for hf > We. (3.42)

This equation explains the empirically found law by Lenard explaining the
cutoff frequency and the charge buildup as a function of light frequency.
Einstein was first to introduce the idea that the electromagnetic field contains
light quanta or photons.

3.3 Spontaneous and Induced Emission

The number of photons in a radiation mode may change via emission of
photon into the mode or absorption of a photon from the mode by atoms,
molecules or a solid state material. Einstein introduced a phenomenological
theory of these processes in order to explain how matter may get into thermal
equilibrium by interaction with the modes of the radiation field. He consid-
ered the interaction of a mode with atoms modeled by two energy levels E1
and E2, see Figure 3.8.
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Figure 3.8: Energy levels of a two level atom and populations.

n1 and n2 are the population densities of these two levels considering a
whole ensemble of these atoms. Transitions are possible in the atom between
the two energy levels by emission of a photon at a frequency

f =
E2 −E1

h
(3.43)

Absorption of a photon is only possible if there is energy present in the
radiation field. Einstein wrote for the corresponding transition rates, which
should be proportional to the population densities and the photon density at
the transition frequency

−dn1
dt

¯̄̄̄
Abs

=
dn2
dt

¯̄̄̄
Abs

= B12n1w(f21). (3.44)

The coefficient B12 characterizes the absorption properties of the transition.
Einstein had to allow for two different kind of processes for reasons that be-
come clear a little later. Transitions induced by the already present photons
or radiation energy as well as spontaneous transitions

dn1
dt

¯̄̄̄
Em

= −dn2
dt

¯̄̄̄
Em

=B21 n2w (f21) +A21 n2 . (3.45)

The coefficient B21describes the induced and A21 the spontaneous emissions.
The latter transitions occur even in the absence of any radiation and the
corresponding coefficient determines the lifetime of the excited state

τ sp = A−121 , (3.46)
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in the absence of the radiation field. The total change in the population
densities is due to both absorption and emission processes

dni
dt
=

dni
dt

¯̄̄̄
Em

+
dni
dt

¯̄̄̄
Abs

, for i = 1, 2 (3.47)

Using Eqs.(3.44) and (3.45) we find

−dn1
dt

=
dn2
dt

= (B12 n1 −B21 n2) w (f21)−A21 n2. (3.48)

In thermal equilibrium the energy density of the radiation field must fulfill
the condition

w (f21) =
A21/B12

n1/n2 −B21/B12
, (3.49)

while the atomic ensemble itself should also be in thermal equilibrium which
again should be described by the Boltzmann statistics, i.e. the ratio between
the population densities are determined by the Boltzmann factor

n2/n1 = exp

µ
−E2 −E1

kT

¶
. (3.50)

And with it the energy density of the radiation field must be

w (f21) =
A21/B12

exp
¡
hf21
kT

¢
−B21/B12

. (3.51)

A comparison with Planck’s law, Eq.(3.20), gives

B21 = B12, (3.52)

and

A21 =
8π hf321

c3
B12. (3.53)

Clearly, without the spontaneous emission process it is impossible to arrive
at Planck’s Law in equilibrium. The spectral energy density of the radiation
field can be rewritten with the average photon number in the modes at the
transition frequency f21 as

w (f21) =
8π f221
c3

hf21 hsi , with hsi = hsi = 1

exp hf21
kT
− 1

. (3.54)
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Or we can write

w (f21) =
A21
B12

hsi .

With that relationship Eq.(3.45) can be rewritten as

dn1
dt

¯̄̄̄
Em

= −dn2
dt

¯̄̄̄
Em

=A21 n2 (hsi+ 1) , (3.55)

which indicates that the number of spontaneous emissions is equvalent to in-
duced emissions caused by the presence of a single photon per mode. Having
identified the coefficients describing the transition rates in the atom interact-
ing with the field from equilibrium considerations, we can rewrite the rate
equations also for the non equilibrium situation, because the coefficients are
constants depending only on the transition considered

dn1
dt

= −dn2
dt
=
1

τ sp
[(n2−n1) hsi+ n2] . (3.56)

With each transition from the excited state of the atom to the ground state
an emission of a photon goes along with it. From this, we obtain a change
in the average photon number of the modes

d hsi
dt

= V
dn1
dt

, (3.57)

which is
d hsi
dt

=
V

τ sp
[(n2 − n1) hsi+ n2] . (3.58)

Again the first term describes the stimulated or induced processes and the
second term the spontaneous processes. As we will see later, the stimulated
emission processes are coherent with the already present radiation field that is
inducing the transitions. This is not so for the spontaneous emissions, which
add noise to the already present field. For n1 > n2 the stimulated processes
lead to a decrease in the photon number and the medium is absorbing. In the
case of inversion, n2 > n1, the photon number increases exponentially. Ac-
cording to Eq.(3.50) inversion corresponds to a negative temperature, which
is an indication for a non equilibrium situation that can only be maintained
by additional means. It is impossible to achieve inversion by simple irradia-
tion of the atoms with intense radiation. As we see from Eq.(3.58) in steady
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state the ratio between excited state and ground state population is

n2
n1
=

hsi
hsi+ 1 , (3.59)

which at most approaches equal population for very large photon number.
However, such a process can be exploited in a three or four level system, see
Figure 3.9, to achieve inversion.

Figure 3.9: Three level system: (a) in thermal equilibrium and (b) under
optical pumping at the transition frequency f31.

By optical pumping population from the ground state can be transfered to
the excited level with energy E3. If there is a fast relaxation from this level to
level E2, where level two in contrast has a long lifetime, it is conceivable that
an inversion between level E2 and E1 can build up. If inversion is achieved
radiation at the frequency f21 is amplified.

3.4 Matter Waves and Bohr’s Model of an
Atom

By systematic scattering experiments Ernest Rutherford showed in 1911, that
the negative charges in an atom are homogenously distributed in contrast to
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the positive charge which is concentrated in a small nucleus about 10,000
times smaller than the atom itself. The nucleus also carries almost all of the
atomic mass. Rutherford proposed a model of an atom where the electrons
circle the nucleas similar to the planets circling the sun where the gravita-
tional force is replaced by the Coulomb force between the electrons and the
nucleus.
This model had many short comings. How was it possible that the elec-

trons, which undergo acceleration on their trajectory around the nucleus, do
not radiate according to classical electromagnetism, loose energy and finally
fall into the nucleus? Due to advances in optical instrumentation the light
emitted from thermally excited atomic vapors was known to be in the form
of discrete lines. Balmer found in 1885 that these lines could be expressed
by the rule

1

λ
= RH

µ
1

22
− 1

n2

¶
, with n = 3, 4, 5, ... (3.60)

where λ is the wavelength of light and RH = 10.968 · μm−1 is the Rydberg
constant for hydrogen. For n = 3 this corresponds to the red Hα-line at
λ = 656.3nm, for n→∞ one obtains the wavelength of the limiting line in
this series at λ = 364.6nm, see Figure 3.10.

Figure 3.10: Balmer series on a wave number scale.

.

In the subsequent spectroscopy work further sequences where found:
1. Lyman Series:

1

λ
= RH

µ
1

12
− 1

n2

¶
, with n = 2, 4, 5, ... (3.61)
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2. Balmer Series:

1

λ
= RH

µ
1

22
− 1

n2

¶
, with n = 3, 4, 5, ... (3.62)

3. Paschen Series:

1

λ
= RH

µ
1

32
− 1

n2

¶
, with n = 4, 5, 6, ... (3.63)

4. Brackett Series:

1

λ
= RH

µ
1

42
− 1

n2

¶
, with n = 5, 6, 7, ... (3.64)

5. Pfund Series:

1

λ
= RH

µ
1

52
− 1

n2

¶
, with n = 6, 7, 8, ... (3.65)

The Lyman series in the UV-region of the spectrum, whereas the Pfund series
is in the far infrared. These sequences can be represented as transitions
between energy levels as shown in Figure 3.11.
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Figure 3.11: Energy level diagram for the hydrogen atom.

.

In 1913, Niels Bohr found the quantization condition for the electron
trajectories in the Hydrogen atom and he was able to derive from that the
spectral series discussed above. He postulated that only those electron tra-
jectories are allowed that within one rountrip around the nucleus have an
action equal to a multiple of Planck’s quantum of action h.I

p · ds = nh, with n = 1, 2, 3.... (3.66)

Second, he postulated that the electron can switch from one energy level or
trajectory to another one by the emission or absorption of a photon with an
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energy equivalent to the energy difference between the two energy levels, see
Figure 3.12.

hf = ∆E. (3.67)

Figure 3.12: Transition between different energy levels in the hydrogen atom.

Assuming a circular trajectory of the electron with radius rn around the
nucleus, the quantization condition for the electron trajectory (3.66) leads to

2πrnmvn = nh, with n = 1, 2, 3... (3.68)

The other condition for radius and velocity of the electron around the nucleus
is given by the equality of Coulomb and centrifugal force at radius rn, which
leads to

e2

4πε0r2n
=

mv2n
rn

, (3.69)

or

v2n =
e2

4πε0rnm
. (3.70)

Substituting this value for the electron velocity in the squared quantization
condition (3.68), we find the radius of the electron trajectories

rn =
ε0h

2

πe2m
n2. (3.71)

The radius of the first trajectory, called Bohr radius is r1 = 0.529 · 10−10m.
The velocities on the individual trajectories are

vn =
e2

2ε0h

1

n
. (3.72)
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The highest velocity is found for the tightest trajectory around the nucleus,
i.e. for n = 1, which can be expressed in terms of the velocity of light as

v1 =
e2

2ε0hc
· c = 1

137
· c, (3.73)

where e2

2ε0hc
= 1

137
is the fine structure constant.

The energy of the electrons on these trajectories with the quantum num-
ber n is due to both potential and kinetic energy

Ekin =
1

2
mv2n =

me4

8ε20h
2n2

, (3.74)

Epot = − e2

4πε0rn
= − me4

4ε20h
2n2

. (3.75)

or

En = Ekin +Epot (3.76)

Epot = − me4

8ε20h
2n2

. (3.77)

Note, the energy of a bound electron is negative. For n→∞, En = 0. The
electron becomes detached from the atom, i.e. the atom becomes ionized.
The lowest and most stable energy state of the electron is for n = 1

En = −
me4

8ε20h
2
= −13.53eV, (3.78)

with correspondes to the ground state in hydrogen. When a transition be-
tween two of this energy eigenstates occurs a photon with the corresponding
energy is released

hf = Ek − En, (3.79)

= − me4

8ε20h
2

µ
1

k2
− 1

n2

¶
. (3.80)

3.5 Wave Particle Duality
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Bohr’s postulates were not able to explain all the intricacies of the observed
spectra and they couldn’t explain satisfactory the structure of the more com-
plex atoms. This was only achieved with the introduction of wave mechanics.
In 1923, de Broglie was the first to argue that matter might also have wave
properties. Starting from the equivalence principle of mass and energy by
Einstein

E0 = m0 c
2
0 (3.81)

he associated a frequency with this energy accordingly

f0 = m0 c
2
0/h. (3.82)

Since energy and frequency are not relativistically invariant quantities but
rather components of a four-vector which has the particle momentum as its
other components (E0/c0, px,py, pz) or (ω0/c0, kx,ky, kz), it was a necessity
that with the energy frequency relationship

E = hf = ~ω, (3.83)

there must also be a wave number associated with the momentum of a particle
according to

p = ~k. (3.84)

In 1927, C. J. Davisson and L. H. Germer experimentally confirmed this
prediction by finding strong diffraction peaks when an electron beam pene-
trated a thin metal film. The pictures were close to the observations of Laue
in 1912 and Bragg in 1913, who studied the structure of crystaline and poly
crystaline materials with x-ray diffraction.
With that finding the duality between waves and particles for both light

and matter was established. Duality means that both light and matter have
simultaneous wave and particle properties and it depends on the experimental
arrangement whether one or the other property manifests itself strongly in
the experimental outcome.
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Chapter 4

Schroedinger Equation

Einstein’s relation between particle energy and frequency Eq.(3.83) and de
Broglie’s relation between particle momentum and wave number of a corre-
sponding matter wave Eq.(3.84) suggest a wave equation for matter waves.
This search for an equation describing matter waves was carried out by Erwin
Schroedinger. He was successful in the year 1926.
The energy of a classical, nonrelativistic particle with momentum p that

is subject to a conservative force derived from a potential V (r) is

E =
p 2

2m
+ V (r) . (4.1)

For simplicity lets begin first with a constant potential V (r) = V0 = const.
This is the force free case. According to Einstein and de Broglie, the dis-
persion relation between ω and k for waves describing the particle motion
should be

~ω =
~2k2

2m
+ V0. (4.2)

Note, so far we had a dispersion relation for waves in one dimension, where
the wavenumber k(ω), was a function of frequency. For waves in three dimen-
sions the frequency of the wave is rather a function of the three components
of the wave vector. Each wave with a given wave vector k has the following
time dependence

ej(k·r−ωt), with ω =
~k2

2m
+

V0
~

(4.3)

Note, this is a wave with phase fronts traveling to the right. In contrast to our
notation used in chapter 2 for rightward traveling electromagnetic waves, we
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switched the sign in the exponent. This notation conforms with the physics
oriented literature. A superposition of such waves in k−space enables us to
construct wave packets in real space

Ψ (r, t) =

Z
φω

³
k, ω

´
ej(k·r−ωt)d3k dω (4.4)

The inverse transform of the above expression is

φω

³
k, ω

´
=

1

(2π)4

Z
Ψ (r, t) e−j(k·r−ωt)d3r dt, (4.5)

with

φω

³
k, ω

´
= φ (k) δ

Ã
ω − ~k

2

2m
− V0
~

!
. (4.6)

Or we can rewrite the wave function in Eq.(4.4) by carrying out the trivial
frequency integration over ω

Ψ (r, t) =

Z
φ (k) exp

Ã
j

"
k·r −

Ã
~k2

2m
+

V0
~

!
t

#!
d3k. (4.7)

Due to the Fourier relationship between the wave function in space and time
coordinates and the wave function in wave vector and frequency coordinates

φω

³
k, ω

´
↔ Ψ (r, t) (4.8)

we have

ω φω (k, ω) ↔ j
∂Ψ (r, t)

∂t
, (4.9)

k φω (k, ω) ↔ − j∇Ψ (r, t) , (4.10)

k2 φω (k, ω) ↔ −∆ Ψ (r, t) . (4.11)

where

∇ = ex
∂

∂x
+ ey

∂

∂y
+ ez

∂

∂z
, (4.12)

∆ = ∇ ·∇ ≡ ∇2 = ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (4.13)



201

From the dispersion relation follows by multiplication with the wave function
in the wave vector and frequency domain

~ω φω (k, ω) =
~2k2

2m
φω (k, ω) + V0 φω (k, ω) . (4.14)

With the inverse transformation the corresponding equation in the space and
tieme domain is

j ~
∂Ψ (r, t)

∂t
= − ~

2

2m
∆ Ψ (r, t) + V0 Ψ (r, t) . (4.15)

Generalization of the above equation for a constant potential to the instance
of an arbitrary potential in space leads finally to the Schroedinger equation

j ~
∂Ψ (r, t)

∂t
= − ~

2

2m
∆ Ψ (r, t) + V (r) Ψ (r, t) . (4.16)

Note, the last few pages ar not a derivation of the Schroedinger Equation
but rather a motivation for it based on the findings of Einstein and deBroglie.
The Schroedinger Equation can not be derived from classical mechanics. But
classical mechanics can be rederived from the Schroedinger Equation in some
limit. It is the success of this equation in describing the experimentally ob-
served quantummechanical phenomena correctly, that justifies this equation.
The wave function Ψ (r, t) is complex. Note, we will no longer underline

complex quantities. Which quantities are complex will be determined from
the context.
Initially the magnitude square of the wave function |Ψ (r, t)|2 was inter-

preted as the particle density. However, Eq.(4.15) in one spatial dimension
is mathematical equivalent to the dispersive wave motion Eq.(2.72), where
the space and time variables have been exchanged. The dispersion leads to
spreading of the wave function. This would mean that any initially compact
particle, which has a well localized particle density, would decay, which does
not agree with observations. In the framwork of the "Kopenhagen Interpre-
tation" of Quantum Mechanics, whose meaning we will define later in detail,
|Ψ (r, t)|2 dV is the probability to find a particle in the volume dV at position
r , if an optimum measurement of the particle position is carried out at time
t. The particle is assumed to be point like. Ψ (r, t) itself is then considered
to be the probability amplitude to find the particle at position r at time t.
Note, that the measurement of physical observables like the position of

a particle plays a central role in quantum theory. In contrast to classical
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mechanics where the state of a particle is precisely described by its position
and momentum in quantum theory the full information about a particle is
represented by its wave function Ψ (r, t). Ψ (r, t) enables to compute the
outcome of a measurement of any possible observable related to the particle,
like its position or momentum.
Before, we discuss this issue in more detail lets look at a few examples to

get familiar with the mathematics of quantum mechanics.

4.1 Free Motion

Eq.(4.15) describes the motion of a free particle. For simplicity, we consider
only a one-dimensional motion along the x-axis. Initially, we might only
know the position of the particle with finite precision and therefore we use a
Gaussian wave packet with finite width as the initial wave function

Ψ (x, t = 0) = A exp

µ
− x2

4σ20
+ jk0x

¶
. (4.17)

The probability density to find the particle at position x is a Gaussian dis-
tribution

|Ψ (x, t = 0)|2 = |A |2 exp
µ
− x2

2σ20

¶
, (4.18)

σ20 is the variance of the initial particle position. Since the probability to find
the particle somewhere must be one, we can determine the amplitude of the
wave function by requireing

∞Z
−∞

|Ψ (x, t = 0)|2 dx = 1→ A =
1

4
√
2π
√
σ0

(4.19)

The meaning of the wave number k0 in the wave function (4.17) becomes
obvious by expressing the solution to the wave equation by its Fourier trans-
form

Ψ (x, t) =

+∞Z
−∞

φ (k) exp j (kx− ω (k) t) dk (4.20)



4.1. FREE MOTION 203

or specifically for t = 0

Ψ (x,0) =

+∞Z
−∞

φ (k) e jkx dk , (4.21)

or

φ (k) =
1

2π

+∞Z
−∞

Ψ(x,0) e− jkx dx . (4.22)

For the initial Gaussian wavepacket of

Ψ (x, 0) = A exp

µ
− x2

4σ20
+ jk0x

¶
(4.23)

we obtain
φ (k) =

Aσ0√
π
exp

£
−σ20 (k − k0)

2¤ . (4.24)

This is a Gaussian distribution for the wave number, and therefore momen-
tum, of the particle with its center at k0. With the dispersion relation

ω =
~ k2

2 m
, (4.25)

with the constant potential V0 set to zero, the wave function at any later
time is

Ψ (x, t) =
Aσ0√
π

+∞Z
−∞

exp

∙
−σ20 (k − k0)

2− j~k
2

2m
t+ jkx

¸
dk. (4.26)

This is exactly the same Gaussian integral we were studying for dispersive
pulse propagation or the diffraction of a Gaussian beam in chapter 2 which
results in

Ψ (x, t) =
Aq

1 + j ~ t
m2σ20

exp

⎡⎣− x2 − 4 jσ20k0 x+ j
~2σ20k20

m
t

4σ20

³
1 + j ~

m2σ20
t
´

⎤⎦ . (4.27)

As expected the wave packet stays Gaussian. The probability density is

|Ψ(x, t)|2 = |A|2q
1 + ( ~ t

2mσ20
))
exp

⎡⎢⎢⎣−
¡
x− ~ k0

m
t
¢2

2σ20

∙
1 +

³
~ t
2mσ20

´2¸
⎤⎥⎥⎦ . (4.28)
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With the value for the amplitude A according to Eq.(4.19), the wave packet
remains normalized

+∞Z
−∞

|Ψ(x, t)|2 dx = 1. (4.29)

Using the probability distribution for the particle position, we obtain for its
expected value

hxi =
+∞Z
−∞

x |Ψ(x, t)|2 dx (4.30)

or

hxi = ~ k0
m

t . (4.31)

Thus the center of the wave packet moves with the velocity of the classical
particle

υ0 =
~ k0
m

, (4.32)

which is the group velocity derived from the dispersion relation (4.2)

υ0 =
∂ω(k)

∂k

¯̄̄̄
k=k0

=
1

~
∂E(k)

∂k

¯̄̄̄
k=k0

. (4.33)

As we will see later, the expected value for the center of mass of the par-
ticle follows Newton’s law, which is called Ehrenfest’s Theorem. For the
uncertainty in the particle position

∆x =

q
hx2i− hxi2 (4.34)

follows for the freely moving particle

∆x = σ0

s
1 +

µ
~ t
2mσ20

¶2
. (4.35)

The probability density for the particle position disperses over time. Asymp-
totically one finds

∆x
.
=

~ t
2mσ20

for
~ t
2mσ20

À 1 . (4.36)

Figure 4.1 (a) is a sketch of the complex wave packet and (b) indicates the
temporal evolution of the average and variance of the particle center of mass
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motion described by the complex wave packet. The wave packet disperses
faster, if it is initially stronger localised.

Figure 4.1: Gaussian wave packet: (a) Real and Imaginary part of the com-
plex wave packet. (b) width and center of mass of the wave packet.

Example:
Using this one dimensional model, we can estimate how rapidly an elec-

tron moves in a hydrogen atom. If we localize an electron in a box with a size
similar to that of a hydrogen atom, i.e. σ0 = a0 = 0.5 · 10−10m, without the
presence of the proton that holds the electron back from escaping, it will only
take t = 2mσ20/~ = 2 ·9.81 ·10−31kg· (0.5 · 10−10)

2m2/6.626 ·10−34Js = 46.5as
(attoseconds=10−18 sec) until its wave function disperses significantly. This
result indicates that electronic motion in atoms occurs on a attosecond time
scale. Note, these time scales quickly become very long if macroscopic ob-
jects are described quantum mechanically. For example, for a particle with
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a mass of 1μg localized in a box with dimensions 1μm, the equivalent time
for significant dispersion of the wave function is t = 2 · 1019s = 2Million
years. This result gives us a first indication why we are far, far away from
encountering quantum mechanical effects in our everyday life and why the
mechanics of the micro cosmos, on an atomic or molecular level, is so dif-
ferent from our macroscopic experience. The reason is the smallness of the
quantum of action h.
The reason for this behaviour is that a well localized particle has a wider

momentum or wave number distribution. This is in one to one analogy that
an otpical pulse disperses faster in a medium with a given dispersion if it is
shorter because of larger spectral width. The wave number spread is

(∆k)2 =

∞Z
−∞

(k − k0)
2 |φ (k)|2 dk

∞Z
−∞

|φ (k)|2 dk

. (4.37)

Here, we have

∆k =
1

2σ0
, (4.38)

or for the momentum spread

∆p =
~
2σ0

. (4.39)

The position-momentum uncertainty product is then

∆p ∆x =
~
2

s
1 +

µ
~ t
2m2

0

¶2
. (4.40)

The position-momentum uncertainty product is a minimum at t = 0 and
steadily increases from this initial value. As we will show later it is in gen-
erally true that the position-momentum uncertainty product satisfies the
condition

∆xi∆pi >
~
2
. (4.41)

Note, that the index i indicates the coordinate. This is Heisenberg’s uncer-
tainy relation between particle position and moment, which holds for each
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component individually. Later, we will find other pairs of physical obser-
vavles, which are called conjugate observables and which satiesfy similar
uncertainty relations. The product of such quantities is always an action.
This is for example also true for the product of energy and frequency and
the resulting energy-time uncertainty relation is

∆E∆t > ~
2
. (4.42)

Note, whereas the position-momentum uncertainy is related to the choice of
the particle state described by the wave function, the energy-time uncertainty
relation is related to the dynamics of a quantum process. What it means is
that a quantum system can only change its state significantly within a time
span ∆t, if the state, the quantum system is in, has an energy uncertainty
larger than δE > ~

2δt
.

Position and momentum variables that do not belong to the same degree
of freedom, such as y, and px are not subject to an uncertainty relation.

4.2 Probability Conservation and Propabil-
ity Currents

Max Born was the first to introduce the propabilistic interpretation of the
wave function found by Schroedinger, that is the propability to find the center
of mass of a particle at position r in a volume element dV is given by the
magnitude square of the wave function multiplied by dV

p (r, t) = |Ψ (r, t)|2 dV . (4.43)

If this interpretation makes sense, then the total propability that the parti-
cle can be found somewhere should by 1 and this normalization should not
change during the dynamics. We found that this is true for the Gaussian
wave packet undergoing free motion. Here, we want to show that this is true
under the most general circumstances. We look at the rate of change of the
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probability to find the particle in an arbitrary but fixed volume V = V ol

d

dt

Z
V ol

p (r, t) d3r = (4.44)

=

Z
V ol

∂

dt
|Ψ (r, t)|2 d3r

=

Z
V ol

∙µ
∂

∂t
Ψ∗ (r, t)

¶
Ψ (r, t) +Ψ∗ (r, t)

µ
∂

∂t
Ψ (r, t)

¶ ¸
d3r

Using the Schroedinger Equation (4.16) for the temporal change of the wave
function we obtain

d

dt

Z
V ol

p (r, t) d3r =

=

Z
V ol

∙µ
~

j2m
∇ ·∇ Ψ∗ (r, t)− j

~
V (r) ∗Ψ∗ (r, t)

¶
Ψ (r, t)

¸
d3r (4.45)

+

Z
V ol

∙
Ψ∗ (r, t)

µ
− ~
j2m
∇ ·∇ Ψ (r, t) +

j

~
V (r) Ψ (r, t)

¶¸
d3r

Since the potential V (r) is real the terms related to it cancel. The other two
terms can be written of the divergence of a current densityZ

V ol

∂

∂t
p (r, t) d3r = −

Z
V ol

∇ · J (r, t) d3r, (4.46)

with

J (r, t) =
~

j2m
(Ψ∗ (r, t) (∇Ψ (r, t))−Ψ (r, t) (∇Ψ∗ (r, t))) . (4.47)

Eq.(4.46) is true for any volume, i.e.Z
V ol

∙
∂

∂t
p (r, t) +∇ · J (r, t)

¸
d3r = 0, (4.48)

which is only possible if the integrand vanishes

∂

∂t
p (r, t) = − ∇ · J (r, t) . (4.49)

Clearly, J (r, t) has the physical meaning of a probability current. The prob-
ability in a volume element changes because of probablity flowing out of
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this volume element. Note, this is the same local law that we have for the
conservation of charge. In fact, if the particle is a charged particle, like an
electron is, multiplication of J with −e0 would result in the electrical current
associated with the wave function Ψ (r, t) .
Gauss’s theorem statesZ

V ol

∇ · J (r, t) d3r =

Z
S

J (r, t) dS, (4.50)

where V ol is the volume over which the integration is carried out and S is
the surface that encloses the volume with dS an outward pointing surface
normal vector. With Gauss’s theorem the local conservation of probability
can be transfered to a global result, since

d

dt

Z
V ol

p (r, t) d3r = −
Z
V ol

∇ · J (r, t) d3r = −
Z
S

J (r, t) dS. (4.51)

If we choose as the volume the whole space and if Ψ (r, t) and ∂
∂t
Ψ (r, t)

vanish rapidly enough for r →∞ such that the probability current vanishes
at infinity, the total probability is conserved. These findings proove that
the probabilty interpretation of the wave function is a valid interpretation
not contradicting basic laws of probability. If the wave function properly
normalized at the beginning it will stay normalized.

Example The Gaussian wave packet satisfies the condition that the prob-
ability current decays rapidly enough at the surface of a large enough chosen
volume so that the normalization is preserved. A monochromatic plane wave
does not satisfy this condition. However, the probability current density gives
a physical meaning to it. The wave function corresponding to a plan wave

Ψ (r, t) = ej(k·r−ωt), with ω =
~k2

2m
+

V0
~

(4.52)

which is not normalizable, results in a homogenous probability current

J (r, t) =
~

j2m
(Ψ∗ (r, t) (∇Ψ (r, t))−Ψ (r, t) (∇Ψ∗ (r, t))) (4.53)

=
~k
m
|Ψ (r, t)|2 = p

m
= v,
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that is identical to the classical velocity of the particle. Thus a plane wave
describes a particle with a precise velocity or momentum but completely
unknown position, therefore the related probability current density is com-
pletely homogenous but directed into the direction of v. Such waves describe
the initial state in a scattering experiment, where we shoot particles with a
precisely defined velocity v or momentum p or energy E = mv2

2
= ~p2

2m
= ~k2

2m

onto another object described by a scattering potential, see problem set. The
position of these particles is completely unspecified, i.e. |Ψ (r, t)|2 =const.

4.3 Measureability of Physical Quantities (Ob-
servables)

The reason for the more intricate description necessary for microscopic pro-
cesses in comparison with macroscopic processes is simply the fact that these
systems are so small that the interaction of the system with an eventual mea-
surement apparatus can no longer be neglected. It turns out this fact is not
to overcome by choosing more and more sophisticated measurement apparati
but rather is a principle limitation. If this is so, then it eventually doesn’t
make sense or it becomes even inconsistent to attribute to a system more
precisely defined physical quantities than actually can be retrieved by mea-
surements. This is the physical reason behind the introduction of the wave
function in stead of the precisely defined position and momentum of the par-
ticle that we used to deterministically predict the trajectory of a particle in
an external field.
It is impossible to assign to a microscopic particle a precise position and

momentum at the same time. To demonstrate this, we consider the following
(Heisenberg) microscope to measure the exact position of a particle. We use
light with wavelength λ and focus it strongly with a lense of some focal
distance d, see Figure 4.2.
From our construction of the Gaussian beam in section 2.4.2, we found

that if we generate a focused beam with a waist wo having a Rayleigh range
zR =

πw2o
λ
, the beam is composed of plane waves which have a Gaussian distri-

bution in its transverse k-vector, which has a variance k2T/2, see Eq.(2.220).
The Rayleigh range of the beam is related to the transverse wave number
spread of the beam by zR = k0/k

2
T , with k0 = 2π/λ, see (2.221) and there-

after. Note, the intensity profile of the beam has a variance w2o /4. If a particle
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crosses the focus of the beam and scatters a single photon, which we detect
with the surrounding photo detector arrangement, then it is reasonable to
assume that we know the position of the particle in the x-direction, with an
uncertainty equal to the uncertainty in the transverse photon or intensity
distribution of the beam, i.e. ∆x = wo /2.

Photodector

Weak particle beam
with precise momentum p

p

Figure 4.2: Determination of particle position with an optical microscope.
A weak particle beam with precisely defined moment p of the particles is
directed towards the focus of the Gaussian beam. In the focus the particle
scatters at least one photon. Detection of the scattered photon with the
surrounding photodetector signals, that the position of the particle in x-
direction has been determined within the beam waist of the Gaussian beam.
However, due to the scattering of the photon a momentum uncertainty has
been introduced to the particle state.

During the measurement, the photon recoil induces a momentum kick
with an uncertainty∆px = ~kT/

√
2. So even if the momentum of the particle

was perfectly know before the measurement, after the additional determina-
tion of its position with a precision ∆x it has at least aquired an uncertainty
in its momentum of magnitude ∆px. The product of the uncertainties in
postion and momentum after the measurement is

∆px ·∆x = ~kTwo/
³
2
√
2
´
=
~
2
. (4.54)
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Note, this result is exact and is independent of focusing. Tighter focusing
will enable us to more precisely determine the position of the particle, but
we will introduce more momentum uncertainty due to the photon recoil; the
opposite is true for less focusing. Since we can not determine, and therefore,
prepare a particle in a state with its position and momentum more precisely
determined than this uncertainty product allows, there is nowsuch state and
(4.54) is the minimum uncertainty product achievable.
The experimental setup can easily be extended to measure the momentum

and position of a particle in all three dimensions. For example one can use
three focused laser beams at different wavelength, which are orthogonal to
each other. Once a particle will fly through the focus and scatters three
photons, each of different color. If we knew its momentum initially precisely,
we would know afterwards its 3-dimensional position with a position and
momentum spread as described by Eq.(4.54).

4.4 Stationary States

One of the great mysteries before the advent of quantum mechanics was the
orgin of the discrete energy spectra observed in spectroscopic investigations
and empirically described by the Bohr-Sommerfeld model of the atom. This
mystery is easily explained by the Schroedinger Equation (4.16)

j~
∂Ψ (r, t)

∂t
= − ~

2

2m
∆ Ψ (r, t) + V (r) Ψ (r, t) . (4.55)

It allows for solutions
Ψ (r, t) = ψ (r) ejωt, (4.56)

which have a time independent probability density, i.e.

|Ψ (r, t)|2 = |ψ (r)|2 = const., (4.57)

which is the reason for calling these states stationary states. Since the right
side of the Schroedinger Equation is equal to the total energy of the sys-
tem, these states correspond to energy eigenstates of the system with energy
eigenvalues

E = ~ω. (4.58)
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These energy eigenstates ψ (r) are eigen solutions to the stationary or time
independent Schroedinger Equation

− ~
2

2m
∆ ψ (r) + V (r) ψ (r) = E ψ (r) . (4.59)

We get familiar with this equation by considering a few one-dimensional
examples, before we apply it to the Hydrogen atom.

4.4.1 The One-dimensional Infinite Box Potential

A simple example for a quantum mechanical system is an electron that can
freely move in one dimension x but only over a finite distance a. Such a
situation closely describes an electron that is strongly bound to a molecule
with a cigar like shape with length a. The potential describing this situation
is the one-dimensional box potential

V (x) =

½
0, for |x| < a/2
∞, for |x| ≥ a/2

, (4.60)

see Figure 4.3.

Figure 4.3: One dimensional box potential with infinite barriers.

In the interval [−a/2, a/2] the stationary Schroedinger equation is

−~
2 d2ψ (x)

2m dx2
= E ψ (x) . (4.61)
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For |x| ≥ a/2 the wave function must vanish, otherwise the energy eigenvalue
can not be finite, i.e. ψ (x = ±a/2) = 0. This is analogous to the electric
field solutions for the TE-modes for a planar mirror waveguide and we find

ψn (x) =

r
2

a
cos

nπx

a
for n = 1, 3, 5 . . . , (4.62)

ψn (x) =

r
2

a
sin

nπx

a
for n = 2, 4, 6 . . . . (4.63)

The corresponding energy eigenvalues are

En =
n2π2~2

2ma2
. (4.64)

We also find that the stationary states constitute an orthogonal system of
functions

+∞Z
−∞

ψm (x)
∗ ψn (x) dx = δmn. (4.65)

In fact this system is complete. Any function in the interval [−a/2, a/2]
can be expanded in a superposition of the basis functions ψn (x), which is a
Fourier series

f (x) =
∞X
n=0

cnψn (x) (4.66)

with

cm =

Z a/2

−a/2
ψm (x)

∗ f (x) dx, (4.67)

which is a consequence of the orthogonality relation (4.65).

Example: If we approximate the binding potential of a hydrogen atom
by a one-dimensional box potential with a width equal to twice the Bohr
radius a = 2a0 = 10−10m, the energy eigenvalues are En = n2 · 35eV. Clearly,
the spacing of the energy eigenvalues does not conform with what has been
observed experimentaly, compare with section 3.4, however the energy scale
is within an order of magnitude. The ionization potential of the hydrogen
atom is 13.5eV .
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4.4.2 The One-dimensional Harmonic Oscillator

The most important example of a quantum system is the one-dimensional
harmonic oscillator. It is the most basic mechanical and electrical system
and it describes the dynamics of a mode of the radiation field, see Figure 4.4.

Figure 4.4: Elastically bound particle

Mechanically, a harmonic oscillation comes about by the elastic force
obeying Hook’s law

F (x) = −Kx, (4.68)

that pulls back a particle with mass m in its equilibrium position. This force
is conservative and can be derived from a potential by

F (x) = −d V (x)

dx
, (4.69)

with
V (x) =

1

2
Kx2 . (4.70)

Newton’s law results in the classical equation of motion

mẍ = F (x) , (4.71)

or
ẍ+ ω20x = 0, (4.72)

with the oscillation frequency

ω0 =

r
K

m
(4.73)
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The corresponding stationary Schroedinger Equation is

d2ψ (x)

dx2
+
2m

~2

µ
E − 1

2
Kx2

¶
ψ (x) = 0. (4.74)

This equation is well known in mathematical physics and we want to bring
it into standardized form by the scale transformation, i.e. introducing a
normalized distance

ξ = ax, (4.75)

with the scale factor

a =

µ
mK

~2

¶ 1
4

=

r
ω0m

~
=

r
K

~ω0
. (4.76)

In addition we introduce the energy scale factor

γ =
2E

~ω0
. (4.77)

Then the stationary Schroedinger Equation for the harmonic oscillator is

d2ψ (ξ)

dξ2
+
¡
γ − ξ2

¢
ψ (ξ) = 0. (4.78)

It turns out [4][6], that this equation has only solutions that are bounded,
i.e. ψ (ξ → ±∞) = 0, if the normalized energies are

γn = 2n+ 1. (4.79)

And the corresponding eigensolutions are the Hermite Gaussians,

ψn (ξ) = const. Hn (ξ) e−
1
2
ξ2, (4.80)

which we discovered already as solutions of the paraxial wave equation, see
Eqs.(2.298) and (2.299), i.e.

Hn (ξ) = (−1)n eξ
2 dn

dξn
e−ξ

2

(4.81)

H0 (ξ) = 1 , H3 (ξ) = 8 ξ
3 − 12 ξ ,

H1 (ξ) = 2 ξ , H4 (ξ) = 16 ξ
4 − 48 ξ2 + 12 ,

H2 (ξ) = 4 ξ
2 − 2 , H5 (ξ) = 32 ξ

5 − 160 ξ3 + 120 ξ .
(4.82)
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After denormalization and normalization the stationary wave functions are

ψn (x) =

r
a

2n
√
π n!

Hn (ax) e−
1
2
a2x2. (4.83)

Again, we find that the Hermite Gaussians constitute an orthogonal system
of functions such that

+∞Z
−∞

ψm (x)
∗ ψn (x) dx = δmn. (4.84)

Figure 4.5 shows the first six stationary states or energy eigenstates of the
harmonic oscillator.

Figure 4.5: First six stationary states of the harmonic oscillators.

The energy eigenvalues of the stationary states are

En =

µ
n+

1

2

¶
~ω0 . (4.85)

Note, that the energy eigenvalues are equidistant and the difference between
two energy eigenstates follows the findings of Planck. An oscillator has dis-
crete energy levels which differ by energy quanta of size ~ω0, see Figure
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Figure 4.6: Lowest order wavefunctions of the harmonic oscillator and the
corresponding energy eigenvalues [3].

.The only difference is, that the whole energy scale is shifted by the energy
of half a quantum, which is the lowest energy eigenvalue. Thus the minimum
energy, or ground state energy, of a harmonic oscillator is not zero but E0 =
1
2
~ω0.It is obvious, that an oscillator can not have zero energy because its
energy is made up of kinetic and potential energy

E =
p2

2m
+
1

2
Kx2. (4.86)

Since every state has to fulfill Heisenberg’s uncertainty relation ∆p ·∆p ≥ ~
2
,

one can show that the state with minimum energy possible has an energy
E0 =

1
2
~ω0, which is true for the ground state ψ0 (x) according to Eq.(4.83).

The stationary states of the harmonic oscillator correspond to states with
precisely definied energy but completely undefined phase. If we assume a
classical harmonic oscillator with a well defined energy E = 1

2
Kx20. Note,

that during a harmonic oscillation the energy is periodically converted from
potential energy to kinetic energy. Then the oscillator oscillates with a fixed
ampltiude x0

x(t) = x0 cos (ω0t+ ϕ) . (4.87)

If the phase is assumed to be random in the interval [-π, π], one finds for the
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probability density of the position x to be

p (x) =
1

π
p
x20 − x2

.

Figure 4.7 shows this probability density corresponding to an energy eigen-
state ψn (x) with quantum large quantum number n = 10.

Figure 4.7: Probability density |ψ10|2 of the harmonic oscillator containing
exactly 10 energy quanta.

On average, the quantum mechanical probability density agrees with
the classical probability density, which is some form of the correspondence
principle, which says that for large quantum numbers n the wave functions
resume classical properties.

4.5 The Hydrogen Atom

The simplest of all atoms is the Hydrogen atom, which is made up of a
positively charged proton with rest mass mp = 1.6726231 × 10−27 kg, and
a negatively charged electron with rest mass me = 9.1093897 × 10−31 kg.
Therefore, the hydrogen atom is the only atom which consists of only two
particles. This makes an analytical solution of both the classical as well as
the quantum mechanical dynamics of the hydrogen atom possible. All other
atomes are composed of a nucleus and more than one electron. According
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Figure 4.8: Bohr Sommerfeld model of the Hydrogen atom.

to the Bohr-Somerfeld model of hydrogen, the electron circles the proton on
a planetary like orbit, see Figure 4.8.The stationary Schroedinger Equation
for the Hydrogen atom is

∆ψ (r) +
2m0

~2
(E − V (r)) ψ (r) = 0 (4.88)

The potential is a Coulomb potential between the proton and the electron
such that

V (r) = − e20
4π ε0 |r|

(4.89)

and the mass is actually the reduced mass

m0 =
mp · me

mp +me
(4.90)

that arises when we transform the two body problem between electron and
proton into a problem for the center of mass and relative coordinate motion.
Due to the large, but finite, mass of the proton, i.e. the proton mass is 1836
times the electron mass, both bodies circle around a common center of mass.
The center of mass is very close to the position of the proton and the reduced
mass is almost identical to the proton mass. Due to the spherical symmetry
of the potential the use of spherical coordinates is advantageous

∆ψ =
∂2ψ

∂r2
+
2

r

∂ψ

∂r
+
1

r2

∙
1

sinϑ

∂

∂ϑ

µ
sinϑ

∂ψ

∂ϑ

¶
+

1

sin2 ϑ

∂2ψ

∂ ϕ2

¸
(4.91)

We will derive separate equations for the radial and angular coordinates by
assuming trial solutions which are products of functions only depending on
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one of the coordinates r , ϑ , or ϕ

ψ (r, ϑ, ϕ) = R (r) θ (ϑ) φ (ϕ) . (4.92)

Substituting this trial solution into the stationary Schroedinger Eq.(4.91)
and separating variables leads to radial equation

d2R

dr2
+
2

r

dR

dr
+

µ
2m0E

~2
+

m0e
2
0

2πε0~2r
− α

r2

¶
R = 0 , (4.93)

the azimuthal equation

1

sinϑ

d

dϑ

µ
sinϑ

dθ

dϑ

¶
+

µ
α− m2

sin2 ϑ

¶
θ = 0 , (4.94)

and the polar equation
d2φ

dϕ2
+m2φ = 0 , (4.95)

where α and m are constants yet to be determined. The polar equation has
the complex solutions

φ (ϕ) = const. ejmϕ, with m = . . .− 2,−1, 0, 1, 2 . . . (4.96)

because of the symmetry of the problem in the polar angle ϕ, i.e. the wave-
function must be periodic in ϕ with period 2π.

4.5.1 Spherical Harmonics

The azimuthal equation is transformed by the substitution

ξ = cosϑ (4.97)

into ¡
1− ξ2

¢ d2θ
dξ2
− 2ξ dθ

dξ
+

µ
α− m2

1− ξ2

¶
θ = 0 . (4.98)

It turns out, that this equation has only bounded solutions on the interval
ξ [−1, 1], if the constant α is a whole number

α = l (l + 1) with, l = 0, 1, 2 . . . (4.99)
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and
m = −l,−l + 1, . . . − 1, 0, 1 . . . l − 1, l (4.100)

For m = 0, Eq.(4.98) is Legendre’s Differential Equation and the solutions
are the Legendre-Polynomialsm [5]

P0 (ξ) = 1 , P3 (ξ) =
5
2
ξ3 − 3

2
ξ ,

P1 (ξ) = ξ , P4 (ξ) =
35
8
ξ4 − 15

4
ξ2 + 3

8
,

P2 (ξ) =
3
2
ξ2 − 1

2
, P5 (ξ) =

63
8
ξ5 − 35

4
ξ3 + 15

8
ξ .

(4.101)

For m 6= 0, Eq.(4.98) is the associated Legendre’s Differential Equation and
the solutions are the associated Legendre-Polynomials, which can be gener-
ated from the Legendre-Polynomials by

Pm
1 (ξ) =

¡
1− ξ2

¢m/2 dmP1 (ξ)

dξm
. (4.102)

Overall the angular functions can be combined to form the spherical harmon-
ics

Y m
1 (ϑ, ϕ) = (−1)

m

s
(2l + 1)

4π

(l − |m|)!
(l + |m|)! P

m
1 (cosϑ) e

jm ϕ

, (4.103)

which play an important role whenever a partial differential equation that
contains the Laplace operator is solved in spherical coordinates. The spheri-
cal harmonics form a system of orthogonal functions on the full volume angle
4π, i.e. ϑ [0, π] and ϕ [−π, π]

πZ
0

2πZ
0

Y m
l
∗(ϑ, ϕ)Y m0

l0 (ϑ, ϕ) sinϑ dϑ dϕ = δll0 , δmm0 . (4.104)

Therefore, a function of the angular variable (ϑ, ϕ) can be expanded in spher-
ical harmonics. The spherical harmonics with negative azimuthal number -m
can be expressed in terms of those with positive azimuthal number m.

Y −m1 (ϑ, ϕ) = (−1)m (Y m
l (ϑ, ϕ))

∗ . (4.105)

The lowest order spherical harmonics are listed in Table 4.1. Figure 4.9 shows
a cut through the spherical harmonics Y m

1 (ϑ, ϕ) along the meridional plane.
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Y00 (ϑ, ϕ)=
1√
4π
, Y 0

1 (ϑ, ϕ) =
q

3
4π
cosϑ , Y 1

1 (ϑ, ϕ) = −
q

3
8π
sinϑ ejϕ ,

Y02 (ϑ, ϕ)=
q

5
16π
(3 cos2 ϑ− 1) , Y12 (ϑ, ϕ)=-

q
15
8π
sinϑ cosϕ ejϕ, Y

2

2 (ϑ, ϕ)=
q

15
32π
sin2 ϑ e2jϕ,

Y03 (ϑ, ϕ)=
q

7
16π
(5 cos3 ϑ− 3 cosϑ) , Y13 (ϑ, ϕ)=-

q
21
64π
sinϑ (5 cos2 ϑ− 1) ejϕ ,

Y23 (ϑ, ϕ)=
q

105
32π
sin2 ϑ cosϑ ej2ϕ , Y33 (ϑ, ϕ)=-

q
35
64π
sin3 ϑ ej3ϕ .

Table 4.1: Lowest order spherical harmonics

Figure 4.9: Lowest order spherical harmonics Y m
1 (ϑ, ϕ) , along the meridional

plane, i.e. ϕ = 0.
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4.5.2 Radial Wave Functions

Obviously, the spherical harmonics are related to the angular momentum L
of the particle, because after choosing the spherical harmonic with indices
l,m the radial Equation (4.93) is

d2R

dr2
+
2

r

dR

d r
+

µ
2m0E

~2
+

m0e
2
0

2πε0~2r
− l (l + 1)

r2

¶
R = 0. (4.106)

The radial equation has in addition to the 1/r Coulomb potential the cen-
trifugal potential

Erot =
~2

2m0

l (l + 1)

r2
=

L2

2m0r2
, (4.107)

which is the rotation energy of a particle with angular momentum
¯̄̄
L
¯̄̄
=p

l (l + 1)~ and moment of inertia m0r
2. Thus quantum mechanically, the

particle can no longer access arbitrary values for the angular momentum.
The angular momentum can only have values

¯̄̄
L
¯̄̄
=
p
l (l + 1)~ with l =

0, 1, 2, .... For large radii, the radial equation simplifies to

d2R

dr2
+
2m0E

~2
R = 0, (4.108)

which indicates that the radial wave function must decay exponentially for
large radii. Therefore, we rescale the radius accoring to

ρ = Ar (4.109)

with

A2 = −8m0E

~2
, because E < 0, (4.110)

and form the trial solution

R (ρ) = ρsw (ρ) e−ρ/2. (4.111)

Substitution into Eq.(4.109) leads to the following differential equation for
w (ρ)

ρ2
d2w

dρ2
+ ρ [2 (s+ 1)− ρ]

dw

dρ
+ [ρ (λ− s− 1) + s (s+ 1)− l (l + 1)] w = 0,

(4.112)



4.5. THE HYDROGEN ATOM 225

with

λ =
m0e

2

2πε0~2A
=

√
m0e

2

4
√
2πε0~

√
−E

. (4.113)

Evaluation of this differential equation at ρ = 0 leads to

l = s,

and we are left with the much simpler equation

ρ
d2w

dρ2
+ [2 (l + 1)− ρ]

dw

dρ
+ (λ− l − 1) w = 0 . (4.114)

One way to solve this equation is by using a polynomial trial solution.

w (ρ) = b0 + b1ρ+ b2ρ
2 + . . . bpρ

p (4.115)

Substitution into Eq.(4.114) leads to the following recursion relation for the
coefficients

bk+1 =
k + l + 1− λ

(k + 1) (k + 2l + 2)
bk (4.116)

For
λ = p+ l + 1 (4.117)

the recursion breaks off and we obtain a polynomial of finite order. If λ is
not an integer the polynomial does not stop and the corresponding series
converges against a w (ρ) that has an asymptotic behavior w (ρ) ˜eρ, which
leads to a radial function not normalizable. Thus we have the condition

λ ≡ n, with n > l + 1 (4.118)

and in total
w (ρ) = L21+1n−l+1 (ρ) (4.119)

with the Laguerre Polynomials

Lr
s (x) =

sX
q=0

(−1)q (s+ r)!2

(s−q) ! (r + q)!

xq

q!
. (4.120)

The lowest order Laguerre Polynomials are summarized in Table 4.2 The
radial wave function is then a Laguerre function

Fn1(ρ) = ρ1 L21+1n−l=1 (ρ) e−ρ/2, (4.121)
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L10 (x) = 1 , L11 (x) = 4− 2x , L12 (x) = 18− 18x+ 3x2 ,

L13 (x) = 96− 144x+ 48x2 − 4x3 , L20 (x) = 2 ,

L21 (x) = 18− 6x , L22 (x) = 144− 96 + 12x2 ,

L33 (x) = 6 , L31 (x) = 96− 24x ,

L40 (x) = 24 .

Table 4.2: Lowest order Laguerre Polynomials

and they again form an orthogonal system of functions
∞Z
0

Fnl (ρ)Fn0l (ρ) ρ
2dρ =

2n [(n+ l)!]3

(n− l − 1)! δnn0 . (4.122)

We now reverse the normalization of the radial coordinate and fromEqs.(4.109,4.110)
and (4.113) we find

ρ =
2r

na0
(4.123)

with the Bohr radius

a0 =
4πε0~2

e20m0
, (4.124)

which we found already in the Bohr-Sommerfeld model, see section 3.4. The
radial wave function is then

Rn1 (r) = Nnl Fnl (ρ) . (4.125)

And the normalization factor is determined by
∞Z
0

Rnl (r) Rn0l (r) r
2 dr = δn,n0 , (4.126)

which gives

Nnl =
2

n2

s
(n− l − 1)!
[(n+ l)!]3

a
−3/2
0 . (4.127)
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The radial wave functions of the hydrogen atom are listed in Table 4.3 and
plots of the lowest order radial wave functions are presented in Figure 4.10

R10(r) =
2√
a30
e−r/a0, R20(r). =

1

2
√
2
√

a30

³
2− r

a0

´
e−r/2a0

R21(r) =
1

2
√
6
√

a30

r
a0
e−r/2a0

R30(r) =
1

81
√
3
√

a30

³
27− 18 r

a0
+ 2 r

2

a20

´
e−r/3a0

R31(r) =
4

81
√
6
√

a30

³
6− r

a0

´
r
a0
e−r/3a0 , R32(r) =

4

81
√
30
√

a30

r2

a20
e−r/3a0

Table 4.3: Lowest order radial wavefunctions Rn,l(r).

Figure 4.10: Radial wavefunctions Rnl(r) of the hydrogen atom.
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4.5.3 Stationary States of Hydrogen

In total we found the stationary states, or the energy eigenfunctions, of the
hydrogen atom. Those are

ψnlm (r, ϑ, ϕ) = Rnl (r) Y m
l (ϑ, ϕ) . (4.128)

The lower order wave functions are listed in Table 4.4 and plots of the re-
sulting probability densities of the lowest order energy eigenstates of the
hydrogen atom are shown in Figure 4.11

ψ100(r, ϑ, ϕ) =
1√

π
√

a30
e−r/a0

ψ200(r, ϑ, ϕ) =
1

4
√
2π
√

a30

³
2− r

a0

´
e−r/2a0

ψ210(r, ϑ, ϕ) =
1

4
√
2π
√

a30

r
a0
e−r/2a0 cosϑ

ψ21±1(r, ϑ, ϕ) =
1

8
√
π
√

a30

r
a0
e−r/2a0 sinϑe±jϕ,

ψ300(r, ϑ, ϕ) =
1

81
√
3π
√

a30

³
27− 18 r

a0
+ 2 r

2

a20

´
e−r/3a0

Table 4.4: Lowest order hydrogen wavefunctions ψn,l,m(r, ϑ, ϕ).

4.5.4 Energy Spectrum of Hydrogen

We haven’t yet discussed the energy eigenspectrum of hydrogen. From
Eqs.(4.113) and (4.118) we find this to be

E = − m0e
4

8 ε20h
2

1

n2
, (4.129)

which also agrees with the energy spectrum of the Bohr-Sommerfeld model,
see section 3.4. The lowest energy eigenstate is

E1 = −
m0e

4

8 ε20h
2
= −13.7eV. (4.130)
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Figure 4.11: Probability densities of the lowest order hydrogen wavefunctions.
(The density is presented along the meridial plane).
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ψ310(r, ϑ, ϕ) =
1

81
√
π
√

a30

³
6− r

a0

´
e−r/3a0 cosϑ

ψ31±1(r, ϑ, ϕ) =
1

81
√
π
√

a30

³
6− r

a0

´
r
a0
e−r/3a0 sinϑe±jϕ

ψ320(r, ϑ, ϕ) =
1

81
√
6π
√

a30

r2

a20
e−r/3a0 (3 cos2 ϑ− 1)

ψ32±1(r, ϑ, ϕ) =
1

81
√
π
√

a30

r2

a20
e−r/3a0 sinϑ cosϑe±jϕ,

ψ32±2(r, ϑ, ϕ) =
1

162
√
3π
√

a30

r2

a20
e−r/3a0 sin2 e±2jϕ

Table 4.5: Lowest order hydrogen wavefunctions ψn,l,m(r, ϑ, ϕ).continued.

The energy eigenvalues constitute a sequence that converges for large n→∞
towards 0, which corresponds to removing the electron from the atom. The
energy to do so is E∞1 −E1 = 13.7eV.

Figure 4.12 shows the energy levels and the term diagram of the hydrogen
atom and how the Lyman, Balmer, Paschen, Brackett and Pfund series arise
from it. Each wavefunction is uniquely described by the set of quantum
numbers (n,l,m). The first quantum number n specifies the energy eigen
value En. As we will show in problem sets, the second quantum number
l determines the eigenvalue of the squared angular momentum operator L2

with eigenvalues

L2 ψnlm (r, ϑ, ϕ) = l(l + 1)~2 ψnlm (r, ϑ, ϕ) , (4.131)

and the third quantum number m detemines the eigenvalue of the operator
describing the z-component of the angular momentum operator

Lz ψnlm (r, ϑ, ϕ) = m~ ψnlm (r, ϑ, ϕ) . (4.132)
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Figure 4.12: Energy levels and term diagram for the hydrogen atom [3]

In fact, the description of the electron wave functions is not yet complete,
because the electron has an internal degree of freedom, that is its spin. The
spin is an internal angular momentum of the electron that carries a magnetic
moment with it. The Stern-Gerlach experiment shows that this degree of
freedom has two eigenstates, i.e. the spin can be oriented parallel or anti-
parallel to the direction of an applied magnetic field. The values of the
internal angluar mometum with respect to the quantization axis defined by
an external field, that shall be chosen along the z-axis, are s = ±~/2. Thus
the energy eigenstates of an electron in hydrogen are uniquely characterized
by four quantum numbers, n, l, m, and s. As Figure 4.12 shows, the energy

spectrum is degenerate, i.e. for n > 1, there exist to each energy eigenvalue
several eigenfunctions, that are only uniquely characterized by the additional
quantum numbers for angular momentum and spin. This is called degeneracy
because there exist to a given energy eigenvalue several states.
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4.6 Wave Mechanics

In this section, we generalize the concepts we have learned in the previous
sections. The goal here is to give a broader description of quantummechanics
in terms of wave functions that are solutions to the Schroedinger Equation.
In classical mechanics the particle state is determined by its position

and momentum and the state evolution is determined by Newton’s law. In
quantum mechanics the particle state is completely described by its wave
function and the state evolution is determined by the Schroedinger equation.
The wave function as a complete description of the particle enables us to

compute expected values of physical quantities of the particle when a cor-
responding measurement is performed. The measurement results are real
numbers, like the energy, o4 position or momentum the particle has in this
state. The physically measureable quantities are called observables. In clas-
sical mechanics these observables or real variables like x for position, p for
momentum or functions thereof, like the energy, which is called the Hamil-
tonian H(p, x) = p2

2m
+ V (x) in classical mechanics. For simplicity, we state

the results only for one-dimensional systems but it is straight forward to ex-
tend these results to multi-dimensional sytems. In quantum mechanics these
observables become operators:

x : position operator (4.133)

p =
~
j
∂

∂x
: momentum operator (4.134)

H(p, x) = − ~
2

2m

∂2

∂x2
+ V (x) : Hamiltonian operator (4.135)

If we carry out measurements of these observables, the result is a real number
in each measurement and after many measurements on identical systems we
can make a statistics of these measurements and the statistics is completely
described by the moments of the observable.

4.6.1 Position Statistics

The statistical interpretation of quantum mechanics enables us to compute
the expected value of the position operator or any of its moments according
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to

hxi =

Z ∞

−∞
Ψ∗ (x, t) x Ψ (x, t) dx (4.136)

hxmi =

Z ∞

−∞
Ψ∗ (x, t) xm Ψ (x, t) dx (4.137)

The expectation value of functions of operators can always be evaluated by
defining the operator by its Taylor expansion

hf(x)i =

Z ∞

−∞
Ψ∗ (x, t) f(x) Ψ (x, t) dx (4.138)

=

* ∞X
n=0

1

n!
f (n)(0) xn

+

=
∞X
n=0

1

n!
f (n)(0)

¿Z ∞

−∞
Ψ∗ (x, t) xn Ψ (x, t) dx

À

4.6.2 Momentum Statistics

The momentum statistics is then

hpi =
Z ∞

−∞
Ψ∗ (x, t)

~
j
∂

∂x
Ψ (x, t) dx (4.139)

which can be written in terms of the wave function in the wave number space,
which we define now for symmetry reasons as the Fourier transform of the
wave function where the 2π is symmetrically distributed between Fourier and
inverse Fourier transform

φ (k, t) =
1√
2π

Z ∞

−∞
Ψ (x, t) e−jkx dx, (4.140)

Ψ (x, t) =
1√
2π

Z ∞

−∞
φ (k, t) ejkx dk. (4.141)

Using the differentiation theorem of the Fourier transform and the generalized
Parseval relationZ ∞

−∞
φ∗1 (k) φ2 (k) dk =

Z ∞

−∞
Ψ∗1 (x)Ψ2 (x) dx (4.142)
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we find

hpi =

Z ∞

−∞
φ∗ (k, t) ~k φ (k, t) dk (4.143)

=

Z ∞

−∞
~k |φ (k, t)|2 dk. (4.144)

The introduction of the symmetrically defined expectation value of an oper-
ator according Eq.(4.136), where x can stand for any operator can be carried
out using the wave function in the position space or the wave number space
using the corresponding represenation of the wave function and of the oper-
ator.

4.6.3 Energy Statistics

The analysis for the measurement of position or moment carries over to every
observable in an analogous way. Thus the expectation value of the energy is

hH(x, p)i =

Z ∞

−∞
Ψ∗ (x, t) H(x, p) Ψ (x, t) dx (4.145)

=

Z ∞

−∞
Ψ∗ (x, t)

µ
− 1

2m~2
∂2

∂x2
+ V (x)

¶
Ψ (x, t) dx.(4.146)

If the system is in an energy eigenstate, i.e.

Ψ (x, t) = ψn (x) ejωnt (4.147)

with
H(x, p) ψn (x) = En ψn (x) , (4.148)

we obtain

hH(x, p)i =
Z ∞

−∞
Ψ∗ (x, t) En Ψ (x, t) dx = En. (4.149)

If the system is in a superposition of energy eigenstates

Ψ (x, t) =
∞X
n=0

cnψn(x)e
jωnt. (4.150)

we obtain

hH(x, p)i =
∞X
n=0

En |cn|2 . (4.151)
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4.6.4 Arbitrary Observable

There may also occur observables that are not simple to translate from the
classical to the quantum domain, such as the product

pcl · xcl = xcl · pcl (4.152)

Classically it does not matter which variable comes first. However, if we
tranfer this expression into quantum mechanics, the corresponding operator
depends on the odering, for example

pqm · xqmΨ (x, t) =
~
j
∂

∂x
(xΨ (x, t)) = (4.153)

=
~
j
Ψ (x, t) +

~
j
x
∂

∂x
Ψ (x, t) , (4.154)

=

µ
~
j
+ xqm · pqm

¶
Ψ (x, t) . (4.155)

The decision of which expression represents the correct quantum mechanical
operator or eventually even a linear combination of the possible expressions,
has to be based on a close examination of the actual measurement apparatus
that would measure the corresponding observable. Finally, the expression
also has to deliver results that are in agreement with experimental findings.
If we have an operator that is a function of x and p and we have decided

on a unique expression in terms of a power expansion in x and p

g(x, p)→ gop(x,
~
j
∂

∂x
) (4.156)

then we can compute its expected value either in the space domain or the
wave number domain

hgopi =

Z ∞

−∞
Ψ∗ (x, t) gop(x,

~
j
∂

∂x
) Ψ (x, t) dx (4.157)

=

Z ∞

−∞
φ∗ (k, t) gop(j

∂

∂k
, ~k) φ (k, t) dk (4.158)

That is this operator can be represented either in real space or in k-space as
gop(x,

~
j
∂
∂x
) or gop(j ∂

∂k
, ~k).
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4.6.5 Eigenfunctions and Eigenvalues of Operators

A differential operator has in general eigenfunctions and corresponding eigen-
values

gop(x,
~
j
∂

∂x
) ψn (x) = gnψn (x) , (4.159)

where gn is the eigenvalue to the eigenfunction ψn (x) . An example for a
differential operator is the Hamiltonian operator describing a partical moving
in a potential

Hop = −
1

2m~2
∂2

∂x2
+ V (x) (4.160)

the corresponding eigenvalue equation is the stationary Schroedinger Equa-
tion

Hopψn (x) = Enψn (x) . (4.161)

Thus the energy levels of a quantum system are the eigenvalues of the corre-
sponding Hamiltonian operator.
The operator for whichZ

ψ∗n (x) (Hopψm (x)) dx =

Z
(Hopψn (x))

∗ ψm (x) dx, (4.162)

for arbitrary wave functions ψn and ψm is called a hermitian operation. From
this equation we find immediately that the expected values of a hermitian
operator are real, which also has the consequence that the eigenvalues of
hermitian operators are real. This is important since operators that represent
observables must have real expected values and real eigenvalues since these
are results of physical measurements, which are real. Thus observables are
represented by hermitian operators. This is easy to proove. Let’s assume we
have found two eigenfunctions and the corresponding eigen values

gopψm = gmψm, (4.163)

gopψn = gnψn. (4.164)

Then Z
ψ∗ngopψm dx = gm

Z
ψ∗nψm. (4.165)
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By taking advantage of the fact that the operator is hermitian we can also
write Z

ψ∗ngopψm dx =

Z
(gopψn)

∗ ψm dx = g∗n

Z
ψ∗nψm dx (4.166)

The right sides of Eqs.(4.165) and (4.166) must be equal

(gm − g∗n)

Z
ψ∗nψm dx = 0 (4.167)

If n = m the integral can not vanish and Eq.(4.167) enforces gn = g∗n, i.e.
the corresponding eigenvalues are real. If n 6= m and the corresponding
eigenvalues are not degenerate, i.e. different eigenfunctions have different
eigenvalues, then Eq.(4.167) enforces that the eigenfunctions are orthogonal
to each other Z

ψ∗nψm dx = 0, for n 6= m. (4.168)

Thus, if there is no degneracy, the eigenfunctions of a hermitian operator are
orthogonal to each other. If there is degeneracy, one can always choose an or-
thogonal set of eigenfunctions. If the eigenfunctions are properly normalizedR
ψ∗nψn dx = 1, then the eigenfunctions build an orthonormal systemZ

ψ∗nψm dx = δnm, (4.169)

and are complete, i.e. any arbitrary function f (x) can be expressed as a
superposition of the orthonormal basis functions ψn (x)

f (x) =
∞X
n=0

cnψn (x) . (4.170)

Thus we can freely change the basis in which we describe a certain physical
problem. To account fully for this fact, we no longer wish to use wave me-
chanics, ie. express the wave function as a function in position space or in
k-space. Instead we will utilize a vector in an abstract function space, i.e. a
Hilbert space. In this way, we can formulate a physical problem, without us-
ing a fixed representation for the state of the system (wave function) and the
corresponding operator representations. This description enables us to make
full use of the mathematical structure of Hilbert spaces and the algebraic
properties of operators.
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Chapter 5

The Dirac Formalism and
Hilbert Spaces

In the last chapter we introduced quantum mechanics using wave functions
defined in position space. We identified the Fourier transform of the wave
function in position space as a wave function in the wave vector or momen-
tum space. Expectation values of operators that represent observables of
the system can be computed using either representation of the wavefunc-
tion. Obviously, the physics must be independent whether represented in
position or wave number space. P.A.M. Dirac was the first to introduce a
representation-free notation for the quantum mechanical state of the system
and operators representing physical observables. He realized that quantum
mechanical expectation values could be rewritten. For example the expected
value of the Hamiltonian can be expressed as

Z
ψ∗ (x) Hop ψ (x) dx = hψ|Hop |ψi , (5.1)

= hψ| ϕi , (5.2)

with

|ϕi = Hop |ψi . (5.3)

Here, |ψi and |ϕi are vectors in a Hilbert-Space, which is yet to be defined.
For example, complex functions of one variable, ψ(x), that are square inte-
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grable, i.e. Z
ψ∗ (x)ψ (x) dx <∞, (5.4)

form the Hilbert-Space of square integrable functions denoted as L2. In Dirac
notation this is Z

ψ∗ (x)ψ (x) dx = hψ| ψi . (5.5)

Orthogonality relations can be rewritten asZ
ψ∗m (x)ψn (x) dx = hψm| ψni = δmn. (5.6)

As see above expressions look like a bracket he called the vector |ψni a ket-
vector and hψm| a bra-vector.

5.1 Hilbert Space

A Hilbert Space is a linear vector space, i.e. if there are two elements |ϕi
and |ψi in this space the sum of the elements must also be an element of the
vector space

|ϕi+ |ψi = |ϕ+ ψi . (5.7)

The sum of two elements is commutative and associative

Commutative : |ϕi+ |ψi = |ψi+ |ϕi , (5.8)

Associative : |ϕi+ |ψ + χi = |ϕ+ ψi+ |χi . (5.9)

The product of the vector with a complex quantity c is again a vector of the
Hilbert-Space

c |ϕi ≡ |cϕi . (5.10)

The product between vectors and numbers is distributive

Distributive : c |ϕ+ ψi = c |ϕi+ c |ψi . (5.11)

In short every linear combination of vectors in a Hilbert space is again a
vector in the Hilbert space.
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5.1.1 Scalar Product and Norm

There is a bilinear form defined by two elments of the Hilbert Space |ϕi and
|ψi , which is called a scalar product resulting in a complex number

hϕ| ψi = a . (5.12)

Ths scalar product obtained by exchanging the role of |ϕi and |ψi results in
the complex conjugate number

hψ |ϕi = hϕ |ψi ∗= a∗ . (5.13)

The scalar product is distributive

Distributive : hϕ |ψ1 + ψ2i = hϕ |ψ1i + hϕ |ψ2i . (5.14)

hϕ |cψi = c hϕ |ψi . (5.15)

And from Eq.(5.13) follows

hcψ| ϕi = hϕ| cψi∗ = c∗ hψ| ϕi . (5.16)

Thus if the complex number is pulled out from a bra-vector it becomes its
complex conjugate. The bra- and ket-vectors are hermitian, or adjoint, to
each other. The adjoint vector is denoted by the symbol+

(|ϕi)+ = hϕ| , (5.17)

(hϕ|)+ = |ϕi . (5.18)

The vector spaces of bra- and ket-vectors are dual to each other. To transform
an arbitrary expression into its adjoint, one has to replace all operators and
vectors by the adjoint operator or vector and in addition the order of the
elements must be reversed. For example

(c|ϕi)+ = c∗ hϕ| , (5.19)

hϕ| ψi+ = hϕ| ψi∗ = hψ| ϕi . (5.20)

This equation demands that a scalar product of a vector with itself is always
real. Here, we even demand that it is positive

hϕ |ϕi > 0, real . (5.21)
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The equal sign in Eq.(5.21) is only fulfilled for the null vector, which is defined
by

|ϕi+ 0 = |ϕi . (5.22)

Note, we denote the null vector not with the symbol |0i but rather with the
scalar 0. Because the symbol |0i is reserved for the ground state of a system.
If the scalar product of a vector with itself is always positive, Eq.(5.21),

then one can derive from the scalar product the norm of a vector according
to

kϕk =
p
hϕ |ϕi . (5.23)

For vectors that are orthogonal to each other we have

hϕ |ψi = 0 (5.24)

without having one of them be the null vector.

5.1.2 Vector Bases

The dimensions of a Hilbert space are countable, i.e. each dimension can
be assigned a whole number and thereby all dimensions are referenced in a
unique way with 1, 2, 3, .... A vector space that is a Hilbert space has the
following additional properties.

Completeness:

If there is a sequence of vectors in a Hilbert space |ϕ1i , |ϕ2i , |ϕ3i , |ϕ4i , ...
that fulfills Cauchy’s convergence criterion then the limit vector |ϕi is also
an element of the Hilbert space. Cauchy’s convergence criterion states that
if kϕn − ϕmk < ε, for some n,m > N(ε) the sequence converges uniformly
[2].

Separability:

The Hilbert space is separable. This indicates that for every element |ϕi in
the Hilbert space there is a sequence with |ϕi as the limit vector.
Every vector in the Hilbert space can be decomposed into linear indepen-

dent basis vectors |ψni . The number of basis vectors can be infinite

|ϕi =
X
n

cn |ψni . (5.25)
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The components cn of the vector |ϕi with respect to the basis |ψni are com-
plex numbers denoted with index n. It is advantageous to orthonormalize
the basis vectors

hψn| ψmi = δnm . (5.26)

The components of the vector |ϕi can then be determined easily by

hψm| ϕi =
X
n

cn hψm| ψni =
X
n

cnδmn, (5.27)

or
cm = hψm| ϕi , (5.28)

This leads to
|ϕi =

X
n

|ψni hψn| ϕi . (5.29)

5.2 Linear Operators in Hilbert Spaces

5.2.1 Properties of Linear Operators

An operator L is defined as a mapping of a vector |ϕi onto another vector
|ψi of the Hilbert space

L |ϕi = |ψi . (5.30)

A linear operator L has the property that it maps a linear combination
of input vectors to the linear combination of the correponding maps

L (a |ϕ1i+ b |ϕ2i) = (a L |ϕ1i+ b L |ϕ2i)
= a |ψ1i+ b |ψ2i , for a, b ∈ C. (5.31)

The sum of two linear operators is defined as

(L+M) |ϕi = L |ϕi+M |ϕi . (5.32)

And the product of two operators is defined as

L M |ϕi = L (M |ϕi) . (5.33)

The null element and 1-element of the operators is denoted as 0, and 1.
Often we will not bold face these operators, especially in products, where a
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scalar has the same meaning. The two operators are defined by their action
on arbitrary vectors of the Hilbert space

0 |ϕi = 0, ∀ |ϕi , (5.34)

1 |ϕi = |ϕi , ∀ |ϕi (5.35)

In generally, the multiplication of two operators is not commutative

L M |ϕi 6= ML |ϕi , ∀ |ϕi , (5.36)

or in short
L M 6= M L. (5.37)

The expression

[L,M] = L M − M L (5.38)

is therefore called the commutator between L and M. If [L,M] = 0, the
operators commute. The following rules for commutators apply:

[L,M] = − [M,L] , (5.39)

[L,L] = 0 , (5.40)

[L,1] = 0 , (5.41)£
L,L−1

¤
= 0 , (5.42)

[L,aM] = a [L,M] , (5.43)

[L1 + L2,M] = [L1,M] + [L2,M] , (5.44)

[L,M] = − [M,L] (5.45)

[L1L2,M] = [L1,M] L2 + L1 [L2,M] , (5.46)

[M,L1L2] = [M,L1] L2 + L1 [M,L2] . (5.47)

Often the anticommutator is also used. It is defined as

[L,M]+ = L M + M L . (5.48)

If [L,M]+ = 0, the operators are called anti-commuting.
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5.2.2 The Dyadic Product

Two vectors in the Hilbert space can not only be used to build a scalar
product but rather what is called a dyadic product, which is an operator

|αi hβ| . (5.49)

The dyadic product is the formal product between a ket- and a bra-vector.
If applied to a vector, it projects the vector onto the state |βi and generates
a new vector in parallel to |αi with a magnitude equal to the projection

|αi hβ|ψi = hβ|ψi |αi . (5.50)

As we have seen from Eq.(5.29), if |ψni built a complete orthonormal basis,
then

|ϕi =
X
n

|ψni hψn| ϕi , ∀ |ϕi , . (5.51)

Eq.(5.35) implies

1 =
X
n

|ψni hψn| . (5.52)

When applied to an operator from the left and right side

1 L 1 =
X
m

|ψmi hψm|
ÃX

n

L |ψni hψn|
!

(5.53)

=
X
m

X
n

Lmn |ψmi hψn|

with the matrix elements

Lmn = hψm|L |ψni . (5.54)

The matrix elments Lmn represent the operator in the chosen base |ψni .
Once we choose a base and represent vectors and operators in term of this
base, the components of the vector and the operator can be collected in a
column vector and a matrix. The table below shows a comparison between a
representation based on Hilbert space vectors and operators in term of vectors
and matrices in an euclidian vector space. Initially matrix mechanics was
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developed by Heisenberg independently from Schroedingers wave mechanics.
The Dirac representation in terms of bra- and ket-vectors unifies them and
shows that both forms are isomorph

.

Ket-vector Column vector

|ϕai =
X
n

an |ψni

⎛⎜⎝ a1
a2
...

⎞⎟⎠
Bra-vector Row vector

hϕ| =
X
n

a∗n hψn|
¡
a∗1 a∗2 · · ·

¢
Inner product Scalar product

hϕa |ϕbi =
X
m

X
n

a∗mbn hψm |ψni
¡
a∗1 a∗2 · · ·

¢
·

⎛⎜⎝ b1
b2
...

⎞⎟⎠
=
X
n

a∗nbn =a∗1b1 + a∗2b2 + · · ·

Operator Matrix

L =
X
m,n

Lmn |ψmi hψn|

⎛⎜⎝ L11 L12 · · ·
L21 L22 · · ·
...

...
. . .

⎞⎟⎠
Dyadic Product

|ϕai hϕb| =
X
m,n

amb
∗
n |ψmi hψn|

⎛⎜⎝ a1
a2
...

⎞⎟⎠ · ¡ b∗1 b∗2 · · ·
¢
=

=

⎛⎜⎝ a1b
∗
1 a1b

∗
2 · · ·

a2b
∗
1 a2b

∗
2 · · ·

...
...

. . .

⎞⎟⎠
5.2.3 Special Linear Operators

5.2.4 Inverse Operators

The operator inverse to a given operator L is denoted as L−1

∀ |ϕi , |ψi = L |ϕi =⇒ |ϕi = L−1 |ψi , (5.55)
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which leads to

LL−1 = 1 (5.56)

The inverse of a product is the product of the inverse in inverse order

(ML)−1 = L−1M−1 (5.57)

5.2.5 Adjoint or Hermitian Conjugate Operators

The adjoint (hermitian conjugate) operator L+ is defined by

hϕ|L+ |ψi = (hψ|L |ϕi)∗ = hψ|L |ϕi∗ , (5.58)

here |ϕi and |ψi are arbitrary vectors in a Hilbert space. Note, that if the
adjoint of an expression is formed, each component gets conjugated and the
order is reversed. For example

(L |ϕi)+ = hϕ|L+, (5.59)¡
L+ |ϕi

¢+
= hϕ|L (5.60)

If

|Lϕi = L |ϕi . (5.61)

there is

hLϕ| = hϕ|L+ (5.62)

and
hψ|L |ϕi = hψ|Lϕi =


L+ψ

¯̄
ϕ
®

(5.63)

The matrix elements of the adjoint operator are

L+mn = hψm|L+ |ψni = hψn|L |ψmi = L∗nm (5.64)

The following rules apply to adjoint operators¡
L+
¢+
= L, (5.65)

(aL)+ = a∗L+, (5.66)

(L+M)+ = L++M+, (5.67)

(L M)+ =M+ L+. (5.68)
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5.2.6 Hermitian Operators

If the adjoint operator L+ is identical to the operator itself, then we call the
operator hermitian

L = L+. (5.69)

Hermitian operators have real expected values. Observables are represented
by hermitian operators.

5.2.7 Unitary Operators

If the inverse of an operator U is the adjoint operator

U−1= U+, (5.70)

then this operator is called a unitary operator and

U+U = UU+= 1. (5.71)

If the operator U is unitary and H is a hermitian operator, then the product
UHU−1 is also a hermitian operator.¡

UHU−1
¢+
=
¡
U−1

¢+
H+U+ = UHU−1. (5.72)

5.2.8 Projection Operators

The dyadic product
Pn = |ψni hψn| , (5.73)

is a projection operator Pn that projects a given state |ϕi onto the unit
vector |ψni

Pn |ϕi = |ψni hψn|ϕi . (5.74)

If |ϕi is represented in the orthonormal base |ψni

|ϕi =
X
n

cn |ψni , (5.75)

we obtain
Pn |ϕi = cn |ψni . (5.76)
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By construction, projection operators are hermitian operators. Besides op-
erators that project on vectors, there are also operators that project on sub-
spaces of the Hilbert space

PU =
X
U

|ψni hψn| . (5.77)

Here, the orthonormal vectors |ψni span the sub-space U . Projection opera-
tors are idempotent

Pk
n = Pn, for k > 1. (5.78)

5.3 Eigenvalues of Operators

In chapter 4, we studied the eigenvalue problem of differential operators.
Here, we want to formulate the eigenvalue problem of operators in a Hilbert
space. An operator L in a Hilbert space with eigenvectors |ψni fulfills the
equations

L |ψni = Ln |ψni , (5.79)

with eigenvalues Ln. If there exist several different eigenvectors to the same
eigenvalue Ln, this eigenvalue is called degenerate. For example, the energy
eigenfunctions of the hydrogen atom are degenerate with respect to the in-
dices l and m. The set of all eigenvalues is called the eigenvalue spectrum
of the operator L. As shown earlier the eigenvalues of hermitian operators
are real and the eigenvectors to different eigenvalues are orthogonal to each
other, because

hψm|L |ψni = Ln hψm |ψni = Lm hψm |ψni , (5.80)

or
(Ln − Lm) hψm |ψni = 0. (5.81)

If the eigenvectors of the operator L form a complete base of the Hilbert
space, the operator L is represented in this base by a diagonal matrix

Lmn = hψm|L |ψni = Ln hψm |ψni = Ln δmn (5.82)

The operator can then be written in its spectral representation

L =
X
n

Ln |ψni hψn| =
X
n

LnPn . (5.83)
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5.4 Eigenvectors of Commuting Operators

Two operators, A and B, that commute with each other have a common set
of eigenvectors. To proove this theorem, we assume that the eigenvalue spec-
trum of the operator A is non degenerate. The eigenvectors and eigenvalues
of operator A are |ψni and An, respectively

A |ψni = An |ψni . (5.84)

Using
[A,B] = 0, (5.85)

we find

hψm|AB−BA |ψni = 0 (5.86)

hψm|A
ÃX

n

|ψni hψn|
!
B−BA |ψni = 0

(Am −An) hψm|B |ψni = (Am −An)Bmn = 0 .

Since the eigenvalues are assumed to be not degenerate, i.e. Am 6= An, the
matrix Bmn must be diagonal, which means that the vector |ψni has also to
be an eigenvector of operator B. If the eigenvalues are degenerate, one can
always choose, in the sub-space that belongs to the degenerate eigenvalue, a
base that are also eigenvectors of B. The operator B thus eventually has no
degeneracies in this sub-space and therefore, the eigenvalues of B may help
to uniquely characterize the set of joint eigenvectors.
Also the reverse is true. If two operators have a joint system of eigenvec-

tors, they commute. This is easy to see from the spectral representation of
both operators.
Example: We define the parity operator Px which, when applied to a

wave function of a particle in one dimension ψ(x), changes the sign of the
position x

Pxψ(x) = ψ(−x). (5.87)

The Hamiltonian of a particle in an inversion symmetric potential V (x), i.e.

V (x) = V (−x), (5.88)

commutes with the parity operator. Then the eigenfunctions of the Hamilto-
nian are also eigenfunctions of the parity operator. The eigenfunctions of the
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parity operator are the symmetric or antisymmetric functions with eigenval-
ues 1 and −1, respectively. Therefore, the eigenfunctions of a Hamiltonian
with symmetric potential has symmetric and antisymmetric eigenfunctions,
see box potential and harmonic oscillator potential.

5.5 Complete System of Commuting Opera-
tors

In the case of the hydrogen atom, we had to use three qunatum numbers
n, l, and m to characterize the energy eigenfunctions completely. Without
proof, the indices l and m characterize the eigenvalues of the square of the
angular momentum operator L2, and of the z-component of the angular mo-
ment Lz with eigenvalues l (l + 1) ~2 and m~, respectively. One can show,
that the Hamilton operator of the hydrogen atom, the square of the angular
momentum operator and the z-component of the angular moment operator
commute with each other and build a complete system of commuting op-
erators (CSCO), whose eigenvalues enable a unique characterization of the
energy eigenstates of the hydrogen atom.

5.6 Product Space

Very often in quantum mechanics one deals with interacting systems, for
example system A and system B. The state space of each isolated system
is Hilbert space HA and Hilbert space HB spanned by a complete base |ψni
A and |ψni B, respectively. LA and MB are operators on each of the Hilber
spaces of the individual systems. The Hilbert space of the total system is
the product space

H = HA ⊗HB. (5.89)

The vectors in this Hilbert space are given by the direct product of the
individual vectors and one could choose as a base in the product space

|χnmi = |ψniA ⊗ |ψmiB = |ψniA |ψmiB . (5.90)

Operators that only act on system A can be extended to operate on the
product space by
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L = LA ⊗ 1B. (5.91)

or similar for operators acting on system B

M = 1A ⊗MB. (5.92)

The product of both operators is then

LM = LA ⊗MB. (5.93)

An operator in this product space acts on a vector in the following way

LM |χnmi = L |ψniA ⊗M |ψmiB . (5.94)

Since, the vecotrs |ψniA and |ψmiB build a complete base for system A and
B, respectively, the product vectors in Eq.(5.90) build a complete base for
the interacting system and each state can be written in terms of this base

|χi =
X
m,n

amn |χnmi =
X
m,n

amn |ψniA ⊗ |ψmiB . (5.95)

5.7 Quantum Dynamics

In chapter 4, we derived the Schroedinger Equation in the x-represenation.
The stationary Schroedinger Equation was written as an eigenvalue problem
to the Hamiltonian operator, which was then a differential operator. With
the Dirac formulation we can rewrite these equations without refering to a
special representation.

5.7.1 Schroedinger Equation

In the Dirac notation the Schroedinger Equation is

j~
∂ |Ψ (t)i

∂t
= H |Ψ (t)i . (5.96)

H is the Hamiltonian operator; it determines the dynamics of the quantum
system.

H =
p̃2

2m
+V(x̃). (5.97)
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The Hamiltonian operator is the generator of motion in a quantum system.
Here p̃ and x̃ and functions of them are operators in the Hilbert space. |Ψ (t)i
is the Hilbert space vector describing fully the system’s quantum state at time
t. When looking for states that have a harmonic temporal behaviour

|Ψ (t)i = ejEnt/~ |ψni , (5.98)

we obtain the stationary Schroedinger Equation

H |ψni = En |ψni , (5.99)

that determines the energy eigenstates of the system. If the |ψni build a
complete basis of the Hilbert space, H, the system is dynamically evolving,
the most general time dependent solution of the Schroedinger Equation is
then a superposition of all energy eigenstates

|Ψ (t)i =
X
n

an ejEnt/~ |ψni . (5.100)

5.7.2 Schroedinger Equation in x-representation

We can return to wave mechanics by rewriting the abstract Schroedinger
Equation in the eigenbase |xi of the position operator. For simplicity in
notation, we only consider the one dimensional case and define that there
exists the following eigenvectors

x |x0i = x0 |x0i , (5.101)

with the orthogonality relation

hx |x0i = δ(x− x0). (5.102)

Note, since the position operator has a continuous spectrum of eigenvalues
the orthogonality relation is a dirac delta function rather than a delta-symbol.
The completness relation using this base is expressed in the unity operator

1 =

Z
|x0i hx0| dx0 , (5.103)

rather then a sum as in Eq.(5.52). Inserting this unity operator in the
Schroedinger Equation (5.96) and projecting from the left with hx|, we obtain

j ~
∂

∂t
hx |Ψ (t)i = hx| H

Z
|x0i hx0|Ψ (t) i dx0. (5.104)
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The expression hx |Ψ (t)i is the probability amplitude that a position mea-
surement on the system in state |Ψ (t)i yields the value x, which is precisely
the meaning of the wave function

Ψ (x, t) = hx |Ψ (t)i (5.105)

in chapter 4. Using the eigenvalue property of the states and the orthogo-
nality relations we obtain from Eq.(5.104)

j ~
∂

∂t
Ψ (x, t) = H(x, p =

~
j
∂

∂x
)Ψ (x, t) . (5.106)

5.7.3 Canonical Quantization

Thus the dynamics of a quantum system is fully determined by its Hamil-
tonian operator. The Hamiltonian operator is usually derived from the
classical Hamilton function according to the Hamilton-Jacobi formulation of
Classical Mechanics [3]. The classical Hamilton function H({qi} , {pi}) is a
function of the position coordinates of a particle xi or generalized coordinates
qi and the corresponding momentum coordinates pi. The classical equations
of motion are found by

q̇i(t) =
∂

∂pi
H({qi} , {pi}) , (5.107)

ṗi(t) = − ∂

∂qi
H({qi} , {pi}) . (5.108)

In quantum mechanics the Hamiltonian function and the position and
momentum coordinates become operators and quantization is achieved by
imposing on position and momentum operators that are related to the same
degree of freedom, for example the x-coordinate of a particle and the associate
momentum px, canonical commutation relations

H({qi} , {pi}) ⇒ H({qi} , {pi}), (5.109)

[qi,pj] = j ~δij. (5.110)

Imposing this commutation relation implies that position and momentum
related to one degree of freedom can not be measured simultaneously with
arbitrary precision and Heisenberg’s uncertainty relation applies to the pos-
sible states the system can take on.
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5.7.4 Schroedinger Picture

In the Schroedinger picture the quantum mechanical state of the system is
evolving with time. If there is no explicit time dependence in the operators
then the operators stay time independent. The Schroedinger Equation (5.96)

j~
∂ |Ψ (t)i

∂t
= H |Ψ (t)i , (5.111)

plus the initial state

|Ψ (t = 0)i = |Ψ (0)i , (5.112)

unquely determine the dynamics of the system. The evolution of the quantum
state vector can be described as a mapping of the initial state by a time
evolution operator.

|Ψ (t)i = U(t) |Ψ (0)i . (5.113)

If this solution is substituted into the Schroedinger Equation (5.111) it follows
that the time evolution operator has to obey the equation

j ~
∂

∂t
U(t) = H U(t). (5.114)

For a time independent Hamiltonian Operator the formal integration of this
equation is

U(t) = exp [−jHt/~] . (5.115)

The time evolution operator is unitary

U−1(t) = U+(t) , (5.116)

because the Harmiltonian operator is hermitian, and therefore the norm of
an initial state is preserved. The initial value for the time evolution operator
is

U(t = 0) = 1. (5.117)

The expected value of an arbitrary operator A is given by

hΨ (t)| Ψ (t)i = hΨ (0)|U+(t)AU(t) |Ψ (0)i . (5.118)
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5.7.5 Heisenberg Picture

Since the physically important quantities are the expected values, i.e. the
outcome of experiments, Eq.(5.118) can be used to come up with an alter-
native formulation of quantum mechanics. In this formulation, called the
Heisenberg picture, the operators are evolving in time according to

AH(t) = U
+(t)AU(t), (5.119)

and the state of the system is time independent and equal to its initial state

|ΨH (t)i = |ΨS (0)i . (5.120)

Clearly an expected value for a time dependent operator using the Heisenberg
state (5.120) is identical with Eq.(5.116).
This is identical to describing a unitary process in an eucledian vector

space. Scalar products between vectors are preserved, if all vectors are un-
dergoing a unitary transformation, i.e. a rotation for example. An alternative
description is that the vectors are time independent but the coordinate sys-
tem rotates in the opposite direction. When the coordinate system changes,
the operators described in the time dependent coordinate system become
time dependent themselves.
From the definition of the time evolution operator we find immediately

an equation of motion for the time dependent operators of the Heisenberg
picture

j~
∂AH(t)

∂t
=

µ
j~

∂U+(t)

∂t

¶
ASU(t) +U

+(t)AS

µ
j ~

∂U(t)

∂t

¶
(5.121)

+U+(t)

µ
j~∂AS

∂t

¶
U(t)

j~
∂AH(t)

∂t
= −U+(t)H+ASU(t) +U

+(t)ASHU(t) (5.122)

+U+(t)

µ
j~
∂AS

∂t

¶
U(t)

Using the relation U+(t)U(t) = U(t)U+(t) = 1 and inserting it between
the Hamiltonian operator and the operator A, we finally end up with the
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Heisenberg equations of motion for the Heisenberg operators

j~
∂

∂t
AH(t) = −HHAH +AHHH + j~

µ
∂A

∂t

¶
H

(5.123)

= [AH ,HH ] + j ~
µ
∂A

∂t

¶
H

(5.124)

with

HH = U+(t)HSU(t) (5.125)

= HS for conservative systems, i.e. HS 6= HS(t) (5.126)

Note, that the last term in Eq.(5.124) is only present if the Schroedinger
operators do have an explicit time dependence, a case which is beyond the
scope of this class.

5.8 The Harmonic Oscillator

To illustrate the beauty and efficiency in describing the dynamics of a quan-
tum system using the dirac notation and operator algebra, we reconsider the
one-dimensional harmonic oscillator discussed in section 4.4.2 and described
by the Hamiltonian operator

H =
p2

2m
+
1

2
K x2, (5.127)

with
[x,p] = j~. (5.128)

5.8.1 Energy Eigenstates, Creation and Annihilation
Operators

It is advantageous to introduce the following normalized position and mo-
mentum operators

X =

r
K

~ω0
x (5.129)

P =
p
m~ω0 p (5.130)



260 CHAPTER 5. THE DIRAC FORMALISM AND HILBERT SPACES

with ω0 =
q

K
m
. The Hamiltonian operator and the commutation relationship

of the normalized position and momentum operator resume the simpler forms

H =
~ω0
2

¡
P2 +X2

¢
, (5.131)

[X,P] = j . (5.132)

Algebraically, it is very useful to introduce the nonhermitian operators

a =
1√
2
(X+ jP) , (5.133)

a+ =
1√
2
(X−jP) , (5.134)

which satisfy the commutation relation£
a,a+

¤
= 1. (5.135)

We find

aa+ =
1

2

¡
X2 +P2

¢
− j
2
[X,P] =

1

2

¡
X2 +P2 + 1

¢
, (5.136)

a+a =
1

2

¡
X2 +P2

¢
+
j

2
[X,P] =

1

2

¡
X2 +P2 − 1

¢
, (5.137)

and the Hamiltonian operator can be rewritten in terms of the new operators
a and a+ as

H =
~ω0
2

¡
a+a+ aa+

¢
(5.138)

= ~ω0
µ
a+a+

1

2

¶
. (5.139)

We introduce the operator
N = a+a, (5.140)

which is a hermitian operator. Up to an additive constant 1/2 and a scaling
factor ~ω0 equal to the energy of one quantum of the harmonic oscillator it
is equal to the Hamiltonian operator of the harmonic oscillator. Obviously,
N is the number operator counting the number of energy quanta excited in a



5.8. THE HARMONIC OSCILLATOR 261

harmonic oscillator. We assume that the number operatorN has eigenvectors
denoted by |ni and corresponding eigenvalues Nn

N |ni = a+a |ni = Nn |ni . (5.141)

We also assume that these eigenvectors are normalized and since N is her-
mitian they are also orthogonal to each other

hm |ni = δmn. (5.142)

Multiplication of this equation with the operator a and use of the commuta-
tion relation (5.135) leads to

a a+a |ni = Nna |ni (5.143)¡
a+a+ 1

¢
a |ni = Nna |ni (5.144)

N a |ni = (Nn − 1)a |ni (5.145)

Eq.(5.143) indicates that if |ni is an eigenstate to the number operator N
then the state a |ni is a new eigenstate toN with eigenvalue Nn−1. Because
of this property, the operator a is called a lowering operator or annihilation
operator, since application of the annihilation operator to an eigenstate with
Nn quanta leads to a new eigenstate that contains one less quantum

a |ni = C |n− 1i , (5.146)

where C is a yet undetermined constant. This constant follows from the
normalization of this state and being an eigenvector to the number operator.

hn| a+a |ni = |C|2 , (5.147)

C =
√
n. (5.148)

Thus
a |ni =

√
n |n− 1i , (5.149)

Clearly, if there is a state with n = 0 application of the annihilation operator
leads to the null-vector in this Hilbert space, i.e.

a |0i = 0, (5.150)

and there is no other state with a lower number of quanta, i.e. N0 = 0 and
Nn = n. This is the ground state of the harmonic oscillator, the state with
the lowest energy.
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If a is an annihilation operator for energy quanta, a+ must be a cre-
ation operator for energy quanta, otherwise the state |ni would not fulfill
the eigenvalue equation Eq.(5.141)

a+a |ni = n |ni (5.151)

a+
√
n |n− 1i = n |ni (5.152)

a+ |n− 1i =
√
n |ni (5.153)

or
a+ |ni =

√
n+ 1 |n+ 1i . (5.154)

Starting from the energy ground state of the harmonic oscillator |0i with
energy ~ω0/2 we can generate the n-th energy eigenstate by n-fold application
of the creation operator a+ and proper normalization

|ni = 1p
(n+ 1)!

¡
a+
¢n |0i , (5.155)

with
H |ni = En |ni , (5.156)

and

En = ~ω0
µ
n+
1

2

¶
. (5.157)

5.8.2 Matrix Representation

We can express the normalized position and momentum operators as func-
tions of the creation and annihilation operators

X =
1√
2

¡
a+ + a

¢
, (5.158)

P =
j√
2

¡
a+−a

¢
. (5.159)

These operators do have the following matrix representations

hm| a |ni =
√
nδm,n−1 , hm| a+ |ni =

√
n+ 1δm,n+1 , (5.160)

hm| a+a |ni = nδm,n , hm| aa+ |ni = (n+ 1) δm,n , (5.161)

hm|X |ni =
1√
2

³√
n+ 1δm,n+1 +

√
nδm,n−1

´
, (5.162)

hm|P |ni =
j√
2

³√
n+ 1δm,n+1 −

√
nδm,n−1

´
, (5.163)
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hm| a2 |ni =
p
n(n− 1)δm,n−2 , (5.164)

hm| a+2 |ni =
p
(n+ 1) (n+ 2)δm,n+2 , (5.165)

hm|X2 |ni =
1

2

µ
(2n+ 1)δm,n +

p
n(n− 1)δm,n−2

+
p
(n+ 1) (n+ 2)δm,n+2

¶
, (5.166)

hm|P2 |ni =
1

2

µ
(2n+ 1)δm,n −

p
n(n− 1)δm,n−2

−
p
(n+ 1) (n+ 2)δm,n+2

¶
. (5.167)

5.8.3 Minimum Uncertainty States or Coherent States

From the matrix elements calculated in the last section, we find that the
energy or quantum number eigenstates |ni have vanishing expected values
for position and momentum. This also follows from the x-representation
ψn(x) = hx |ni studied in section 4.4.2

hn|X |ni = 0 , hn|P |ni = 0 , (5.168)

and the fluctuations in position and momentum are then simply

hn|X2 |ni = n+
1

2
, hn|P2 |ni = n+

1

2
. (5.169)

The minimum uncertainty product for the fluctuations

∆X =

q
hn|X2 |ni− hn|X |ni2 = n+

1

2
, (5.170)

∆P =

q
hn|P2 |ni− hn|P |ni2 = n+

1

2
. (5.171)

is then

∆X ·∆P = n+
1

2
. (5.172)

Only the ground state n = 0 is a minimum uncertainty wave packet, since it
satisfies the eigenvalue equation

a |0i = 0, (5.173)

where

a =
1√
2
(X+ jP) , (5.174)
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see problem set 8. In fact we can show that every eigenstate to the annihi-
lation operator

a |αi = α |αi , for α C (5.175)

is a minimum uncertainty state. We obtain for expected values of position
or momentum in these states

hα| a |αi = α , hα|a+ |αi = α∗, (5.176)

hα|a+a |αi = |α|2 , hα| aa+ |αi =
¡
|α|2 + 1

¢
, (5.177)

hα|X |αi =
1√
2
(α + α∗) , hα|P |αi = j√

2
(α − α∗) , (5.178)

and for its squares

hα|a+a |αi = |α|2 , hα| aa+ |αi =
¡
|α|2 + 1

¢
, (5.179)

hα| a2 |αi = α2, hα| a+2 |αi = α∗2 , (5.180)

hα|X2 |αi =
1

2

¡
α2 + 2α∗α+ α∗2 + 1

¢
= hα|X |αi2 + 1

2
, (5.181)

hα|P2 |αi =
1

2

¡
−α2 + 2α∗α− α∗2 + 1

¢
= hα|P |αi 2 + 1

2
. (5.182)

Thus the uncertainty product is at its minimum

∆X ·∆P =
1

2
∀ α C. (5.183)

In fact one can show that the statistics of a position or momentum measure-
ment for a harmonic oscillator in this state follows a Gaussian satistics with
the average and variance given by Eqs.(5.178), (5.181) and (5.182). This can
be represented pictorially in a phase space diagram as shown in Figure 5.1
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<P>

<X> X

2ΔP

2ΔXP

0

α

Figure 5.1: Representation of a minimum uncertainty state of the harmonic
oscillator as a phase space distribution.

5.8.4 Heisenberg Picture

The Heisenberg equations of motion for a linear system like the harmonic
oscillator are linear differential equations for the operators, which can be
easily solved. From Eqs.(5.124) we find

j~ ∂
∂t
aH(t) = [aH ,H] (5.184)

= ~ω0aH , (5.185)

with the solution

aH(t) = e−jω0taS . (5.186)

Therefore, the expectation values for the creation, annihilation, position and
momentum operators are identical to those of Eqs.(5.176) to (5.182); we only
need to subsitute α→ αe−jω0t . We may again pictorially represent the time
evolution of these states as a probability distribution in phase space, see
Figure 5.2.
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<P>

<X> X

2ΔP

2ΔX

P

0

α

αe
-j tω O

Figure 5.2: Time evolution of a coherent state in phase space.

5.9 The Kopenhagen Interpretation of Quan-
tum Mechanics

5.9.1 Description of the State of a System

At a given time t the state of a system is described by a normalized vector
|Ψ(t)i in the Hilbert space, H. The Hilbert space is a linear vector space.
Therefore, any linear combination of vectors is again a possible state of the
system. Thus superpositions of states are possible and with it come interfer-
ences.

5.9.2 Description of Physical Quantities

Measurable physical quantities, observables, are described by hermitian op-
erators A = A+.
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5.9.3 The Measurement of Observables

An observable has a spectral representation in terms of eigenvectors and
eigenvalues, which can be discrete or continuous, here we discuss the discrete
case

A =
X
n

An |Ani hAn| , (5.187)

The eigenvectors are orthogonal to each other and the eigenvalues are real

hAn| An0i = δn,n0 . (5.188)

Upon a measurement of the observable A of the system in state |Ψ(t)i the
outcome can only be one of the eigenvalues An of the observable and the
probability for that event to occur is

pn = | hAn| Ψ(t)i|2 . (5.189)

If the eigenvalue spectrum of the operator A is degenerate, the probabilities
of the probabilities of the different states to the same eigenvector need to be
added.
After the measurement the system is in the eigenstate |Ani corresponding

to the eigenvalue An found in the measurement, which is called the reduc-
tion of state[4]. This unphysical reduction of state is only necessary as a
shortcut for the description of the measurement process and the fact that
the system becomes entangled with the state of the macroscopic measure-
ment equipment. This entanglement leads to a necessary decoherence of the
superposition state of the measured system, which is equivalent to assuming
a reduced state.



Bibliography

[1] Introduction to Quantum Mechanics, Griffiths, David J., Prentice Hall,
1995.

[2] Functional Analysis, G. Bachman and L. Naricci, Academic Press, 1966.

[3] Classical Mechanics, H. Goldstein, Addison and Wesley series in physics,
1959.

[4] QuantumMechanics I, C. Cohen-Tannoudji, B. Diu, F. Laloe, JohnWiley
and Sons, Inc., 1978.

269



Chapter 6

Interaction of Light and Matter

Atomic or molecular gases in low concentration show sharp energy eigen-
spectra. This was shown for the hydrogen atom. Usually, there are infinitely
many energy eigenstates in an atomic, molecular or solid-state medium and
the spectral lines are associated with allowed transitions between two of these
energy eigenstates. For many physical considerations it is already sufficient
to take only two of these possible energy eigenstates into account, for exam-
ple those which are related to the laser transition. The pumping of the laser
can be later described by phenomenological relaxation processes into the up-
per laser level and out of the lower laser level. The resulting simple model is
often called a two-level atom, which is mathematically also equivalent to a
spin 1/2 particle in an external magnetic field, because the spin can only be
parallel or anti-parallel to the field, i.e. it has two energy levels and energy
eigenstates [4]. The interaction of the two-level atom with the electric field
of an electromagnetic wave is described by the Bloch equations.

6.1 The Two-Level Model

An atom with only two energy eigenvalues is described by a two-dimensional
state space spanned by the two energy eigenstates |ei and |gi. The two
states constitute a complete orthonormal system. The corresponding energy
eigenvalues areEe andEg, see Fig. 6.1. In the position-, i.e. x-representation,
these states correspond to the wave functions

ψg(x) = hx |gi , and ψe(x) = hx |ei . (6.1)

271
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Figure 6.1: Two-level atom

The Hamiltonian operator of the two-level atom is in the energy representa-
tion

HA = Ee |ei he|+Eg |ei hg| . (6.2)

In this two-dimensional state space only 2×2 = 4 linearly independent linear
operators are possible. A possible choice for an operator base in this space is

1 = |ei he|+ |gi hg| , (6.3)

σz = |ei he|− |gi hg| , (6.4)

σ+ = |ei hg| , (6.5)

σ− = |ei he| . (6.6)

The non-Hermitian operators σ± could be replaced by the Hermitian oper-
ators σx,y

σx = σ+ + σ−, (6.7)

σy = −jσ+ + jσ−. (6.8)

The physical meaning of these operators becomes obvious, if we look at the
action when applied to an arbitrary state

|ψi = cg |gi+ ce |ei . (6.9)

We obtain

σ+ |ψi = cg |ei , (6.10)

σ− |ψi = ce |gi , (6.11)

σz |ψi = ce |ei− cg |gi . (6.12)
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The operator σ+ generates a transition from the ground to the excited state,
and σ− does the opposite. In contrast to σ+ and σ−, σz is a Hermitian
operator, and its expectation value is an observable physical quantity with
expectation value

hψ|σz |ψi = |ce|2 − |cg|2 = w, (6.13)

the inversion w of the atom, since |ce|2 and |cg|2 are the probabilities for
finding the atom in state |ei or |gi upon a corresponding measurement. If
we consider an ensemble of N atoms the total inversion would be W =
N hψ|σz |ψi. If we separate from the Hamiltonian (6.1) the term (Ee +
Eg)/2 ·1, where 1 denotes the unity matrix, we rescale the energy values
correspondingly and obtain for the Hamiltonian of the two-level system

HA =
1

2
~ωegσz, (6.14)

with the transition frequency

ωeg =
1

~
(Ee − Eg). (6.15)

This form of the Hamiltonian is favorable. There are the following commu-
tator relations between operators (6.4) to (6.6)

[σ+,σ−] = σz, (6.16)

[σ+,σz] = −2σ+, (6.17)

[σ−,σz] = 2σ−, (6.18)

and anti-commutator relations, respectively

[σ+,σ−]+ = 1, (6.19)

[σ+,σz]+ = 0, (6.20)

[σ−,σz]+ = 0, (6.21)

[σ−,σ−]+ = [σ+,σ+]+ = 0. (6.22)

The operators σx, σy, σz fulfill the angular momentum commutator relations

[σx,σy] = 2jσz, (6.23)

[σy,σz] = 2jσx, (6.24)

[σz,σx] = 2jσy. (6.25)
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The two-dimensional state space can be represented as vectors in C2 accord-
ing to the rule:

|ψi = cg |gi+ ce |ei →
µ

ce
cg

¶
. (6.26)

The operators are then represented by matrices

σ+ →
µ
0 1
0 0

¶
, (6.27)

σ− →
µ
0 0
1 0

¶
, (6.28)

σz →
µ
1 0
0 −1

¶
, (6.29)

1 →
µ
1 0
0 1

¶
. (6.30)

6.2 The Atom-Field Interaction In Dipole Ap-
proximation

The dipole moment of an atom d is determined by the position operator x
via

d = −e0x. (6.31)

Then the expectation value for the dipole moment of an atom in state (6.9)
is

hψ|d |ψi = −e0(|ce|2 he|x |ei+ cec
∗
g hg|x |ei (6.32)

+cgc
∗
e he|x |gi+ |cg|2 hg|x |gi).

For simplicity, we may assume that the medium is an atomic gas. The atoms
posses inversion symmetry, therefore, energy eigenstates must be symmetric
or anti-symmetric, i.e. he|x |ei = hg|x |gi = 0, see problem set 8. We obtain

hψ|d |ψi = −e0 (cec∗g hg|x |ei+ cgc
∗
e hg|x |ei

∗). (6.33)

Note, this means there is no permanent dipole moment in an atom, which
is in an energy eigenstate. This might not be the case in a solid. The
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atoms consituting the solid are oriented in a lattice, which may break the
symmetry. If so, there are permanent dipole moments and consequently the
matrix elements he|x |ei and hg|x |gi would not vanish.
An atom does only exhibit a dipole moment, if the product cec∗g 6= 0, i.e.

the state of the atom is in a superposition of states |ei and |gi. With the
dipole matrix elements

M = e0 hg|x |ei (6.34)

the expectation value for the dipole moment can be written as

hψ|d |ψi = −(cec∗gM + cgc
∗
eM

∗) = − hψ| (σ−M∗ + σ+M) |ψi . (6.35)

Since this is true for an arbitrary state, the dipole operator (6.31) is repre-
sented by

d = −
³
σ−M∗ + σ+M

´
. (6.36)

The energy of an electric dipole in an electric field is

HA−F = −d · E(xA, t). (6.37)

We assume that the electric field is due to a monochromatic electromagntic
wave. Then the electric field at the position of the atom, xA, can be written
as

E(xA, t) =
1

2

¡
E0e

jωt ep + E∗0e
−jωt e∗p

¢
, (6.38)

where E0 denotes the complex electric field amplitude at the position of the
atom and ep is the polarization vector of the wave. As we will see shortly,
when there is a strong interaction of the wave with the atomic levels, the
frequency of the electromagnetic wave is close to the atomic transistion fre-
quency ω ≈ ωeg. The atom-field interaction Hamiltonian operator is then

HA−F = −d · E(xA, t) =
³
σ−M∗ + σ+M

´ 1
2

¡
E0e

jωt ep +E∗0e
−jωt e∗p

¢
(6.39)

In the Rotating-Wave Approximation (RWA)[3], we only keep the slowly
varying components in the interaction Hamiltonian. If there is no field,
the operator σ+ evolves in the Heisenberg picture of the atom according to
σ+(t) = σ+(0)ejωegt, thus terms proportional to the products σ+ejωt rotate
at twice the optical frequency and will be neglected in the following

HA−F ≈ HRWA
A−F =

1

2

³
M · e∗p

´
E∗0e

−jωtσ+ + h.c.. (6.40)
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The Schrödinger Equation for a two-level atom in a classical field is then

j~
d

dt
|ψi = (HA +HA−F ) |ψi (6.41)

≈ (HA +H
RWA
A−F ) |ψi .

Written in the energy representation, we obtain

d

dt
ce = −jωeg

2
ce − jΩre

−jωtcg, (6.42)

d

dt
cg = +j

ωeg

2
cg − jΩ∗re+jωtce, (6.43)

with the Rabi-frequency defined as

Ωr =
M · e∗p
2~

E∗0. (6.44)

For the time being, we assume that the the Rabi-frequency is real. If this is
not the case, a transformation including a phase shift in the amplitudes c∈,g
would be necessary to eliminate this phase. As expected the field couples the
energy eigenstates.

6.3 Rabi-Oscillations

If the incident light has a constant field amplitude, E0, Eqs. (6.42) and (6.43)
can be solved and we observe an oscillation in the population difference, the
Rabi-oscillation [1]. To show this we introduce the detuning between field
and atomic resonance

∆ =
ωeg − ω

2
(6.45)

and the new probability amplitudes

Ce = cee
jω
2
t, (6.46)

Cg = cge
−jω

2
t. (6.47)

This leads to the new system of equations with constant coefficients

d

dt
Ce = −j∆Ce − jΩrCg, (6.48)

d

dt
Cg = +j∆Cg − jΩrCe. (6.49)
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Note, these equations are identical to the coupled mode equations between
two waveguide modes as studied in section 2.7.4. But now the coupling
is between modes in time, i.e. resonances. The modes are electronic ones
instead of photonic modes. But otherwise what has been said in section 2.7.4
applies in the same way. For the case of vanishing detuning it is especially
easy to eliminate one of the variables and we arrive at

d2

dt2
Ce = −Ω2rCe (6.50)

d2

dt2
Cg = −Ω2rCg. (6.51)

The solution to this set of equations are the oscillations we are looking for. If
the atom is at time t = 0 in the ground-state, i.e. Cg(0) = 1 and Ce(0) = 0,
respectively, we arrive at

Cg(t) = cos (Ωrt) (6.52)

Ce(t) = −j sin (Ωrt) . (6.53)

Then, the probabilities for finding the atom in the ground or excited state
are

|cb(t)|2 = cos2 (Ωrt) (6.54)

|ca(t)|2 = sin2 (Ωrt) , (6.55)

as shown in Fig. 6.2. For the expectation value of the dipole operator under
the assumption of a real dipole matrix element M =M∗ we obtain

hψ|d |ψi = −Mcec
∗
g + c.c. (6.56)

= −M sin (2Ωrt) sin (ωegt) . (6.57)
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Figure 6.2: Evolution of occupation probabilities of ground and excited state
and the average dipole moment of a two-level atom in resonant interaction
with a coherent classical field.

The coherent external field drives the population of the atomic system
between the two available states with a period Tr = π/Ωr. Applying the field
only over half of this period leads to a complete inversion of the population.
These Rabi-oscillations have been observed in various systems ranging from
gases to semiconductors. Interestingly, the light emitted from the coherently
driven two-level atom is not identical in frequency to the driving field. If
we look at the Fourier spectrum of the polarization according to Eq.(6.57),
we obtain lines at frequencies ω± = ωeg ± 2Ωr. This is clearly a nonlinear
output and the sidebands are called Mollow-sidebands [2] . Most important
for the existence of these oscillations is the coherence of the atomic system
over at least one Rabi-oscillation. If this coherence is destroyed fast enough,
the Rabi-oscillations cannot happen and it is then impossible to generate
inversion in a two-level system by interaction with light. This is the case for
a large class of situations in light-matter interaction and especially for typical
laser materials. So we are interested in finding out what happens in the case
of loss of coherence in the atomic system due to additional interaction of the
atoms with its environment.
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6.4 The Density Operator

To study incoherent or dissipative processes it is necessary to switch to a
statistical description. That is, we investigate not only the interaction of the
atoms with the light field, via the Schroedinger Equation, leading to Rabi-
oscillations but rather the interaction of an atomic ensemble with the light
field. This is achieved by using the density operator instead of deterministic
wave functions, similar to classical statistical mechanics, where the determin-
istic trajectories of particles are replaced by probability distributions.
The density operator of a pure state is defined by the dyadic product of

the state with itself
ρ = |ψi hψ| (6.58)

or in the energy representation by a 2× 2−matrix

ρ =

µ
ρee ρeg
ρge ρgg

¶
. (6.59)

. In the case of a pure state (6.9) this is

ρ =

µ
cec

∗
e cec

∗
g

cgc
∗
e cgc

∗
g

¶
. (6.60)

For the rather simple case of a two-level system, each element of the density
matrix corresponds to a physical quantity. The main diagonal contains the
population probabilities for the levels; the off-diagonal element is the expec-
tation value of the positive or negative frequency component of the dipole
moment of the atom, i.e. its contribution to the polarization in the medium.
However, the concept of a density operator can be applied to any quantum

mechanical system, not just the two-level atom. If an ensemble is described
by a density operator, the expectation value of an arbitrary operator A can
be computed using the trace formula

hAi = Tr{ρA }. (6.61)

The trace of an operator is defined as

Tr{O } =
X
n

hn|O |ni . (6.62)

where |ni can be any complete orthonormal base (ONB) in the Hilbert space.
For example for the density matrix of the pure state (6.58) we find
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hAi = Tr{ρA } =
X
n

hn|ρA |ni (6.63)

=
X
n

hn |ψi hψ|A |ni = hψ|A
X
n

|ni hn |ψi (6.64)

= hψ|A |ψi . (6.65)

The advantage of the density operator is that it can also be applied to a
statistical mixture of pure states. For example, if the atom is in state |ei
with probability pe and in state | |gi with probability pg a density operator

ρ = pe |ei he|+ pg |gi hg| (6.66)

is defined, which can be used to compute the average values of observables
in the proper statistical sense

hAi = Tr{ρA} = pe he|A |ei+ pg hg|A |gi . (6.67)

Since the matrices (6.27) to (6.30) build a complete base in the space of
2× 2−matrices, we can express the density matrix as

ρ = ρee
1

2
(1+ σz) + ρgg

1

2
(1− σz) + ρegσ

+ + ρgeσ
− (6.68)

=
1

2
1+

1

2
(ρee − ρgg)σz + ρegσ

+ + ρgeσ
−, (6.69)

since the trace of the density matrix is always one (normalization). Choosing
the new base 1,σx,σy,σz, we obtain

ρ =
1

2
1+

1

2
(ρee − ρgg)σz + dxσx + dyσy, (6.70)

with

dx =
1

2

¡
ρeg + ρge

¢
= <{


σ(+)

®
}, (6.71)

dy =
j

2

¡
ρeg − ρge

¢
= ={


σ(+)

®
}. (6.72)

The expectation value of the dipole operator is given by (6.36)D
d
E
= Tr{ρd} = −M∗Tr{ρσ+}+ c.c. = −M∗ρge + c.c. (6.73)
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From the Schrödinger equation for the wave function |ψ > we can eas-
ily derive the equation of motion for the density operator called the von
Neumann equation

ρ̇ =
d

dt
|ψi hψ|+ h.c. =

1

j~
H |ψi hψ|− 1

j~
|ψi hψ|H (6.74)

=
1

j~
[H,ρ] .

Due to the linear nature of this equation, this is also the correct equation
for a density operator describing an arbitrary mixture of states. In case of a
two-level atom, the von Neumann equation is

ρ̇ =
1

j~
[HA,ρ] = −j

ω∈g
2
[σz,ρ]. (6.75)

Using the commutator relations (6.16) - (6.18), the result is

ρ̇∈e = 0, (6.76)

ρ̇gg = 0, (6.77)

ρ̇eg = −jωegρeg → ρeg(t) = e−jωegtρeg(0), (6.78)

ρ̇ge = jωegρge → ρge(t) = ejωegtρge(0). (6.79)

Again the isolated two-level atom has rather simple dynamics. The popu-
lations are constant. If there is a dipole moment induced at t = 0, i.e. the
system is in a superposition state, then this dipole moment oscillates with
the transition frequency ω∈g.

6.5 Energy- and Phase-Relaxation

In reality one has to work very hard to isolated an atom from its environment.
Indeed in the case of laser active media, we are interested at radiating atoms,
i.e. atoms that have a dipole interaction with the field. The coupling with the
infinitely many modes of the free field leads already to spontaneous emission,
an irreversible process. We could treat this process by using the Hamiltonian

H = HA +HF +HA−F . (6.80)

Here, HA is the Hamiltonian of the atom, HF of the free field in thermal
equilibrium at temperature T, and HA−F describes the interaction between
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them. A complete treatment along these lines would be straight forward
using the techniques we learned so far, however it is beyond the scope of this
class. The result of this calculation leads to the von Neumann equation of
the reduced density matrix, i.e. the density matrix of the atom alone. In
fact the result of such a calculation gives for the diagonal elements of the
density operator, i.e. the state population probabilities, equations identical
to those in section 3.3 involving Einstein’s A and B coefficients. With the
spontaneous emission rate A = 1/τ sp,i.e. the inverse spontaneous life time
τ sp, the populations change due to the induced and spontaneious emission
processes and the absorption processes

d

dt
|ce(t)|2 =

d

dt
ρee = −Γeρee + Γaρgg (6.81)

with the abbreviations

Γe =
1

τ sp
(nth + 1), (6.82)

Γa =
1

τ sp
nth. (6.83)

see Figure 6.3.

E
pe

Eg

Ee

pg

Figure 6.3: Two-level atom with transistion rates due to induced and spon-
taneous emission and absorption.

Here nth is the number of thermally excited photons in the modes of the
free field with frequency ωeg, nth = 1/(exp(~ωeg/kT )−1), at temperature T .
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The total probability of being in the excited or the ground state has to
be maintained, that is

d

dt
ρgg = −

d

dt
ρee = Γeρee − Γaρgg. (6.84)

If the populations decay, the polarization does as well, since ρge = c∗ecg. It
turns out that the polarization dynamics according to Eq.(6.78), besides the
coherent oscillation, also aquires a decay process due to the finite lifetime of
the excited state

d

dt
ρge = jωegρeg −

Γe + Γa
2

ρge. (6.85)

Thus the absorption as well as the emission processes are destructive to the
phase. Therefore, the corresponding rates add up in the phase decay rate.
Taking the coherent (6.76)-(6.79) and incoherent processes (6.84-6.85)

into account results in the following equations for the normalized average
dipole moment d = dx + jdy and the inversion w

ḋ = ρ̇ge = (jωeg −
1

T2
)d, (6.86)

ẇ = ρ̇ee − ρ̇gg = −
w − w0
T1

, (6.87)

with the time constants

1

T1
=
2

T2
= Γe + Γa =

2nth + 1

τ sp
(6.88)

and the equilibrium inversion w0, due to the thermal excitation of the atom
by the thermal field

w0 =
Γa − Γe
Γa + Γe

=
−1

1 + 2nth
= − tanh

µ
~ωeg

2kT

¶
. (6.89)

The time constant T1 denotes the energy relaxation in the two-level system
and T2 the phase relaxation. T2 is the correlation time between amplitudes
ce and cg. The coherence between the excited and the ground state described
by ρge is destroyed by the interaction of the two -level system with the envi-
ronment.
In this basic model, the energy relaxation is half the phase relaxation rate

or
T2 = 2T1. (6.90)
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The atoms in a laser medium do not only interact with the electromagnetic
field, but also with phonons, i.e. acoustic vibrations of the host lattice in solid
state laser material. Atoms might collide with each other in a gas laser and so
on. All these processes must be considered when determining the energy and
phase relaxation rates. Thus it might be not only radiative transistions that
lead to a finite energy relaxation time T1. Some of the processes are elastic,
i.e. there is no energy relaxation but only the phase is influenced during the
collision. Therefore, these processes reduce T2 but have no influence on T1.
In real systems the phase relaxation time is most often much shorter than
twice the energy relaxation time.

T2 ≤ 2T1. (6.91)

If the inversion deviates from its equilibrium value, w0, it relaxes back into
equilibrium with a time constant T1. Eq. (6.89) shows that for all tempera-
tures T > 0 the inversion is negative, i.e. the lower level is stronger populated
than the upper level. Thus with incoherent thermal light, inversion in a two-
level system cannot be achieved. Inversion can only be achieved by pumping
with incoherent light, if there are more levels and subsequent relaxation pro-
cesses into the upper laser level. Due to these relaxation processes the rate Γa
deviates from the equilibrium expression (6.83), and it has to be replaced by
the pump rate Λ. If the pump rate Λ exceeds Γe, the inversion corresponding
to Eq. (6.89) becomes positive,

w0 =
Λ− Γe
Λ+ Γe

. (6.92)

If we allow for artificial negative temperatures, we obtain with T < 0 for the
ratio of relaxation rates

Γe
Γa
=
1 + n̄

n̄
= e

~ωeg
kT < 1. (6.93)

Thus the pumping of the two-level system drives the system far away from
thermal equilibrium. Now, we have a correct description of an ensemble of
atoms in thermal equilibrium with its environment, which is a much more
realistic description of media especially of typical laser media.

6.6 The Bloch Equations

If there is a coherent additional field in addition to the coupling to the envi-
ronment, the Hamiltonian has to be extended by the dipole interaction with
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that field,
HE = −d·E(xA, t). (6.94)

Again we use the interaction Hamiltonian in RWA according to Eq.(6.40) for
a time harmonic field Eq.(6.38) with polarization vector ep

HE =
1

2

³
M · e∗p

´
E∗0e

−jωtσ+ + h.c.. (6.95)

In the von Neumann equation this leads to the additional term

ρ̇|E =
1

j~
[HE,ρ] (6.96)

= −jΩre
−jωt[σ+,ρ] + jΩ∗re

jωt[σ−,ρ]. (6.97)

With the density operator expressed as

ρ =
1

2
1+

1

2
(ρee − ρgg)σz + ρegσ

+ + ρgeσ
−, (6.98)

and the commutation relations (6.16) - (6.18) we find

ρ̇|E =
1

2
(ρ̇ee − ρ̇gg)σz + ρ̇egσ

+ + ρ̇geσ
− (6.99)

= −jΩre
−jωt

½
1

2
(ρee − ρgg)

£
σ+,σz

¤
+ ρge

£
σ+,σ−

¤¾
+

+jΩ∗re
jωt[

½
1

2
(ρee − ρgg)

£
σ−,σz

¤
+ ρeg

£
σ−,σ+

¤¾
= jΩre

−jωt ©(ρee − ρgg)σ+ + ρgeσz

ª
+jΩ∗re

jωt[
©
(ρee − ρgg)σ− − ρegσz

ª
or expressed by the components of the density operator

(ρ̇ee − ρ̇gg)|E = 2jΩre
−jωtρge + c.c., (6.100)

ρ̇ge|E = jΩ∗re
jωt(ρee − ρgg), . (6.101)

The interaction with the external field leads to the following contributions
in the dynamics of the dipole moment and the inversion

ḋ|E = ρ̇ge|E = jΩ∗rejωtw, (6.102)

ẇ|E = ρ̇ee|E − ρ̇gg|E = 2jΩre
−jωtd+ c.c. (6.103)
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Thus, the total dynamics of the two-level system including the pumping and
dephasing processes from Eqs.(6.86) and (6.87) is given by

ḋ = −( 1
T2
− jωeg)d+ jΩ

∗
re
jωtw, (6.104)

ẇ = −w − w0
T1

+ 2jΩre
−jωtd− 2jΩ∗rejωtd∗. (6.105)

These equations are called the Bloch Equations. They describe the dynamics
of a statistical ensemble of two-level atoms interacting with a classical electric
field. Together with the Maxwell-Equations, where the polarization of the
medium is related to the expectation value of the dipole moment of the
atomic ensemble these result in the Maxwell-Bloch Equations.

6.7 Dielectric Susceptibility and Saturation

We have assumed that the external field is time harmonic

E(xA, t) =
1

2

¡
E0e

jωt ep +E∗0e
−jωt e∗p

¢
. (6.106)

The Bloch Equations are nonlinear. However, for moderate field intensities,
i.e. the magnitude of the Rabi-frequency is much smaller than the optical
frequency, |Ωr| << ω, the inversion does not change much within an optical
cycle of the field. We assume that the inversion w of the atom will only
be slowly changing and it adjusts itself to a steady state value ws. If the
inversion can be assumed time independent, w = ws the equation for the
dipole moment is linear and the dipole moment will oscillate with the same
frequency as the driving field

d = d0e
jωt. (6.107)

With the time harmonic solution (6.107) we find from Eqs. (6.104) and
(6.105) for the dipole amplitude and the steady state inversion

d0 =
j

2~

³
M∗ · ep

´
ws

1/T2 + j(ω − ωeg)
E0 (6.108)

ws =
w0

1 + T1
~2

1/T2 |M∗·ep|2
(1/T2)2+(ωeg−ω)2 |E0|2

. (6.109)
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We introduce the normalized lineshape function, which is in this case a
Lorentzian,

L(ω) =
(1/T2)

2

(1/T2)2 + (ωeg − ω)2
, (6.110)

and connect the square of the field |E0|2 to the intensity I of a propagating
plane wave, according to Eq. (2.38), I = 1

2ZF
|E0|2,

ws =
w0

1 + I
Is
L(ω)

. (6.111)

Thus the stationary inversion depends on the intensity of the incident light.
Therefore, w0 is called the unsaturated inversion, ws the saturated inversion
and Is,with

Is =

∙
2T1T2ZF

~2
|M∗ · ep|2

¸−1
, (6.112)

is the saturation intensity. The expectation value of the dipole operator
(6.31) is then given by D

d̃
E
= −(M∗d + Md∗). (6.113)

Multiplication with the number of atoms per unit volume, N, relates the
dipole moment of the atom to the complex polarization P 0 of the medium,
and therefore to the susceptibility according to

P 0 = −2NM∗d0, (6.114)

P 0 = 0χ(ω)epE0. (6.115)

From the definitions (6.114), (6.115) and Eq. (6.108) we obtain for the linear
susceptibility of the medium

χ(ω) =M∗MT jN

~ 0

ws

1/T2 + j(ω − ωeg)
, (6.116)

which is a tensor. In the following we assume that the direction of the
atom is random, i.e. the alignment of the atomic dipole moment,M, and the
electric field is random. Therefore, we have to average over the angle enclosed
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between the electric field of the wave and the atomic dipole moment, which
results in⎛⎝ MxMx MxMy MxMz

MyMx MyMy MyMz

MzMx MzMy MzMz

⎞⎠ =

⎛⎝ M2
x 0 0

0 M2
y 0

0 0 M2
z

⎞⎠ =
1

3
|M |2 1. (6.117)

Thus, for homogeneous and isotropic media the susceptibility tensor shrinks
to a scalar

χ(ω) =
1

3
|M |2 jN

~ 0

ws

1/T2 + j(ω − ωeg)
. (6.118)

Real and imaginary part of the susceptibility

χ(ω) = χ0(ω) + jχ00(ω) (6.119)

are then given by

χ0(ω) = − |M |
2NwsT

2
2 (ωeg − ω)

3~ 0
L(ω), (6.120)

χ00(ω) =
|M |2NwsT2

3~ 0
L(ω). (6.121)

If the incident radiation is weak, i.e.

I

Is
L(ω))¿ 1 (6.122)

we obtain ws ≈ w0. For optical transitions there is no thermal excitation of
the excited state and w0 = −1. For an inverted system, w0 > 0, the real and
imaginary parts of the susceptibility are shown in Fig. 6.4.
The shape of the susceptibility computed quantum mechanically com-

pares well with the classical susceptibility (2.43) derived from the harmonic
oscillator model close to the transistion frequency ωeg for a transition with
reasonably high Q = T2ωeg. Note, the quantum mechanical susceptibility is
identical to the complex Lorentzian introduced in Eq.(2.90). There is an
appreciable deviation, however, far away from resonance. Far off resonance
the rotating wave approximation should not be used.
The physical meaning of the real and imaginary part of the susceptibility

is of course identical to section 2.1.8. The propagation constant k of a TEM-
wave in such a medium is related to the susceptibility by

k = ω
p
μ0 0(1 + χ(ω)) ≈ k0

µ
1 +

1

2
χ(ω)

¶
, with k0 = ω

√
μ0 0 (6.123)
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for |χ| ¿ 1. Under this assumption we obtain

k = k0(1 +
χ0

2
) + jk0

χ00

2
. (6.124)
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Figure 6.4: Real and imaginary part of the complex susceptibility for an
inverted medium ws > 0. The positive imaginary susceptibility indicates
exponential growth of an electromagnetic wave propagating in the medium.

The real part of the susceptibility contributes to the refractive index n =
1 + χ0/2. In the case of χ00 < 0, the imaginary part leads to an exponential
damping of the wave. For χ00 > 0 amplification takes place. Amplification of
the wave is possible for w0 > 0, i.e. an inverted medium.
The phase relaxation rate 1/T2 of the dipole moment determines the width

of the absorption line or the bandwidth of the amplifier. The amplification
can not occur forever, because the amplifier saturates when the intensity
reaches the saturation intensity. This is a strong deviation from the linear
susceptibility we derived from the classical oscillator model. The reason for
this saturation is two fold. First, the light can not extract more energy
from the atoms then there is energy stored in them, i.e. energy conservation
holds. Second the induced dipole moment in a two-level atom is limited by
the maximum value of the matrix element. In contrast the induced dipole
moment in a classical oscillator grows proportionally to the applied field
without limits.
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6.8 Rate Equations and Cross Sections

In many cases the fastest process in the atom-field interaction dynamics is
the dephasing of the dipole moment, i. e. T2 → 0. For example, in semi-
conductors T2 < 50fs. In those cases the magnitude of the dipole moment
relaxes instantaneously into the steady state and follows the magnitude of
the intensity envelope I(t) of the electromagntic field, which evolves on a
much slower time scale. From Eq.(6.104) we obtain with the steady state
solutions for the dipole moment (6.107 ) and (6.108) for the time dependent
inversion in the atomic system after adiabatic elimination of dipole moment

ẇ = −w(t)− w0
T1

− w(t)

T1Is
L(ω)I(t), (6.125)

where I(t) is the intensity of the electromagntic wave interaction with the
two-level atom. In this limit the Bloch Equations became simple rate equa-
tions. We only take care of the counting of population differences due to
spontaneous and stimulated emissions.
The interaction of an atom with light at a given transition with the stream

of photons on resonance, i.e. ω = ωeg is often discribed by the mass action
law, that is that the number of induced transistions, for example from the
excited to the ground state, is proportional to the product of the number of
atoms in the excited state and the photon flux density Iph = I/~ωeg

ẇ|induced = −σwIph = −
w

T1Is
I. (6.126)

Thus the interaction cross section can be expressed in terms of the saturation
intensity as

σ =
~ωeg

T1Is
(6.127)

=
2ωegT2ZF

~
|M∗ · ep|2. (6.128)

In this chapter, we have introduced the most important spectroscopic
quantities that characterize an atomic transisition, which are the lifetime of
the excited state or often called upper-state lifetime or longitudinal lifetime
T1, the phase relaxation time or transverse relaxation time T2 which is the
inverse half-width at half maximum of the line and the interaction cross-
section that only depends on the dipole matrix element and the linewidth of
the transition.
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Chapter 7

Lasers

After having derived the quantum mechanically correct suszeptibility for an
inverted atomic system that can provide gain, we can use the two-level model
to study the laser and its dynamics. After discussing the laser concept briefly
we will investigate various types of gain media, gas, liquid and solid-state,
that can be used to construct lasers and amplifiers. Then the dynamics of
lasers, threshold behavior, steady state behavior and relaxation oscillations
are discussed. A short introduction in the generation of high energy and
ultrashort laser pulses using Q-switching and mode locking will be given at
the end.

7.1 The Laser (Oscillator) Concept

Since the invention of the vacuum amplifier tube by Robert von Lieben and
Lee de Forest in 1905/06 it was known how to amplify electromagnetic waves
over a broad wavelength range and how to build oscillator with which such
waves could be generated. This was extended into the millimeter wave re-
gion with advances in amplifier tubes and later solid-state devices such as
transistors. Until the 1950’s thermal radiation sources were mostly used to
generate electromagnetic waves in the optical frequency range. The gener-
ation of coherent optical waves was only made possible by the Laser. The
first amplifier based on discrete energy levels (quantum amplifier) was the
MASER (Microwave Amplification by Stimulated Emission of Radiation),
which was invented by Gordon, Townes and Zeiger 1954. In 1958 Schawlow
and Townes proposed to extend the MASER principle to the optical regime.

293
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The amplification should arise from stimulated emission between discrete en-
ergy levels that must be inverted, as discussed in the last section. Amplifiers
and oscillators based on this principle are called LASER (Light Amplification
by Stimulated Emission of Radiation). Maiman was the first to demonstrate
a laser based on the solid-state laser material Ruby.

Figure 7.1: Theodore Maiman with the first Ruby Laser in 1960 and a cross
sectional view of the first device [4].

The first HeNe-Laser, a gas laser followed in 1961. It is a gas laser built
by Ali Javan at MIT, with a wavelength of 632.8 nm and a linewidth of only
10kHz.
The basic principle of an oscillator is a feedback circuit that is unstable,

i.e. there is positive feedback at certain frequencies or certain frequency
ranges, see Figure 7.2. It is the feedback circuit that determines the frequency
of oscillation. Once the oscillation starts, the optical field will build up to
an intensity approaching, or even surpassing, the saturation intensity of the
amplifier medium by many times, until the amplifier gain is reduced to a
value equal to the losses that the signal experiences after one roundtrip in
the feedback loop, see Figure 7.3
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Figure 7.2: Principle of an oscillator circuit: an amplifier with positive feed-
back [6] p. 495.

Figure 7.3: Saturation of amplification with increasing signal power leads to
a stable oscillation [6], p. 496.

In the radio frequency range the feedback circuit can be an electronic
feedback circuit. At optical frequencies we use an optical resonator, which
is in most cases well modeled as a one-dimensional Fabry-Perot resonator,
which we analysed in depth in section 7.4. We already found back then that
the transfer characterisitcs of a Fabry-Perot resonator can be understood as
a feedback structure. All we need to do to construct an oscillator is provide
amplification in the feedback loop, i.e. to compensate in the resonator for
eventual internal losses or the losses due to the output coupling via the mir-
rors of the Fabry-Perot, see Figure 7.4.We have already discussed in section
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2.6.2 various optical resonators, which have Gaussian beams as the funda-
mental resonator modes. One can also use waveguides or fibers that have
semitransparent mirrors at its ends or form rings as laser resonators. In the
latter ones output coupling of radiation is achieved with waveguide or fiber
couplers in the rings.
Today lasers generating light continuosly or in the form of long, nanosec-

ond, or very short, femtosecond pulses can be built. Typically these lasers
are Q-switched or mode-locked, respectively. The average power level can
vary from microwatt to kilowatts.

Figure 7.4: A laser consists of an optical resonator where the internal losses
and/or the losses due to partially reflecting mirrors are compensated by a
gain medium inside the resonator [6], p. 496.

7.2 Laser Gain Media

Important characteristics of laser gain media are whether it is a solid, a
gase or liquid, how inversion can be achieved and what the spectroscopic
paratmeters are, i.e. upperstate lifetime, τL = T1, linewdith ∆fFWHM = 2

T2
and the crosssection for stimulated emission.

7.2.1 Three and Four Level Laser Media

As we discussed before inversion can not be achieved in a two level system
by optical pumping. The coherent regime is typically inaccesible by typcial
optical pump sources. Inversion by optical pumping can only be achieved
when using a three or four-level system, see Figures 7.5 and 7.6
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If the medium is in thermal equilibrium, typically only the ground state is
occupied. By optical pumping with an intense lamp (flash lamp) or another
laser one can pump a significant fraction of the atoms from the ground state
with population N0 into the excited state N3 both for the three level laser
operating according to scheme shown in figure 297 (a) or N4 in the case
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of the four level laser, see Figure 7.6. If the relaxation rate γ10 is very
fast compared to γ21, where the laser action should occur inversion can be
achieved, i.e. N2 > N1. For the four level laser the relaxation rate γ32 should
also be fast in comparison to γ21. These systems are easy to analyze in the rate
equation approximation, where the dipole moments are already adiabatically
eliminated. For example, for the three level system in Figure 7.5 a). we obtain
the rate equations of the three level system in analogy to the two-level system

d

dt
N2 = −γ21N2 − σ21 (N2 −N1) Iph +Rp (7.1)

d

dt
N1 = −γ10N1 + γ21N2 + σ21 (N2 −N1) Iph (7.2)

d

dt
N0 = γ10N1 −Rp (7.3)

Here, σ21 is the cross section for stimulated emission between the levels 2 and
1 and Iph is the photon flux at the transition frequency f21.In most cases,
there are any atoms available in the ground state such that optical pumping
can never deplete the number of atoms in the ground state N0. That is why
we can assume a constant pump rate Rp. If the relaxation rate γ10 is much
faster than γ21 and the number of possible stimulated emission events that
can occur σ21 (N2 −N1) Iph, then we can set N1 = 0 and obtain only a rate
equation for the upper laser level

d

dt
N2 = −γ21

µ
N2 −

Rp

γ21

¶
− σ21N2 · Iph. (7.4)

This equation is identical to the equation for the inversion of the two-level
system, see Eq.(6.125). Here, Rp

γ21
is the equilibrium upper state population

in the absence of photons, γ21 =
1
τL
is the inverse upper state lifetime due to

radiative and non radiative processes.
Note, a similar analysis can be done for the three level laser operating

according to the scheme shown in Figure 7.5 (b). Then the relaxation rate
from level 3 to level 2, which is now the upper laser level has to be fast. But
in addition the optical pumping must be so strong that essentially all the
ground state levels are depleted. Undepleted groundstate populations would
always lead to absorption of laser radiation.
In the following we want to discuss the electronic structure of a few often

encountered laser media. A detail description of laser media can be found in
[7].
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7.3 Types of Lasers

7.3.1 Gas Lasers

Helium-Neon Laser

The HeNe-Laser is the most widely used noble gas laser. Lasing can be
achieved at many wavelength 632.8nm (543.5nm, 593.9nm, 611.8nm, 1.1523μm,
1.52μm, 3.3913μm). Pumping is achieved by electrical discharge, see Figure
7.7.

Figure 7.7: Energy level diagram of the transistions involved in the HeNe
laser [9].

The helium is excited by electron impact. The energy is then transfered
to Neon by collisions. The first HeNe laser operated at the 1.1523μm line [8].
HeNe lasers are used in many applications such as interferometry, holography,
spectroscopy, barcode scanning, alignment and optical demonstrations.
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Argon and Krypton Ion Lasers

Similar to the HeNe-laser the Argon ion gas laser is pumped by electric dis-
charge and emitts light at wavelength: 488.0nm, 514.5nm, 351nm, 465.8nm,
472.7nm, 528.7nm.It is used in applications ranging from retinal photother-
apy for diabetes, lithography, and pumping of other lasers.
The Krypton ion gas laser is analogous to the Argon gas laser with wave-

length: 416nm, 530.9nm, 568.2nm, 647.1nm, 676.4nm, 752.5nm, 799.3nm.
Pumped by electrical discharge. Applications range from scientific research.
When mixed with argon it can be used as "white-light" lasers for light shows.

Carbon Lasers

In the carbon dioxide (CO2) gas laser the laser transistions are related to
vibrational-rotational excitations. CO2 lasers are highly efficient approaching
30%. The main emission wavelengths are 10.6μm and 9.4μm. They are
pumped by transverse (high power) or longitudinal (low power) electrical
discharge. It is heavily used in the material processing industry for cutting,
and welding of steel and in the medical area for surgery.
Carbon monoxide (CO) gas laser: Wavelength 2.6 - 4μm, 4.8 - 8.3μm

pumped by electrical discharge. Also used in material processing such as
engraving and welding and in photoacoustic spectroscopy. Output powers as
high as 100kW have been demonstrated.

Excimer Lasers:

Chemical lasers emitting in the UV: 193nm (ArF), 248nm (KrF), 308nm
(XeCl), 353nm (XeF) excimer (excited dimer). These are molecules that
exist only if one of the atoms is electronically excited. Without excitation
the two atoms repell each other. Thus the electronic groundstate is not stable
and is therefore not populated, which is ideal for laser operation. These lasers
are used for ultraviolet lithography in the semiconductor industry and laser
surgery.

7.3.2 Dye Lasers:

The laser gain medium are organic dyes in solution of ethyl, methyl alcohol,
glycerol or water. These dyes can be excited by optically with Argon lasers
for example and emit at 390-435nm (stilbene), 460-515nm (coumarin 102),
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570-640 nm (rhodamine 6G) and many others. These lasers have been widely
used in research and spectroscopy because of there wide tuning ranges. Un-
fortunately, dyes are carcinogenic and as soon as tunable solid state laser
media became available dye laser became extinct.

7.3.3 Solid-State Lasers

Ruby Laser

The first laser was indeed a solid-state laser: Ruby emitting at 694.3nm
[5]. Ruby consists of the naturally formed crystal of aluminum oxide (Al2O3)
called corundum. In that crystal some of Al3+ ions are replaced by Cr3+ ions.
Its the chromium ions that give Ruby the pinkish color, i.e. its flourescence,
which is related to the laser transisitons, see the level structure in Figure 7.8.
Ruby is a three level laser.

Figure 7.8: Energy level diagram for Ruby, [2], p. 13.

Today, for the manufacturing of ruby as a laser material, artificially grown
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crystals from molten material which crystalizes in the form of sapphire is
used. The liftetime of the upper laser level is 3ms. Pumping is usually
achieved with flashlamps, see Figure 7.1.

Neodymium YAG (Nd:YAG)

Neodymium YAG consists of Yttrium-Aluminium-Garnet (YAG) Y3Al5O12
in which some of the Y3+ ions are replaced by Nd3+ ions. Neodymium is a
rare earth element, where the active electronic states are shielded inner 4f
states. Nd:YAG is a four level laser, see Figure ??.

Figure 7.9: Energy level diagram for Nd:YAG, [3], p. 370.

The main emission of Nd:YAG is at 1.064μm. Another line with consider-
able less gain is at 1.32μm. Initially Nd:YAG was flashlamp pumped. Today,
much more efficient pumping is possible with laser diodes and diode arrays.
Diode pumped versions which can be very compact and efficient become a
competition for the CO2 laser in material processing, range finding, surgery,
pumping of other lasers in combination with frequency doubling to produce
a green 532nm beam).
Neodymium can also be doped in a host of other crystals such as YLF

(Nd:YLF) emitting at 1047μm, YVO4 (Nd:YVO) emitting at 1.064μm, glass
(Nd:Glass) at 1.062μm (Silicate glasses), 1.054μm (Phosphate glasses). Glass
lasers have been used to build extremely high power (Terawatt), high energy
(Megajoules) multiple beam systems for inertial confinement fusion. The big
advantage of glass is that it can be fabricated on meter scale which is hard
or even impossible to do with crystalline materials.
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Other rare earth elements are Er3+, Tm3+, Ho3+, Er3+, which have em-
mission lines at 1.53μm and in the 2-3μm range.

Ytterbium YAG (Yb:YAG)

Ytterbium YAG is a quasi three level laser, see Figure 303 emitting at
1.030μm. The lower laser level is only 500-600cm−1 (60meV) above the
ground state and is therefore at room temperature heavily thermally popu-
lated. The laser is pumped at 941 or 968nm with laser diodes to provide the
high brighness pumping needed to achieve gain.

Figure 7.10: Energy level diagram of Yb:YAG, [3], p. 374.

However, Yb:YAG has many advantages over other laser materials:

• Very low quantum defect, i.e. difference between the photon energy
necessary for pumping and photon energy of the emitted radiation,
(hfP − hfL) /hfP ˜ 9%.

• long radiative lifetime of the upper laser level, i.e. much energy can be
stored in the crystal.

• high doping levels can be used without upper state lifetime quenching

• broad emission bandwidth of ∆fFWHM = 2.5THz enabling the genera-
tion of sub-picosecond pulses
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• with cryogenic cooling Yb:YAG becomes a four level laser.

Due to the low quantum defect and the good thermal properties of YAG,
Yb:YAG lasers approaching an optical to optical efficiency of 80% and a wall
plug efficiency of 40% have been demonstrated.

Titanium Sapphire (Ti:sapphire)

In contrast to Neodymium, which is a rare earth element, Titanium is a
transition metal. The Ti3+ ions replace a certain fraction of the Al3+ ions in
sapphire (Al2O3). In transistion metal lasers, the laser active electronic states
are outer 3s electrons which couple strongly to lattice vibrations. These lat-
tice vibrations lead to strong line broadening. Therefore, Ti:sapphire has an
extremely broad amplification linewidth ∆fFWHM ≈ 100THz. Ti:sapphire
can provide gain from 650-1080nm. Therefore, this material is used in to-
days highly-tunable or very short pulse laser systems and amplifiers. Once
Ti:sapphire was developed it rapidly replaced the dye laser systems. Figure
7.11 shows the absorption and emission bands of Ti:sapphire for polarization
along its optical axis (π−polarization).

Figure 7.11: Absorption and flourescence spectra of Ti:sapphire, [10]
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7.3.4 Semiconductor Lasers

An important class of solid-state lasers are semiconductor lasers. Depending
on the semiconductor material used the emission wavelength can be further
refined by using bandstructure engineering, 0.4 μm (GaN) or 0.63-1.55 μm
(AlGaAs, InGaAs, InGaAsP) or 3-20 μm (lead salt). The AlGaAs based
lasers in the wavelength range 670nm-780 nm are used in compact disc players
and therefore are the most common and cheapest lasers in the world. In the
semiconductor laser the electronic bandstructure is exploited, which arises
from the periodic crystal potential, see problem set. The energy eigenstates
can be characterized by the periodic crystal quasi momentum vector k, see
Figure

Conduction band

Valence band

Band Gap

Figure 7.12: (a) Energy level diagram of the electronic states in a crystaline
solid-state material. There is usually a highest occupied band, the valence
band and a lowest unoccupied band the conduction band. Electronics states
in a crystal can usually be characterized by their quasi momentum k. b) The
valence and conduction band are separated by a band gap.

Since the momentum carried along by an optical photon is very small
compared to the momentum of the electrons in the crystal lattice, transistions
of an electron from the valence band to the conduction band occur essentially
vertically, see Figure 7.13 (a).
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Optical 
Transition Unoccupied states

     “Holes”

Figure 7.13: (a) At thermal equilibrium the valence band is occupied and the
conduction band is unoccupied. Optical transistions occur vertically under
momentum conservation, since the photon momentum is negligible compared
to the momentum of the electrons. (b) To obtain amplification, the medium
must be inverted, i.e. electrones must be accumulated in the conduction
band and empty states in the valence band. The missing electron behave as
a positively charged particles called holes.

Inversion, i.e. electrons in the conduction band and empty states in the
valence band, holes, see Figure 7.13 (b) can be achieved by creating a pn-
junction diode and forward biasing, see Figure 7.14.
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Figure 7.14: Forward biased pn-junction laser diode. Electrons and holes
are injected into the space charge region of a pn-junction and emit light by
recombination.

When forward-biased electrons and holes are injected into the space charge
region. The carriers recombine and emit the released energy in the form of
photons with an energy roughly equal to the band gap energy. A sketch of a
typical pn-junction diode laser is shown in Figure 7.15.

Figure 7.15: Typical broad area pn-homojunction laser, [3], p. 397.

The devices can be further refined by using heterojunctions so that the
carriers are precisely confined to the region of the waveguide mode, see Figure
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Figure 7.16: a) Refractive index profile. b) transverse beam profile, and c)
band structure (shematic) of a double-heterostructure diode laser, [3], p. 399.

.

7.3.5 Quantum Cascade Lasers

A new form of semiconductor lasers was predicted in the 70’s by the two
russian physicists Kazarinov and Suris that is based only on one kind of
electrical carriers. These are most often chosen to be electrons because of
there higher mobility. This laser is therefore a unipolar device in contrast to
the conventional semiconductor laser that uses both electrons and holes. the
transitions are intraband transistions. A layout of a quantum cascade laser
is shown in Figure 7.17.



7.3. TYPES OF LASERS 309

Figure 7.17: Quantum Cascade laser layout.

Like semiconductor lasers these lasers are electrically pumped. The first
laser of this type was realized in 1994 by Federico Capasso’s group at Bell
Laboratories [9], 23 years after the theoretical prediction. The reason for this
is the difficult layer growth, that are only possible using advanced semicon-
ductor growth capabilities such as molecular beam epitaxy (MBE) and more
recently metal oxide chemical vapor depostion (MOCVD). Lasers have been
demostrated in the few THz range [13] up to the 3.5μm region.
Some of the most important spectroscopic parameters of often used laser

media are summarized in table 7.1.

7.3.6 Homogeneous and Inhomogeneous Broadening

Laser media are also distinguished by the line broadening mechanisms in-
volved. Very often it is the case that the linewidth observed in the absorption
or emission spectrum is not only due to dephasing process that are acting on
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Laser Medium
Wave-
length
λ0(nm)

Cross
Section
σ (cm2)

Upper-St.
Lifetime
τL (μs)

Linewidth
∆fFWHM =
2
T2
(THz)

Typ
Refr.
index
n

Nd3+:YAG 1,064 4.1 · 10−19 1,200 0.210 H 1.82
Nd3+:LSB 1,062 1.3 · 10−19 87 1.2 H 1.47 (ne)
Nd3+:YLF 1,047 1.8 · 10−19 450 0.390 H 1.82 (ne)
Nd3+:YVO4 1,064 2.5 · 10−19 50 0.300 H 2.19 (ne)
Nd3+:glass 1,054 4 · 10−20 350 3 H/I 1.5
Er3+:glass 1,55 6 · 10−21 10,000 4 H/I 1.46
Ruby 694.3 2 · 10−20 1,000 0.06 H 1.76
Ti3+:Al2O3 660-1180 3 · 10−19 3 100 H 1.76
Cr3+:LiSAF 760-960 4.8 · 10−20 67 80 H 1.4
Cr3+:LiCAF 710-840 1.3 · 10−20 170 65 H 1.4
Cr3+:LiSGAF 740-930 3.3 · 10−20 88 80 H 1.4
He-Ne 632.8 1 · 10−13 0.7 0.0015 I ∼1
Ar+ 515 3 · 10−12 0.07 0.0035 I ∼1
CO2 10,600 3 · 10−18 2,900,000 0.000060 H ∼1
Rhodamin-6G 560-640 3 · 10−16 0.0033 5 H 1.33
semiconductors 450-30,000 ∼ 10−14 ∼ 0.002 25 H/I 3 - 4

Table 7.1: Wavelength range, cross-section for stimulated emission, upper-
state lifetime, linewidth, typ of lineshape (H=homogeneously broadened,
I=inhomogeneously broadened) and index for some often used solid-state
laser materials, and in comparison with semiconductor and dye lasers.

all atoms in the same, i.e. homogenous way. Lattice vibrations that lead to
a line broadening of electronic transisitions of laser ions in the crystal act in
the same way on all atoms in the crystal. Such mechanisms are called homo-
geneous broadening. However, It can be that in an atomic ensemble there
are groups of atoms with a different center frequency of the atomic tran-
sistion. The overall ensemble therefore may eventually show a very broad
linewidth but it is not related to actual dephasing mechanism that acts upon
each atom in the ensemble. This is partially the case in Nd:silicate glass
lasers, see table 7.1 and the linewidth is said to be inhomogeneously broad-
ened. Wether a transistion is homogenously or inhomogeneously broadened
can be tested by using a laser to saturate the medium. In a homogenously
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Figure 7.18: Laser with inhomogenously broaden laser medium (Nd:silicate
glass) and homogenously broadened laser medium (Nd:phosphate glass), [14]

broadened medium the loss or gain saturates homogenously, i.e. the whole
line is reduced. In an inhomogenously broadened medium a spectral hole
burning occurs, i.e. only that sub-group of atoms that are sufficiently in
resonance with the driving field saturate and the others not, which leads to a
hole in the spectral distribution of the atoms. Figure 7.18 shows the impact
of an inhomogeneously broadened gain medium on the continous wave out-
put spectrum of a laser. In homogenous broadening leads to lasing of many
longitudinal laser modes because inhomogenous saturation of the gain. In
the homogenously broadened medium the gain saturates homogenously and
only one or a few modes can lase. An important inhomogenous broadening
mechanism in gases is doppler broadening. Due to the motion of the atoms
in a gas relative to an incident electromagnetic beam, the center frequency
of each atomic transistion is doppler shifted according to its velocity by

f =
³
1± v

c

´
f0, (7.5)

where the plus sign is correct for an atom moving towards the beam and the
minus sign for a atom moving with the beam. The velocity distribution of an
ideal gas with atoms or molecules of mass m in thermal equilibrium is given
by the Maxwell-Boltzman distribution

p(v) =

r
m

2πkT
exp

µ
−mv2

2kT

¶
. (7.6)
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This means that p(v)dv is equal to the brobability that the atom or molecule
has a velocity in the interval [v, v + dv]. Here, v is the component of the
velocity that is in the direction of the beam. If the homogenous linewidth of
the atoms is small compared to the doppler broading, we obtain the lineshape
of the inhomogenously broadened gas simply by substituting the velocity by
the induced frequency shift due to the motion

v = c
f − f0
f0

(7.7)

Then the lineshape is a Gaussian

g(f) =

r
mc

2πkTf0
exp

"
−mc2

2kT

µ
f − f0
f0

¶2#
. (7.8)

The full width at half maximum of the line is

∆f = 8 ln(2)

r
kT

mc2
f0. (7.9)

7.4 Laser Dynamics (Single Mode)

In this section we want study the single mode laser dynamics. The laser
typically starts to lase in a few closely spaced longitudinal modes, which are
incoherent with each other and the dynamics is to a large extent similar to
the dynamics of a single mode that carries the power of all lasing modes. To
do so, we complement the rate equations for the populations in the atomic
medium, that can be reduced to the population of the upper laser level
Eq.(7.4) as discussed before with a rate equation for the photon population
in the laser mode.

There are two different kinds of laser cavities, linear and ring cavities, see
Figure 7.19
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Figure 7.19: Possible cavity configurations. (a) Schematic of a linear cavity
laser. (b) Schematic of a ring laser.

The laser resonators can be modelled as Fabry Perots as discussed in
section . Typically the techniques are used to avoid lasing of transverse modes
and only the longitudinal modes are of interest. The resonance frequencies
of the longitudinal modes are determined by the round trip phase to be a
multiple of 2π

φ(ωm) = 2mπ. (7.10)

neighboring modes are space in frequency by the inverse roundtrip time

φ(ω0 +∆ω) = φ(ω0) + TR∆ω = 2mπ. (7.11)

TR is the round trip time in the resonator, which is

TR =
2∗L

νg
, (7.12)
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Figure 7.20: Laser gain and cavity loss spectra, longitudinal mode location,
and laser output for multimode laser operation.

where νg is the group velocity in the cavity in the frequency range considered,
and L is the cavity length of the linear or ring cavity and 2∗ = 1 for the ring
cavity and 2∗ = 2 for the linear cavity. In the case of no dispersion, the
longitudinal modes of the resonator are multiples of the inverse roundtrip
timeand

fm = m
1

TR
. (7.13)

The mode spacing of the longitudinal modes is

∆f = fm − fm−1 =
1

TR
(7.14)

If we assume frequency independent cavity loss and Lorentzian shaped gain
(see Fig. 7.20). Initially when the laser gain is larger then the cavity loss,
many modes will start to lase. To assure single frequency operation a filter
(etalon) can be inserted into the laser resonator, see Figure 7.21. If the laser
is homogenously broadened the laser gain will satured to the loss level and
only the mode at the maximum of the gain will lase. If the gain is not
homogenously broadend and in the absence of a filter many modes will lase.
For the following we assume a homogenously broadend laser medium and

only one cavity mode is able to lase. We want to derive the equations of
motion for th population inversion, or population in the upper laser level and
the photon number in that mode, see Figure 7.22.
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Figure 7.21: Gain and loss spectra, longitudinal mode locations, and laser
output for single mode laser operation.

Figure 7.22: Rate equations for a laser with two-level atoms and a resonator.

The intensity I in a mode propagating at group velocity vg with a mode
volume V is related to the number of photons NL or the number density
nL = NL/V stored in the mode with volume V by

I = hfL
NL

2∗V
vg =

1

2∗
hfLnLvg, (7.15)

where hfL is the photon energy. 2∗ = 2 for a linear laser resonator (then
only half of the photons are going in one direction), and 2∗ = 1 for a ring
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laser. In this first treatment we consider the case of space-independent rate
equations, i.e. we assume that the laser is oscillating on a single mode and
pumping and mode energy densities are uniform within the laser material.
With the interaction cross section σ for stimulated emission defined as

σ =
hfL
IsT1

, (7.16)

and Eq. (7.4) with the number of atoms in the mode, we obtain

d

dt
N2 = −

N2

τL
− 2∗σN2vgnL +Rp. (7.17)

Here, vgnL is the photon flux, σ is the stimulated emission cross section,
τL = γ21 the upper state lifetime and Rp is the pumping rate into the upper
laser level. A similar rate equation can be derived for the photon density

d

dt
nL = −

nL
τ p
+ 2∗

σvg
V

N2

µ
nL +

1

V

¶
. (7.18)

Here, τ p is the photon lifetime in the cavity or cavity decay time. The 1/V
-term in Eq.(7.18) accounts for spontaneous emission which is equivalent to
stimulated emission by one photon occupying the mode with mode volume V .
For a laser cavity with a semi-transparent mirror with amplitude transmission
T , see section 2.3.8, producing a power loss 2l = 2T per round-trip in the
cavity, the cavity decay time is τ p = 2l/TR , if TR = 2∗L/c0 is the roundtrip-
time in linear cavity with optical length 2L or a ring cavity with optical length
L. Eventual internal losses can be treated in a similar way and contribute to
the cavity decay time. Note, the decay rate for the inversion in the absence of
a field, 1/τL, is not only due to spontaneous emission, but is also a result of
non radiative decay processes. See for example the four level system shown
in Fig. 7.6.
So the two rate equations are

d

dt
N2 = −N2

τL
− 2∗σvgN2nL +Rp (7.19)

d

dt
nL = −nL

τ p
+ 2∗

σvg
V

N2

µ
nL +

1

V

¶
. (7.20)

Experimentally, the photon number and the inversion in a laser resonator
are not very convenient quantities, therefore, we normalize both equations to
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the round-trip amplitude gain g = 2∗ σvg
2V

N2TR experienced by the light and
the circulating intracavity power P = I ·Aeff

d

dt
g = −g − g0

τL
− gP

Esat
(7.21)

d

dt
P = − 1

τ p
P +

2g

TR
(P + Pvac) , (7.22)

with

Esat =
hfL
2∗σ

Aeff =
1

2∗
IsAeffτL (7.23)

Psat = Es/τL (7.24)

Pvac = hfLvg/2
∗L = hfL/TR (7.25)

g0 = 2∗
Rp

2Aeff
στL, (7.26)

the small signal round-trip gain of the laser. Note, the factor of two in front
of gain and loss is due to the fact, that we defined g and l as gain and loss
with respect to amplitude. Eq.(7.26) elucidates that the figure of merit that
characterizes the small signal gain achievable with a certain laser material is
the στL-product.

7.5 Continuous Wave Operation

If Pvac ¿ P ¿ Psat = Esat/τL, than g = g0 and we obtain from Eq.(7.22),
neglecting Pvac

dP

P
= 2 (g0 − l)

dt

TR
(7.27)

or
P (t) = P (0)e

2(g0−l) t
TR . (7.28)

The laser power builts up from vaccum fluctuations, see Figure 7.23 until it
reaches the saturation power, when saturation of the gain sets in within the
built-up time

TB =
TR

2 (g0 − l)
ln

Psat

Pvac
=

TR
2 (g0 − l)

ln
AeffTR
στL

. (7.29)
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Figure 7.23: Built-up of laser power from spontaneous emission noise.

Some time after the built-up phase the laser reaches steady state, with
the saturated gain and steady state power resulting from Eqs.(7.21-7.22),
neglecting in the following the spontaneous emission, Pvac = 0, and for d

dt
=

0 :

gs =
g0

1 + Ps
Psat

= l (7.30)

Ps = Psat

³g0
l
− 1
´
, (7.31)

Figure 7.24 shows output power and gain as a function of small signal gain
g0, which is proportional to the pump rate. Below threshold, the output
power is zero and the gain increases linearly with in crease pumping. After
reaching threshold the gain stays clamped at the threshold value determined
by gain equal loss and the output power increases linearly.

7.6 Stability and Relaxation Oscillations

How does the laser reach steady state, once a perturbation has occured?

g = gs +∆g (7.32)

P = Ps +∆P (7.33)
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Figure 7.24: Output power and gain of a laser as a function of pump power.

Substitution into Eqs.(7.21-7.22) and linearization leads to

d∆P

dt
= +2

Ps

TR
∆g (7.34)

d∆g

dt
= − gs

Esat
∆P − 1

τ stim
∆g (7.35)

where 1
τstim

= 1
τL

¡
1 + Ps

Psat

¢
is the inverse stimulated lifetime. The stimulated

lifetime is the lifetime of the upper laser state in the presence of the optical
field. The perturbations decay or grow likeµ

∆P
∆g

¶
=

µ
∆P0
∆g0

¶
est. (7.36)

which leads to the system of equations (using gs = l)

A

µ
∆P0
∆g0

¶
=

Ã
−s 2 Ps

TR

− TR
Esat2τp

− 1
τstim

− s

!µ
∆P0
∆g0

¶
= 0. (7.37)

There is only a solution, if the determinante of the coefficient matrix vanishes,
i.e.

s

µ
1

τ stim
+ s

¶
+

Ps

Esatτ p
= 0, (7.38)

which determines the relaxation rates or eigen frequencies of the linearized
system

s1/2 = −
1

2τ stim
±

sµ
1

2τ stim

¶2
− Ps

Esatτ p
. (7.39)
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Introducing the pump parameter r = 1 + Ps
Psat

, which tells us how often we
pump the laser over threshold, the eigen frequencies can be rewritten as

s1/2 = − 1

2τ stim

Ã
1± j

s
4 (r − 1)

r

τ stim
τ p
− 1
!
, (7.40)

= − r

2τL
± j

s
(r − 1)
τLτ p

−
µ

r

2τL

¶2
(7.41)

There are several conclusions to draw:

• (i): The stationary state (0, g0) for g0 < l and (Ps, gs) for g0 > l are
always stable, i.e. Re{si} < 0.

• (ii): For lasers pumped above threshold, r > 1, and long upper state
lifetimes, i.e. r

4τL
< 1

τp
,

the relaxation rate becomes complex, i.e. there are relaxation oscilla-
tions

s1/2 = −
1

2τ stim
± jωR. (7.42)

with a frequency ωR approximately equal to the geometric mean of
inverse stimulated lifetime and photon life time

ωR ≈
s

1

τ stimτ p
. (7.43)

• If the laser can be pumped strong enough, i.e. r can be made large
enough so that the stimulated lifetime becomes as short as the cavity
decay time, relaxation oscillations vanish.

The physical reason for relaxation oscillations and instabilities related to
it is, that the gain reacts to slow on the light field, i.e. the stimulated lifetime
is long in comparison with the cavity decay time.

Example: diode-pumped Nd:YAG-Laser

λ0 = 1064 nm, σ = 4 · 10−20cm2, Aeff = π (100μm× 150μm) , r = 50
τL = 1.2 ms, l = 1%, TR = 10ns
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From Eq.(7.16) we obtain:

Isat =
hfL
στL

= 3.9
kW

cm2
, Psat = IsatAeff = 1.8 W, Ps = 91.5W

τ stim =
τL
r
= 24μs, τ p = 1μs, ωR =

s
1

τ stimτ p
= 2 · 105s−1.

Figure 7.25 shows the typically observed fluctuations of the output of a solid-

Figure 7.25: Relaxation oscillations in the time and frequency domain.

state laser in the time and frequency domain. Note, that this laser has a long
upperstate lifetime of several 100 μs
One can also define a quality factor for the relaxation oscillations by the

ratio of the imaginary to the real part of the complex eigen frequencies 7.41

Q =

s
4τL
τ p

(r − 1)
r2

. (7.44)

The quality factor can be as large a several thousand for solid-state lasers
with long upper-state lifetimes in the millisecond range.
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7.7 Laser Efficiency

An important measure for a laser is the efficiency with which pump power
is converted into laser output power. To determine the efficiency we must
review the important parameters of a laser and the limitations these param-
eters impose.
From Eq.(7.31) we found that the steady state intracavity power Ps of a

laser is

Ps = Psat

µ
2g0
2l
− 1
¶
, (7.45)

where 2g0 is the small signal round-trip power gain, Psat the gain saturation
power and 2l is the power loss per round-trip. Both parameters are expressed
in Eqs.(7.23)-(7.26) in terms of the fundamental pump parameter Rp, στL-
product and mode cross section Aeff of the gain medium. For this derivation
it was asummed that all pumped atoms are in the laser mode with constant
intensity over the beam cross section

2g0 = 2∗
Rp

Aeff
στL, (7.46)

Psat =
hfL
2∗στL

Aeff (7.47)

The power losses of lasers are due to the internal losses 2lint and the trans-
mission T through the output coupling mirror. The internal losses can be a
significant fraction of the total losses. The output power of the laser is

Pout = T · Psat

µ
2g0

2lint + T
− 1
¶

(7.48)

The pump power of a laser is minimized given

Pp = RphfP , (7.49)

where hfP is the energy of the pump photons. In discussing the efficiency of
a laser, we consider the overall efficiency

η =
Pout

Pp
(7.50)



7.8. "THRESHOLDLESS" LASING 323

which approaches the differential efficiency ηD if the laser is pumped many
times over threshold, i.e. r = 2g0/2l→∞

ηD =
∂Pout

∂Pp
= η(r →∞) (7.51)

=
T

2lint + T
Psat

2∗

AeffhfP
στL (7.52)

=
T

2lint + T
· hfL
hfP

. (7.53)

Thus the efficiency of a laser is fundamentally limited by the ratio of output
coupling to total losses and the quantum defect in pumping. Therefore,
one would expect that the optimum output coupling is achieved with the
largest output coupler, however, this is not true as we considered the case of
operating many times above threshold.

7.8 "Thresholdless" Lasing

So far we neglected the spontaneous emission into the laser mode. This is
justified for large lasers where the density of radiation modes in the laser
medium is essentially the free space mode density and effects very close to
threshold are not of interest. For lasers with small mode volume, or a laser
operating very close to threshold, the spontaneous emission into the laser
mode can no longer be neglected and we should use the full rate equations
(7.21) and (7.22)

d

dt
g = −g − g0

τL
− gP

Esat
(7.54)

d

dt
P = − 1

τ p
P +

2g

TR
(P + Pvac) , (7.55)

where Pvac is the power of a single photon in the mode. The steady state
conditions are

gs =
g0

(1 + Ps/Psat)
, (7.56)

0 = (2gs − 2l)P + 2gsPvac. (7.57)
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Substitution of the saturated gain condition (7.56) into (7.57) and using the
pump parameter r = 2g0/2l, leads to a quadratic equation for the normalized
intracavity steady state power p=Ps/Psat in terms of normalized vacuum
power pv = Pvac/Psat = στLvg/V. This equation has the solutions

p =
r − 1 + rpv

2
±

sµ
r − 1 + rpv

2

¶2
+ (rpv)

2. (7.58)

where only the solution with the plus sign is of physical significance. Note,
the typical value for the στL-product of the laser materials in table 7.1 is
στL = 10−23cm2s. If the volume is measured in units of wavelength cubed
we obtain pv = 0.3/β forλ = 1μm, V = βλ3 and vg = c. Figure 7.26 shows
the behavior of the intracavity power as a function of the pump parameter
for various values of the normalized vacuum power.
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Figure 7.26: Intracavity power as a function of pump parameter r on a linear
scale (a) and a logarithmic scale (b) for various values of the normalized
vacuum power.
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Figure 7.26 shows that for lasers with small mode volumes, i.e. mode
volumes of the size of the wavelength cubed, the threshold is no longer well
defined.

7.9 Short pulse generation by Q-Switching

The energy stored in the laser medium can be released suddenly by increasing
the Q-value of the cavity so that the laser reaches threshold. This can be
done actively, for example by quickly moving one of the resonator mirrors
in place or passively by placing a saturable absorber in the resonator [?, 8].
Hellwarth first suggest this method only one year after the invention of the
laser. As a rough orientation for a solid-state laser the following relation for
the relevant time scales is generally valid

τL À TR À τ p. (7.59)

7.9.1 Active Q-Switching

(a)
Losses

t

High losses, laser is below threshold

(b)
Losses

t

Build-up of inversion by pumping

(c)
Losses

t

In active Q-switching, the losses are redu
after the laser medium is pumped for as lo
upper state lifetime. Then the loss is redu
and laser oscillation starts.

(d)

Gain

Losses

t

Length of pump pulse 

"Q-switched" Laserpuls

Laser emission stops after the energy sto
the gain medium is extracted. 

Gain

Gain

Figure 7.27: Gain and loss dynamics of an actively Q-switched laser.



326 CHAPTER 7. LASERS

Fig. 7.27 shows the principle dynamics of an actively Q-switched laser. The
laser is pumped by a pump pulse with a length on the order of the upper-
state lifetime, while the intracavity losses are kept high enough so that the
laser can not reach threshold. At this point, the laser medium acts as energy
storage with the energy slowly relaxing by spontaneous and nonradiative
transitions. Intracavity loss is suddenly reduced, for example by a rotating
cavity mirror. The laser is pumped way above threshold and the light field
builts exponentially up until the pulse energy comes close to the saturation
energy of the gain medium. The gain saturates and its energy is extracted,
causing the laser to be shut off by the pulse itself.
A typical actively Q-switched pulse is asymmetric: The rise time is pro-

portional to the net gain after the Q-value of the cavity is actively switched
to a high value. The light intensity grows proportional to 2g0/TR. When the
gain is depleted, the fall time mostly depends on the cavity decay time τ p,
see Figure 7.28. For short Q-switched pulses a short cavity length, high gain
and a large change in the cavity Q is necessary. If the Q-switch is not fast,
the pulse width may be limited by the speed of the switch. Typical time
scales for electro-optical and acousto-optical switches are 10 ns and 50 ns,
respectively

0 20161284
Time (ns)

In
te

ns
ity

~1/τ p

~ g   /TR0

Figure 7.28: Asymmetric actively Q-switched pulse.

For example, with a diode-pumped Nd:YAG microchip laser [15] using an
electro-optical switch based on LiTaO3 Q-switched pulses as short as 270 ps
at repetition rates of 5 kHz, peak powers of 25 kW at an average power of
34 mW, and pulse energy of 6.8 μJ have been generated (Figure 7.29).



7.9. SHORT PULSE GENERATION BY Q-SWITCHING 327

Figure 7.29: Q-switched microchip laser using an electro-optic switch. The
pulse is measured with a sampling scope [15]

7.9.2 Passive Q-Switching

In the case of passive Q-switching, the intracavity loss modulation is per-
formed by a saturable absorber, which introduces large losses for low inten-
sities of light and small losses for high intensity.
Relaxation oscillations are due to a periodic exchange of energy stored in

the laser medium by the inversion and the light field. Without the saturable
absorber these oscillations are damped. If for some reason there is t0o much
gain in the system, the light field can build up quickly. Especially for a low
gain cross section the back action of the growing laser field on the inversion is
weak and it can grow further. This growth is favored in the presence of loss
that saturates with the intensity of the light. The laser becomes unstable
and the field intensity growth as long as the gain does not saturate below
the net loss, see Fig.7.30.
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Loss

Pulse

Gain

Figure 7.30: Gain and loss dynamics of a passively Q-switched laser

The saturable absorber leads to a destabilization of the relaxation oscil-
lations resulting in the giant laser pulses.

7.10 Short pulse generation by mode locking

Q-switching is a single mode pheonomenon, i.e. the pulse build-up and decay
occurs over many round-trips via build-up of energy and decay in a single (or
a few) longitudinal mode. If one could get several longitudinal modes lasing
in a phase coherent fashion with resepct to each other, these modes would
be the Fourier components of a periodic pulse train emitted from the laser.
Then a single pulse is traveling inside the laser cavity. This is called mode
locking and the pulses generated are much shorter than the cavity round-
trip time due to interference of the fields from many modes. The electric
field can be written as a superpostion of the longitudinal modes. We neglect
polarization for the moment.

E(z, t) = <
"X

m

Ême
j(ωmt−kmz+φm)

#
, (7.60a)

ωm = ω0 +m∆ω = ω0 +
mπc

, (7.60b)

km =
ωm

c
. (7.60c)
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Equation (7.60a) can be rewritten as

E(z, t) = <
(
ejω0(t−z/c)

X
m

Ême
j(m∆ω(t−z/c)+φm)

)
(7.61a)

= <
£
A(t− z/c)ejω0(t−z/c)

¤
(7.61b)

with the complex envelope

A
³
t− z

c

´
=
X
m

Eme
j(m∆ω(t−z/c)+φm) = complex envelope (slowly varying).

(7.62)
ejω0(t−z/c) is the carrier wave (fast oscillation). Here, both the carrier and the
envelope travel with the same speed (no dispersion assumed). The envelope
function is periodic with period

T =
2π

∆ω
=
2

c
=

L

c
, (7.63)

where L is the optical round-trip length in the cavity. If we assume that N
modes with equal amplitudes Em = E0 and equal phases φm = 0 are lasing,
the envelope is given by

A(z, t) = E0

(N−1)/2X
m=−(N−1)/2

ej(m∆ω(t−z/c)). (7.64)

With
q−1X
m=0

am =
1− aq

1− a
, (7.65)

we obtain

A(z, t) = E0
sin
£
N∆ω
2

¡
t− z

c

¢¤
sin
£
∆ω
2

¡
t− z

c

¢¤ . (7.66)

The laser intensity I is proportional to E(z, t)2 averaged over one optical
cycle: I ∼ |A(z, t)|2. At z = 0, we obtain

I(t) ∼ |E0|2
sin2

¡
N∆ωt
2

¢
sin2

¡
∆ωt
2

¢ . (7.67)

The periodic pulses given by Eq. (7.67) have
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• the period: T = 1/∆f = L/c

• pulse duration: ∆t = 2π
N∆ω

= 1
N∆f

• peak intensity ∼ N2|E0|2

• average intensity ∼ N |E0|2 ⇒ peak intensity is enhanced by a
factor N .

If the phases of the modes are not locked, i.e. φm is a random sequence
then the intensity fluctuates randomly about its average value (∼ N |E0|2),
which is the same as in the mode-locked case. Figure 7.31 shows the intensity
of a modelocked laser versus time,if the relative phases of the modes to each
other is (a) constant and (b) random

Figure 7.31: Laser intensity versus time from a mode-locked laser with (a)
perfectly locked phases and (b) random phases.

We are distinguishing between active modelocking, where an external
loss modulator is inserted in the cavity to generate modelocked pulses, and
passive modelocking, where the pulse is modulating the intracavity itself via
a saturable absorber.
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7.10.1 Active Mode Locking

Active mode locking was first investigated in 1970 by Kuizenga and Siegman
[16] and later by Haus [17] . In the approach by Haus, modelocking is treated
as a pulse propagation problem.

Figure 7.32: Actively modelocked laser with an amplitude modulator
(Acousto-Optic-Modulator).

The pulse is shaped in the resonator by the finite bandwidth of the gain
and the loss modulator, which periodically varies the intracavity loss ac-
cording to q(t) = M (1− cos(ωMt)). The modulation frequency has to be
precisely tuned to the resonator round-trip time, ωM = 2π/TR, see Fig.7.32.
The mode locking process is then described by the master equation for the
slowly varying pulse envelope

TR
∂A

∂T
=

∙
g(T ) +Dg

∂2

∂t2
− l −M (1− cos(ωMt))

¸
A. (7.68)

This equation can be interpreted as the total pulse shaping due to gain, loss
and modulator within one roundtrip, see Fig.7.33.
If we fix the gain in Eq. (7.68) at its stationary value, what ever it might

be, Eq.(7.68) is a linear p.d.e, which can be solved by separation of variables.
The pulses, we expect, will have a width much shorter than the round-trip
time TR. They will be located in the minimum of the loss modulation where
the cosine-function can be approximated by a parabola and we obtain

TR
∂A

∂T
=

∙
g − l +Dg

∂2

∂t2
−Mst

2

¸
A. (7.69)
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Figure 7.33: Schematic representation of the master equation for an actively
mode-locked laser.

Ms is the modulation strength, and corresponds to the curvature of the loss
modulation in the time domain at the minimum loss point

Dg =
g

Ω2g
, (7.70)

Ms =
Mω2M
2

. (7.71)

The differential operator on the right side of (7.69) corresponds to the Schrödinger-
Operator of the harmonic oscillator problem. Therefore, the eigen functions
of this operator are the Hermite-Gaussians

An(T, t) = An(t)e
λnT/TR , (7.72)

An(t) =

s
Wn

2n
√
πn!τa

Hn(t/τa)e
− t2

2τ2a , (7.73)

where τa determines the pulse width of the Gaussian pulse. The width is
given by the fourth root of the ratio between gain dispersion and modulator
strength

τa =
4

q
Dg/Ms. (7.74)

Note, from Eq. (7.72) we see that the gain per round-trip of each eigenmode



7.10. SHORT PULSE GENERATION BY MODE LOCKING 333

is given by λn (or in general the real part of λn), which is given by

λn = gn − l − 2Msτ
2
a(n+

1

2
). (7.75)

The corresponding saturated gain for each eigen solution is given by

gn =
1

1 + Wn

PLTR

, (7.76)

where Wn is the energy of the corresponding solution and PL = EL/τL the
saturation power of the gain. Eq. (7.75) shows that for a given g the eigen
solution with n = 0, the ground mode, has the largest gain per roundtrip.
Thus, if there is initially a field distribution which is a superpostion of all
eigen solutions, the ground mode will grow fastest and will saturate the gain
to a value

gs = l +Msτ
2
a. (7.77)

such that λ0 = 0 and consequently all other modes will decay since λn < 0 for
n ≥ 1. This also proves the stability of the ground mode solution [17]. Thus
active modelocking without detuning between resonator round-trip time and
modulator period leads to Gaussian steady state pulses with a FWHM pulse
width

∆tFWHM = 2 ln 2τa = 1.66τa. (7.78)

The spectrum of the Gaussian pulse is given by

Ã0(ω) =

Z ∞

−∞
A0(t)e

iωtdt (7.79)

=

q√
πWnτae

− (ωτa)
2

2 , (7.80)

and its FWHM is
∆fFWHM =

1.66

2πτa
. (7.81)

Therfore, the time-bandwidth product of the Gaussian is

∆tFWHM ·∆fFWHM = 0.44. (7.82)

The stationary pulse shape of the modelocked laser is due to the parabolic
loss modulation (pulse shortening) in the time domain and the parabolic
filtering (pulse stretching) due to the gain in the frequency domain, see Figs.
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7.34 and 7.35. The stationary pulse is achieved when both effects balance.
Since external modulation is limited to electronic speed and the pulse width
does only scale with the inverse square root of the gain bandwidth actively
modelocking typically only results in pulse width in the range of 10-100ps.

Figure 7.34: Loss modulation leads to pulse shortening in each roundtrip

Figure 7.35: The finite gain bandwidth broadens the pulse in each roundtrip.
For a certain pulse width there is balance between the two processes.

For example: Nd:YAG; 2l = 2g = 10%, Ωg = π∆fFWHM = 0.65 THz,
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M = 0.2, fm = 100 MHz,Dg = 0.24 ps2,Ms = 4 · 1016s−1, τ p ≈ 99 ps.
With the pulse width (7.74), Eq.(7.77) can be rewritten in several ways

gs = l +Msτ
2
a = l +

Dg

τ 2a
= l +

1

2
Msτ

2
a +

1

2

Dg

τ 2a
, (7.83)

which means that in steady state the saturated gain is lifted above the loss
level l, so that many modes in the laser are maintained above threshold.
There is additional gain necessary to overcome the loss of the modulator due
to the finite temporal width of the pulse and the gain filter due to the finite
bandwidth of the pulse. Usually

gs − l

l
=

Msτ
2
a

l
¿ 1, (7.84)

since the pulses are much shorter than the round-trip time. The stationary
pulse energy can therefore be computed from

gs =
1

1 + Ws

PLTR

= l. (7.85)

The name modelocking originates from studying this pulse formation process
in the frequency domain. Note, the term

−M [1− cos(ωMt)]A

generates sidebands on each cavity mode present according to

−M [1− cos(ωMt)] exp(jωn0t)

= −M
∙
exp(jωn0t)−

1

2
exp(j(ωn0t− ωMt))− 1

2
exp(j(ωn0t+ ωMt))

¸
= M

∙
− exp(jωn0t) +

1

2
exp(jωn0−1t) +

1

2
exp(jωn0+1t)

¸
if the modulation frequency is the same as the cavity round-trip frequency.
The sidebands generated from each running mode is injected into the neigh-
boring modes which leads to synchronisation and locking of neighboring
modes, i.e. mode-locking, see Fig.7.36
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f

1-M

n0-1

MM

n0+1fn0f f

Figure 7.36: Modelocking in the frequency domain: The modulator transvers
energy from each mode to its neighboring mode, thereby redistributing en-
ergy from the center to the wings of the spectrum. This process seeds and
injection locks neighboring modes.

7.10.2 Passive Mode Locking

Electronic loss modulation is limited to electronic speeds. Therefore, the
curvature of the loss modulation that determines the pulse length is limited.
It is desirable that the pulse itself modulates the loss. The shorter the pulse
the sharper the loss modulation and eventually much shorter pulses can be
reached.
The dynamics of a laser modelocked with a fast saturable absorber can

also be easily understood using the master equation (7.68) and replacing the
loss due to the modulator with the loss from a saturable absorber. For a
fast saturable absorber, the losses q react instantaneously on the intensity or
power P (t) = |A(t)|2 of the field

q(A) =
q0

1 + |A|2
PA

, (7.86)

where PA is the saturation power of the absorber. Such absorbers can be
made out of semiconductor materials or nonlinear optical effects can be used
to create artificial saturable absorption, such as in Kerr lens mode locking.
There is no analytic solution of the master equation (7.68) when the

loss modulation is replaced by the absorber response (7.86). We can how-
ever make expansions on the absorber response to get analytic insight. If
the absorber is not saturated, we can expand the response (7.86) for small
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intensities
q(A) = q0 − γ|A|2, (7.87)

with the saturable absorber modulation coefficient γ = q0/PA. The constant
nonsaturated loss q0 can be absorbed in the losses l0 = l + q0. The resulting
master equation is

TR
∂A(T, t)

∂T
=

∙
g − l0 +Df

∂2

∂t2
+ γ|A|2

¸
A(T, t). (7.88)

Up to the imaginary unit, this equation is similar to a type of nonlinear
Schroedinger Equation, i.e. the potential depends on the wave function itself.
One finds as a possible stationary solution

As(T, t) = As(t) = A0sech
µ
t

τ

¶
. (7.89)

Note, there is

d

dx
sechx = − tanhx sechx, (7.90)

d2

dx2
sechx = tanh2 x sechx − sech3x,

=
¡
sechx− 2 sech3x

¢
. (7.91)

Substitution of the solution (7.89) into the master equation (7.88), and as-
suming steady state, results in

0 =

∙
(g − l0) +

Df

τ 2

∙
1− 2sech2

µ
t

τ

¶¸
+γ|A0|2sech2

µ
t

τ

¶¸
·A0sech

µ
t

τ

¶
. (7.92)

Comparison of the coefficients with the sech- and sech3-expressions leads
to a condition for the peak pulse intensity and pulse width, τ , and for the
saturated gain

Df

τ 2
=

1

2
γ|A0|2, (7.93)

g = l0 −
Df

τ 2
. (7.94)



338 CHAPTER 7. LASERS

From Eq.(7.93) and with the pulse energy of a sech pulse

W =

Z +∞

−∞
2|As(t)|2dt = 2|A0|2τ , (7.95)

follows
τ =

4Df

γW
. (7.96)

gs(W ) =
g0

1 + W
PLTR

(7.97)

Equation (7.94) together with (7.96) determines the pulse energy

gs(W ) =
g0

1 + W
PLTR

= l0 −
Df

τ 2

= l0 −
(γW )2

16Dg
(7.98)

Figure 7.37 shows the time dependent variation of gain and loss in a laser
modelocked with a fast saturable absorber on a normalized time scale.

Figure 7.37: Gain and loss in a passively modelocked laser using a fast sat-
urable absorber on a normalized time scale x = t/τ . The absorber is assumed

to saturate linearly with intensity according to q(A) = q0
³
1− |A|2

A20

´
.
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Here, we assumed that the absorber saturates linearly with intensity up
to a maximum value q0 = γA20. If this maximum saturable absorption is
completely exploited, see Figure 7.38.

Figure 7.38: Saturation characteristic of an ideal saturable absorber

The minimum pulse width achievable with a given saturable absorption
q0 results from Eq.(7.93)

Df

τ 2
=

q0
2
, (7.99)

to be

τ =

r
2

q0

1

Ωf
. (7.100)

Note that in contrast to active modelocking the achievable pulse width is now
scaling with the inverse gain bandwidth. This gives much shorter pulses.
Figure 7.37 can be interpreted as follows: In steady state, the saturated
gain is below loss, by about one half of the exploited saturable loss before
and after the pulse. This means that there is net loss outside the pulse,
which keeps the pulse stable against growth of instabilities at the leading
and trailing edge of the pulse. If there is stable mode-locked operation, there
must always be net loss far away from the pulse, otherwise, a continuous
wave signal running at the peak of the gain would experience more gain than
the pulse and would break through. From Eq.(7.93) it follows, that one third
of the exploited saturable loss is used up during saturation of the aborber
and actually only one sixth is used to overcome the filter losses due to the
finite gain bandwidth. Note, there is a limit to the mimium pulse width.
This limit is due to the saturated gain (7.94), gs = l + 1

2
q0. Therefore, from
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Eq.(7.100), if we assume that the finite bandwidth of the laser is set by the
gain, i.e. Df = Dg =

g
Ω2g
, we obtain for q0 À l

τmin =
1

Ωg
(7.101)

for the linearly saturating absorber model. This corresponds to mode locking
over the full bandwidth of the gain medium, as for a sech-shaped pulse, the
time-bandwidth product is 0.315, and therefore,

∆fFWHM =
0.315

1.76 · τmin
=

Ωg

1.76 · π . (7.102)

As an example, for the Ti:sapphire laser this corresponds to Ωg = 240 THz,
τmin = 3.7 fs, τFWHM = 6.5 fs, which is in good agreement with experimen-
tally observed results [19].
This concludes the introdcution into ultrashort pulse generation by mode

locking.
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