Chapter 2

Classical Electromagnetism and
Optics

The classical electromagnetic phenomena are completely described by Maxwell’s
Equations. The simplest case we may consider is that of electrodynamics of
isotropic media

2.1 Maxwell’s Equations of Isotropic Media

Maxwell’s Equations are

VxH = =+ (2.1a)
VxE = —aa—lf, (2.1b)
V-D = p, (2.1c)
V-B = 0. (2.1d)
The material equations accompanying Maxwell’s equations are:
D = eFE+P, (2.2a)
B = puH+ M. (2.2b)

Here, E and H are the electric and magnetic field, D the dielectric flux, B
the magnetic flux, J the current density of free chareges, p is the free charge
density, P is the polarization, and M the magnetization.
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Note, it is Egs.(2.2a) and (2.2b) which make electromagnetism an inter-
esting and always a hot topic with never ending possibilities. All advances in
engineering of artifical materials or finding of new material properties, such
as superconductivity, bring new life, meaning and possibilities into this field.

By taking the curl of Eq. (2.1b) and considering

v (wE) v (v - E) AR,
where V is the Nabla operator and A the Laplace operator, we obtain

. 9 (. 9E aP\ o B,
AE -y <j+ 0—+—> — x4V (v E) (2.3)

ot ot ot
and hence
1 02 0j 0? 0 s
(A — Co 81&2) E = o (E% + @P> + athM+V (V E) . (2.4)

with the vacuum velocity of light

1
Cop= 4| —. 2.5
’ Ho€o ( )

For dielectric non magnetic media, which we often encounter in optlcs with
no free charges and currents due to free charges, there is M = 0, J=0,
p = 0, which greatly simplifies the wave equation to

1 5 i
(A— 08t2)E poz P+ (V-E). (2.6)

2.1.1 Helmholtz Equation

In general, the polarization in dielectric media may have a nonlinear and
non local dependence on the field. For linear media the polarizability of the
medium is described by a dielectric susceptibility x (7 t)

ﬁ(r,t):eof/dr"dt’X(F—F’,t—t’)ﬁ(r",t’). (2.7)
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The polarization in media with a local dielectric suszeptibility can be de-
scribed by

—

Blrt) = / dt (7t — ) B (7.1 (2.8)

This relationship further simplifies for homogeneous media, where the sus-
ceptibility does not depend on location

—

B 1) = e / ity (t—t) B (7). (2.9)
which leads to a dielectric response function or permittivity

€(t) = eo(0(1) + x (1)) (2.10)

and with it to

—

B, 1) = / it e (t— 1) B (7 t). (2.11)

In such a linear homogeneous medium follows from eq.(2.1c) for the case of
no free charges

/ 4t e (t— 1) (V- B (F1) = 0. (2.12)

This is certainly fulfilled for V-E = 0, which simplifies the wave equation
(2.4) further
102\ = 0? =
A——=— | E=puy—=—P~P. 2.13
( cgat2) Hoge (2.13)
This is the wave equation driven by the polarization of the medium. If the
medium is linear and has only an induced polarization, completely described
in the time domain x (¢) or in the frequency domain by its Fourier transform,
the complex susceptibility y(w) = €.(w) — 1 with the relative permittivity
é€-(w) = €(w)/€o, we obtain in the frequency domain with the Fourier trans-
form relationship
E(z,w) = / E(z,t)e 7tdt, (2.14)

—00

P(w) = et(w)E(w), (2.15)
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where, the tildes denote the Fourier transforms in the following. Substituted
into (2.13)

(A + ‘Z-Q) E(w) = —2geot(w) E(w), (2.16)
we obtain ) B
(A + c;’—%(1 + 5@)) E(w) =0, (2.17)

with the refractive index n(w) and 1+ x(w) = n(w)? results in the Helmholtz
equation

(A 4 i—j) E(w) =0, (2.18)

where ¢(w) = ¢o/n(w) is the velocity of light in the medium. This equation
is the starting point for finding monochromatic wave solutions to Maxwell’s
equations in linear media, as we will study for different cases in the following.
Also, so far we have treated the susceptibility x(w) as a real quantity, which
may not always be the case as we will see later in detail.

2.1.2 Plane-Wave Solutions (TEM-Waves) and Com-
plex Notation

The real wave equation (2.13) for a linear medium has real monochromatic
plane wave solutions Ey(,t), which can be be written most efficiently in
terms of the complex plane-wave solutions Er(7,t) according to

—

Ep(r,t) =

lr= = =

S Bt + By = we {Exmn) ), (219)
with )

E (7 t) = B; @R &(k), (2.20)
Note, we explicitly underlined the complex wave to indicate that this is a
complex quantity. Here, €(k) is a unit vector indicating the direction of the
electric field which is also called the polarization of the wave, and L} is

the complex field amplitude of the wave with wave vector k. Substitution
of eq.(2.19) into the wave equation results in the dispersion relation, i.e. a



2.1. MAXWELL’S EQUATIONS OF ISOTROPIC MEDIA 17

relationship between wave vector and frequency necessary to satisfy the wave
equation

712 w 2

k" = — = k(w)". (2.21)

Thus, the dispersion relation is given by

k(w) = £ n(w). (2.22)
Co
with the wavenumber
k =2/, (2.23)

where A is the wavelength Of the wave in the medium with refractive index
n, w the angular frequency, k the wave vector. Note, the natural frequency

= w/27. From V - E =0, for all time, we see that k L & Substitution of
the electric field 2.19 into Maxwell’s Egs. (2.1b) results in the magnetic field

Lo lr= N
Hy(r,t) = 5 [ﬂg(vzt) + Hp(7,1) (2.24)

with B o
Hy(7t) = Hy ¢ (k). (2.25)

This complex component of the magnetic field can be determined from the
corresponding complex electric field component using Faraday’s law

—jk x (Ek ilet=k ) €<E>) = —jugwH(71), (2.26)
or E
Hiy(7t) = =R @0« @ = Hpd@t=FDp (2.27)
FroW
with .
. k "
h(k) = s &(k) (2.28)
and " )
Hy=-—"FE.=—FE. 2.29
==k Mow_k ZF—k ( )

The characteristic impedance of the TEM-wave is the ratio between electric
and magnetic field strength

ZF = HoC = = _ZFO (230)
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Figure 2.1: Transverse electromagnetic wave (TEM) [6]

with the refractive index n = /¢, and the free space impedance

Z%:,%?z3WQ. (2.31)
0

Note that the vectors €, h and k form an orthogonal trihedral,
eLh klé kLh. (2.32)

That is why we call these waves transverse electromagnetic (TEM) waves.
We consider the electric field of a monochromatic electromagnetic wave with
frequency w and electric field amplitude FEp, which propagates in vacuum

along the z-axis, and is polarized along the x-axis, (Fig. 2.1), i.e. ﬁ =,
and (k) = &,. Then we obtain from Egs.(2.19) and (2.20)

E(7,t) = Eycos(wt — kz) &, (2.33)
and similiar for the magnetic field

T Eqy »

H(rt) = cos(wt — kz) €, (2.34)

Fy

see Figure 2.1.Note, that for a backward propagating wave with E (7 t) =
E etk g and H(F,t) = H Sk €,, there is a sign change for the
magnetic field
k
H--"pg (2.35)
HoW

so that the (k, E, H) always form a right handed orthogonal system.
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2.1.3 Poynting Vectors, Energy Density and Intensity

The table below summarizes the instantaneous and time averaged energy
content and energy transport related to an electromagnetic field

Quantity Real fields Complex fields
12
Electric and W, = %E D= s€oe, 2 We = z€o€r | L
3 _ 17 1 72 = |2
magnetic energy | wy, = 5 H - B =guop, H* | g — 1,0, | H
density W = We + Wy, _ _
W = W, + Wy,
Poynting vector S=FExH T = %E xH
. wT+1E. 7
Poynting theorem | divS + F - j + %—f =0 d:g;&éf —lw—:) _0
Intensity I=1|5|=cw [ =Re{T} = cw

Table 2.1: Poynting vector and energy density in EM-fields

For a plane wave with an electric field E(F, t) = BEel@=F) & we obtain
for the energy density in units of [J/m?]

1
w = §€T60‘E|27 (2.36)
the complex Poynting vector
A E)? € (2.37)
= == €z, .
272

and the intensity in units of [W/m?]

1 1
I =—|E*==Zp|H]* 2.
S = 520l (239)

2.1.4 Classical Permittivity

In this section we want to get insight into propagation of an electromagnetic
wavepacket in an isotropic and homogeneous medium, such as a glass optical
fiber due to the interaction of radiation with the medium. The electromag-
netic properties of a dielectric medium is largely determined by the electric
polarization induced by an electric field in the medium. The polarization is
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Pos. Neg.
Charge Charge

Figure 2.2: Classical harmonic oscillator model for radiation matter interac-
tion

defined as the total induced dipole moment per unit volume. We formulate
this directly in the frequency domain

P(w) = dpolemoment _ ") — e ¥(w)Bw),  (2.39)

volume

where N is density of elementary units and (p) is the average dipole mo-
ment of the unit (atom, molecule, ...). In an isotropic and homogeneous
medium the induced polarization is proportional to the electric field and the
proportionality constant, X(w), is called the susceptibility of the medium.

As it turns out (justification later), an electron elastically bound to a
positively charged rest atom is not a bad model for understanding the inter-
action of light with matter at very low electric fields, i.e. the fields do not
change the electron distribution in the atom considerably or even ionize the
atom, see Figure 2.2. This model is called Lorentz model after the famous
physicist A. H. Lorentz (Dutchman) studying electromagnetic phenomena
at the turn of the 19th century. He also found the Lorentz Transformation
and Invariance of Maxwell’s Equations with respect to these transformation,
which showed the path to Special Relativity.

The equation of motion for such a unit is the damped harmonic oscillator
driven by an electric field in one dimension, z. At optical frequencies, the
distance of elongation, x, is much smaller than an optical wavelength (atoms
have dimensions on the order of a tenth of a nanometer, whereas optical
fields have wavelength on the order of microns) and therefore, we can neglect
the spatial variation of the electric field during the motion of the charges
within an atom (dipole approximation, i.e. E(7,t) = E(Fa,t) = E(t)é,).
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The equation of motion is

d2 Q dx
Mmooy 25m$+m9 =eoE(t), (2.40)

where E(t) = Eei'. Here, m is the mass of the electron assuming the that
the rest atom has infinite mass, ey the charge of the electron, )y is the
resonance frequency of the undamped oscillator and @) the quality factor of
the resonance, which determines the damping of the oscillator. By using the
trial solution x (t) = Ze™!, we obtain for the complex amplitude of the dipole
moment p with the time dependent response p(t) = egx(t) = pe™’

2
-0
m

TR E. (2.41)

p= 100,
g

Note, that we included ad hoc a damping term in the harmonic oscillator
equation. At this point it is not clear what the physical origin of this damp-
ing term is and we will discuss this at length later in chapter 4. For the
moment, we can view this term simply as a consequence of irreversible in-
teractions of the atom with its environment. We then obtain from (2.39) for
the susceptibility

() = N%"% (2.42)
X(w 7)1 % .
H(w) = “p (2.43)

(02 —w?) + 2jw%7

with w,, called the plasma frequency, which is defined as w? = Neg/me. Fig-
ure 2.3 shows the normalized real and imaginary part, Y(w) = X, (w) +jX;(w)
of the classical susceptibility (2.43). Note, that there is a small resonance
shift (almost invisible) due to the loss. Off resonance, the imaginary part ap-
proaches zero very quickly. Not so the real part, which approaches a constant
value wf, /Q2 below resonance for w — 0, and approaches zero far above res-
onance, but much slower than the imaginary part. As we will see later, this
is the reason why there are low loss, i.e. transparent, media with refractive
index very much different from 1.
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Figure 2.3: Real part (dashed line) and imaginary part (solid line) of the
susceptibility of the classical oscillator model for the dielectric polarizability.

2.1.5 Optical Pulses

Optical pulses are wave packets constructed by a continuous superposition
of monochromatic plane waves. Consider a TEM-wavepacket, i.e. a super-
position of waves with different frequencies, polarized along the x-axis and
propagating along the z-axis

E(Ft) = / @E(Q)ej@t*f“ﬂ)z) Ep. (2.44)
0

2r

Correspondingly, the magnetic field is given by

. © 0 ~ ,
- J(QUt-K(Q)2) =
H(Ft) = /0 o) Q>E(Q)e g, (2.45)

Again, the physical electric and magnetic fields are real and related to the
complex fields by

E(7,t) = % (E(F, t) + E(7, t)*) (2.46)
H(r.1) = 5 ((7.0) + B 1), (2.47)

Here, |E(Q)|e#® is the complex wave amplitude of the electromagnetic wave
at frequency Q2 and K () = Q/c(2) = n(Q)Q/co the wavenumber, where,
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Figure 2.4: Spectrum of an optical wave packet described in absolute and
relative frequencies

n(£2) is again the refractive index of the medium
n?(Q) =1+ x(Q), (2.48)

c and ¢y are the velocity of light in the medium and in vacuum, respectively.
The planes of constant phase propagate with the phase velocity c of the wave.
The wavepacket consists of a superposition of many frequencies with the
spectrum shown in Fig. 2.4.
At a given point in space, for simplicity z = 0, the complex field of a
pulse is given by (Fig. 2.4)

1

T or

E(z = 0,1) / B(Q)e a0, (2.49)
0

Optical pulses often have relatively small spectral width compared to
the center frequency of the pulse wq, as it is illustrated in the upper part
of Figure 2.4. For example typical pulses used in optical communication
systems for 10Gb/s transmission speed are on the order of 20ps long and
have a center wavelength of A = 1550nm. Thus the spectral with is only on
the order of 50GHz, whereas the center frequency of the pulse is 200THz,
i.e. the bandwidth is 4000 smaller than the center frequency. In such cases
it is useful to separate the complex electric field in Eq. (2.49) into a carrier
frequency wy and an envelope A(t) and represent the absolute frequency as
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2 = wg + w. We can then rewrite Eq.(2.49) as

1 [ - ;
E(z = 0,) =g / E(wo 4 w)e@ot)tgy (2.50)
L .
= A(t)e"
The envelope, see Figure 2.8, is given by
1 [~ ~ .
Alt) = o S A(w)e dw (2.51)
1 [ - :
= o _OOA(w)eJ“tdw, (2.52)

where A(w) is the spectrum of the envelope with, A(w) = 0 for w < —wy.
To be physically meaningful, the spectral amplitude A(w) must be zero for
negative frequencies less than or equal to the carrier frequency, see Figure
2.8. Note, that waves with zero frequency can not propagate, since the

corresponding wave vector is zero. The pulse and its envelope are shown in
Figure 2.5.

E(z=0,t) Al

Figure 2.5: Electric field and envelope of an optical pulse.

Table 2.2 shows pulse shape and spectra of some often used pulses as well
as the pulse width and time bandwidth products. The pulse width and band-

width are usually specified as the Full Width at Half Maximum (FWHM) of
2

the intensity in the time domain, |A(t)|?, and the spectral density ‘ A(w))

in the frequency domain, respectively. The pulse shapes and corresponding

spectra to the pulses listed in Table 2.2 are shown in Figs 2.6 and 2.7.



2.1. MAXWELL’S EQUATIONS OF ISOTROPIC MEDIA 25

. Pulse Time-Band-
Pulse Shape Fourier Transform Width width Product
A1) Aw) = [7 a(t)edt At At-Af
Caussian: ¢ 27 orre 3T 2v/n 27 0.441
Hyperbolic Secant: - -
sech(i) 5 Sech(ETw) 1.7627 T 0.315
Rect-function: .

L <2 ) T 0.886
0, [t|>7/2

Lorentzian: ——-— 2rre Il 1.287 1 0.142
+(t/71)

Double-Exp.: e 17 m In2 7 0.142

Table 2.2: Pulse shapes, corresponding spectra and time bandwidth prod-
ucts.

F(w):l = % cos wroz”“”u'

F(u)] ==isinwpetonl

Figure 2.6: Fourier transforms to pulse shapes listed in table 2.2 [6].
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Figure 2.7: Fourier transforms to pulse shapes listed in table 2.2 continued
[6].

2.1.6 Pulse Propagation

Having a basic model for the interaction of light and matter at hand, via
section 2.1.4, we can investigate what happens if an electromagnetic wave
packet, i.e. an optical pulse propagates through such a medium. We start
from Egs.(2.44) to evaluate the wave packet propagation for an arbitrary
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propagation distance z
1 [~ .
Bz t) = o / E(Q)e K2 q0), (2.53)
T™Jo

Analogous to Eq. (2.50) for a pulse at a given position, we can separate an
optical pulse into a carrier wave at frequency wg and a complex envelope
A(z, 1),

E(z,t) = A(z, t)@ot=K(wo)2) (2.54)

By introducing the offset frequency w, the offset wavenumber k(w) and spec-
trum of the envelope A(w)

w = — wo, (2.55)
k(w) = K(wo+w)— K(wo), (2.56)
Aw) = E(Q=uwy+w). (2.57)

the envelope at propagation distance z, see Fig.2.8, is expressed as

Alot) = / Alw)el k@) gy, (2.58)
21 J_

with the same constraints on the spectrum of the envelope as before, i.e.
the spectrum of the envelope must be zero for negative frequencies beyond
the carrier frequency. Depending on the dispersion relation k(w), (see Fig.
2.9),.the pulse will be reshaped during propagation as discussed in the fol-
lowing section.

2.1.7 Dispersion

The dispersion relation indicates how much phase shift each frequency com-
ponent experiences during propagation. These phase shifts, if not linear with
respect to frequency, will lead to distortions of the pulse. If the propagation
constant k(w) is only slowly varying over the pulse spectrum, it is useful to
represent the propagation constant, k(w), or dispersion relation K (2) by its
Taylor expansion, see Fig. 2.9,

L /{5(3)
k(w) =kw+ ?wQ - ?w‘q’ + O(w?). (2.59)
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A

E(z,t) Az

Figure 2.8: Electric field and pulse envelope in time domain.
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Figure 2.9: Taylor expansion of dispersion relation at the center frequency
of the wave packet.

If the refractive index depends on frequency, the dispersion relation is no
longer linear with respect to frequency, see Fig. 2.9 and the pulse propagation
according to (2.58) can be understood most easily in the frequency domain

% k(W) A(zw). (2.60)

Transformation of Eq.() into the time domain gives

0A(z,) K™ [ 9\"
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If we keep only the first term, the linear term, in Eq.(2.59), then we obtain for
the pulse envelope from (2.58) by definition of the group velocity at frequency
Wo
dk(w) -
Vgo = 1/]{7/ = (W wzo) (262)

Az, t) = A(0,t — z/vg0). (2.63)

Thus the derivative of the dispersion relation at the carrier frequency deter-
mines the propagation velocity of the envelope of the wave packet or group
velocity, whereas the ratio between propagation constant and frequency de-
termines the phase velocity of the carrier

~1

Upo = WO/K(UJ(]) = <M) . (264)
Wo

To get rid of the trivial motion of the pulse envelope with the group velocity,

we introduce the retarded time t' =t — z/v,0. With respect to this retarded

time the pulse shape is invariant during propagation, if we approximate the

dispersion relation by the slope at the carrier frequency

A(z,1) = A(0,1). (2.65)

Note, if we approximate the dispersion relation by its slope at the carrier
frequency, i.e. we retain only the first term in Eq.(2.61), we obtain

OA( 1) | 1 DA(:.1)

== 20
0z vgo Ot 0 (2.66)

and (2.63) is its solution. If, we transform this equation to the new coordinate
System

7 =z, (2.67)
t = t—z/vg, (2.68)
with
0 9] 1 0
9, 9,
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the transformed equation is

DA, t)
0z

Since z is equal to 2z’ we keep z in the following.

If the spectrum of the pulse is broad enough, so that the second order
term in (2.59) becomes important, the pulse will no longer keep its shape.
When keeping in the dispersion relation terms up to second order it follows
from (2.58) and (2.69,2.70)

DA ) K OPA(:, )
02 o oz

This is the first non trivial term in the wave equation for the envelope.
Because of the superposition principle, the pulse can be thought of to be
decomposed into wavepackets (sub-pulses) with different center frequencies.
Now, the group velocity depends on the spectral component of the pulse, see
Figure 2.10, which will lead to broadening or dispersion of the pulse.

= 0. (2.71)

(2.72)

~AVg

Spectrum
Dispersion Relation

_6‘)1 0 631 Y

Figure 2.10: Decomposition of a pulse into wave packets with different center
frequency. In a medium with dispersion the wavepackets move at different
relative group velocity.

Fortunately, for a Gaussian pulse, the pulse propagation equation 2.72
can be solved analytically. The initial pulse is then of the form

E(z = 0,t)=A(z =0,t)e! (2.73)

1 t/2
Az = 0,t=1t")=Ajexp [—521 (2.74)
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Eq.(2.72) is most easily solved in the frequency domain since it transforms
to

0A(z,w) KW ~
I P —J 5 A(Zaw)a (2.75)

with the solution

", 2
P z] (2.76)

A(z,w) = A(z = 0,w)exp l—J 5

The pulse spectrum aquires a parabolic phase. Note, that here w is the
Fourier Transform variable conjugate to ' rather than ¢t. The Gaussian pulse
has the advantage that its Fourier transform is also a Gaussian

A(z = 0,w) = AgV21T exp l—%#uﬂ] (2.77)

and, therefore, in the spectral domain the solution at an arbitray propagation
distance z is

- 1
A(z,w) = AgV2rT exp [—5 (7 + jK"2) wQ] : (2.78)

The inverse Fourier transform is analogously

Az, t) = A P Vel (2.79)
25 0) =4 (12 + jk"2) oxp 2 (12 +jk"z) '

The exponent can be written as real and imaginary part and we finally obtain

-2 1/2 1 2472 1 2
A(z,t) = Ay | ———— exp |—=——————— +j=k'2r—m
—( ) 0 ((7—2 +Jkllz)> P 2 (7_4 + (lf”Z)Z) ‘]2 (7_4 + (/{3'/2)2)

(2.80)
As we see from Eq.(2.80) during propagation the FWHM of the Gaussian
determined by

T(TIFWHM/2>2 _
exp [—m] =05 (2.81)

changes from
TrwaM = 2VIn2 7 (2.82)
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32
(2.83)

at the start to

TrwaM =
at z = L. For large stretching this result simplifies to
kl/L kl/L
for |—-| > 1. (2.84)
T

The strongly dispersed pulse has a width equal to the difference in group
delay over the spectral width of the pulse.

Figure 2.11 shows the evolution of the magnitude of the Gaussian wave

packet during propagation in a medium which has no higher order dispersion

in normalized units. The pulse spreads continuously.
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|A(z,t')| , in a dispersive medium.
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As discussed before, the origin of this spreading is the group velocity
dispersion (GVD), k" # 0. The group velocity varies over the pulse spectrum
significantly leading to a group delay dispersion (GDD) after a propagation
distance z = L of k"L # 0, for the different frequency components. This leads
to the build-up of chirp in the pulse during propagation. We can understand
this chirp by looking at the parabolic phase that develops over the pulse in
time at a fixed propagation distance. The phase is, see Eq.(2.80)

k”L 1 t/2
+ k" L———.
72 ] 2" (44 (kL))

oz = L,t") = —% arctan l (2.85)

@) A Phase

\ Front Back

K">0

Time t
k’<0

(b) 4 Instantaneous
Frequency

K’<0

\

Time t
kll>0

Figure 2.12: (a) Phase and (b) instantaneous frequency of a Gaussian pulse
during propagation through a medium with positive or negative dispersion.

This parabolic phase, see Fig. 2.12 (a), can be understood as a localy
varying frequency in the pulse, i.e. the derivative of the phase gives the
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instantaneous frequency shift in the pulse with respect to the center frequency

k,//L ,

no__ g no__
w(z=L,t) (L, t") = —(7_4 n (l{:”L)2)t

=57 (2.86)
see Fig.2.12 (b). The instantaneous frequency indicates that for a medium
with positive GVD, ie. k” > 0, the low frequencies are in the front of the
pulse, whereas the high frequencies are in the back of the pulse, since the
sub-pulses with lower frequencies travel faster than sub-pulses with higher
frequencies. The opposite is the case for negative dispersive materials.

It is instructive for later purposes, that this behaviour can be completely
understood from the center of mass motion of the sub-pulses, see Figure 2.10.
Note, we can choose a set of sub-pulses, with such narrow bandwidth, that
dispersion does not matter. In the time domain, these pulses are of course
very long, because of the time bandwidth relationship. Nevertheless, since
they all have different carrier frequencies, they interfere with each other in
such a way that the superposition is a very narrow pulse. This interference,
becomes destroyed during propagation, since the sub-pulses propagate at
different speed, i.e. their center of mass propagates at different speed.

5 | F I
0.0 0.5 1.0 1.5 2.0

Propagation distance, z

Figure 2.13: Pulse spreading by following the center of mass of sub-pulses
according to Fig. 2.10. For z < 1, the pulses propagate in a medium with
positive dispersion and for z > 1 in a medium with negative dispersion.
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The differential group delay AT, (w) = k" Lw of a sub-pulse with its cen-
ter frequency w different from 0, is due to its differential group velocity
Avg(w) = =0 ATy(w) /Ty = —vik"w. Note, that Tyg = L/vg. This is illus-
trated in Figure 2.13 by ploting the trajectory of the relative motion of the
center of mass of each sub-pulse as a function of propagation distance, which
asymptotically approaches the formula for the pulse width of the highly dis-
persed pulse Eq.(2.84). If we assume that the pulse propagates through a
negative dispersive medium following the positive dispersive medium, the
group velocity of each sub-pulse is reversed. The sub-pulses propagate to-
wards each other until they all meet at one point (focus) to produce again
a short and unchirped initial pulse, see Figure 2.13. This is a very powerful
technique to understand dispersive wave motion and as we will see in the
next section is the connection between ray optics and physical optics.

2.1.8 Loss and Gain

If the medium considered has loss, described by the imaginary part of the
dielectric susceptibility, see (2.43) and Fig. 2.3, we can incorporate this loss
into a complex refractive index

() = ne(2) +jni(Q) (2.87)

n(Q) = /1 +3(Q). (2.88)

For an optically thin medium, i.e. Y < 1 the following approximation is very

useful
X (2
@m)z1+§%l. (2.89)
As one can show (in Recitations) the complex susceptibility (2.43) can be
approximated close to resonance, i.e. ) = )y, by the complex Lorentzian
lineshape

via

~ —JXo
X(Q) =T —a-a_ (2~90)
A 1 +JQQQ(§)0

w2 . .
where X, = Q52> will turn out to be related to the peak absorption of the
0
line, which is proportional to the density of atoms, )y is the center frequency
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and AQ) = % is the half width half maximum (HWHM) linewidth of the
transition. The real and imaginary part of the complex Lorentzian are

(2—Q0)

~ X0 An
O = (291)
Q) = —2 (2.92)

L (%)

In the derivation of the wave equation for the pulse envelope (2.61) in
section 2.1.7, there was no restriction to a real refractive index. Therefore,
the wave equation (2.61) also treats the case of a complex refractive index.
If we assume a medium with the complex refractive index (2.89), then the
wavenumber is given by

K@) = = (145 (0 + @) ) 299)

Since we introduced a complex wavenumber, we have to redefine the group
velocity as the inverse derivative of the real part of the wavenumber with
respect to frequency. At line center, we obtain

1 Xo o
=—[1—-—=—]. 2.94
Q0 Co < 2 AQ) ( )

Thus, for a narrow absorption line, x, > 0 and % > 1, the absolute value
of the group velocity can become much larger than the velocity of light in
vacuum. The opposite is true for an amplifying medium, x, < 0. There is
nothing wrong with this finding, since the group velocity only describes the
motion of the peak of a Gaussian wave packet, which is not a causal wave
packet. A causal wave packet is identical to zero for some earlier time ¢ < tg,
in some region of space. A Gaussian wave packet fills the whole space at any
time and can be reconstructed by a Taylor expansion at any time. Therefore,
the tachionic motion of the peak of such a signal does not contradict special
relativity.

The imaginary part in the wave vector (2.93) leads with K = % to ab-
sorption

L 0K
g o0

v

a(Q) = —K,(9). (2.95)
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In the envelope equation (2.60) for a wavepacket with carrier frequency wy =
Qp and Ky = %01 the loss leads to a term of the form

A ~ . Kn -~
AW o+ w)d(ew) = —05 G 2.6)
0z 1+ (35)
(loss) AQ
In the time domain, we obtain up to second order in the inverse linewidth

0A(z,t) 1 02

' = —xoKo (1 — | Az, ¥ 2.
02 Joss) Xoto ( Faazge ) A1) (297)

which corresponds to a parabolic approximation of the line shape at line
center, (Fig. 2.3). As we will see later, for an amplifying optical transition
we obtain a similar equation. We only have to replace the loss by gain

0A(z, 1) 1 02
- =g(1+==) A1 2.
o T (R RIC) (2.98)
gain) 7
where g = —x K is the peak gain at line center per unit length and € is

the HWHM linewidth of a transition providing gain.

2.1.9 Sellmeier Equation and Kramers-Kroenig Rela-
tions

The linear susceptibility is the frequency response or impulse response of a
linear system to an applied electric field, see Eq.(2.41). For a real physical
system this response is causal, and therefore real and imaginary parts obey
Kramers-Kroenig Relations

Mm):%/;ﬁgm:ﬁmpL (2.99)
xi(Q) = —% / SQXi%)de. (2.100)

For optical media these relations have the consequence that the refractive
index and absorption of a medium are not independent, which can often
be exploited to compute the index from absorption data or the other way
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around. The Kramers-Kroenig Relations also give us a good understanding
of the index variations in transparent media, which means the media are used
in a frequency range far away from resonances. Then the imaginary part of
the susceptibility related to absorption can be approximated by

() = D Aid (w —wi) (2.101)

and the Kramers-Kroenig relation results in the Sellmeier Equation for the
refractive index

2 i Wi _ A
n?(Q) =1+ ;Aim =1+ Zam (2.102)

This formula is very useful in fitting the refractive index of various media
over a large frequency range with relatively few coefficients. For example
Table 2.3 shows the sellmeier coefficients for fused quartz and sapphire.

Fused Quartz  Sapphire

a; 0.6961663 1.023798
ag  0.4079426 1.058364
az 0.8974794 5.280792

A2 4.679148-107%  3.77588-1073
A5 1.3512063-1072  1.22544-1072
A2 0.9793400-10°  3.213616-102

Table 2.3: Table with Sellmeier coefficients for fused quartz and sapphire.

In general, each absorption line contributes a corresponding index change
to the overall optical characteristics of a material, see Fig. 2.14. A typical
situation for a material having resonances in the UV and IR, such as glass,
is shown in Fig. 2.15. As Fig. 2.15 shows, due to the Lorentzian line shape,
that outside of an absorption line the refractive index is always decreasing
as a function of wavelength. This behavior is called normal dispersion and
the opposite behavior abnormal dispersion.

dn
dA
dn
dA

< 0 : normal dispersion (blue refracts more than red)

> (0 : abnormal dispersion
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This behavior is also responsible for the mostly positive group delay disper-
sion over the transparency range of a material, as the group velocity or group
delay dispersion is closely related to %. Fig.2.16 shows the transparency

range of some often used media.
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Figure 2.14: Each absorption line must contribute to an index change via
the Kramers-Kroenig relations.
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Figure 2.15: Typcial distribution of absorption lines in a medium transparent
in the visible.
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Figure 2.16: Transparency range of some materials according to [6], p. 175.

Often the dispersion GVD and GDD needs to be calculated from the
Sellmeier equation, i.e. n(\). The corresponding quantities are listed in Table
2.4. The computations are done by substituting the frequency with the
wavelength.

| Dispersion Characteristic | Definition | Comp. from n(}) |
medium wavelength: A, 2 n(A)\)
wavenumber: k i_: Z;rn( )
phase velocity: v, @ n(a )
group velocity: v, 3:7 d\ = 2—7;\:] do | @ (1 — %3_7;)—1
group velocity dispersion: GV D %’; 2;\T‘Z% 327721
group delay: T, = L = 2 &b _ d(:wL) n (1-2&)]
group delay dispersion: GDD % = d;(ff) 23\:: Zig I

Table 2.4: Table with important dispersion characteristics and how to com-

pute them from the wavelength dependent refractive index n(\).






