
2.5 Rays and Optical Systems

Now, that we understand how a beam of finite size as a solution of Maxwell’s
Equations can be constructed, we are interested how such a beam can be
imaged by an optical system. Propagation of a Gaussian beam in free space
leads to spreading of the beam because of the diffraction. We need means
to focus the beam again. The output beam from a laser may have a certain
size but we may need a different size for a given experiment. We can change
the size or focus the beam by an optical imaging system. Optical systems
are studied and analyzed using ray optics. What is a ray? We have already
discussed that diffraction of a beam is similar to dispersion of an optical
pulse. Dispersion of a pulse we understood because of the different group
velocity of different frequency components or sub-pulses. It turns out that
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these sub-pulses are the temporal analog to the rays. In the same way we
can construct a short pulse by a superposition of sub-pulses with different
center frequencies, we can construct a Gaussian beam by sub-beams with
different center transverse k-vectors and a very narrow spread in transverse
k-vectors. These are Gaussian beams with a large beam diameter such that
diffraction is not any longer important. These beams are called rays. The
ray only experiences a phase shift during propagation depending on the local
refractive index n(r). Therefore, we can completely understand the imaging
of Gaussian beams in paraxial optical systems by the imaging properties of
rays.

2.5.1 Ray Propagation

A ray propagating in an optical system, see Figure 2.64, can be described
by its position r with respect to the optical axis and its inclination with
respect to the optical axis r0. It is advantageous to use not (r, r0) as the
ray coordinates but the combination (r, n r0), where n is the local refractive
index at the position of the ray. Due to propagation, the ray coordinates
may change, which can be desribed by a marix, that maps initial position
and inclination into the corresponding quantitaties after the propagationµ
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This imaging matrix is called an ABCD-matrix.
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Figure 2.64: Description of optical ray propagation by its distance and incli-
nation from the optical axis
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The advantage in using (r, n r0) as the ray coordinates is that it preserves
the phase space volume, i.e. for lossless optical systems the determinant of
the ABCD-matrix must be 1. Also Snell’s law for paraxial rays has then a
simple form, see Figure 2.65. For paraxial rays the angles to the interface
normal, θ1 and θ2, are much smaller than 1, and we can write

r01 = tan θ1 ≈ sin θ1 ≈ θ1, and r02 = tan θ2 ≈ sin θ2 ≈ θ2.

Then Snell’s law is
n1 r

0
1 = n2 r

0
2. (2.243)

Z

r’1 r2

r’2
r1

1 2

n1 n2

θ2

θ1

Figure 2.65: Snell’s law for paraxial rays

The ABCD-matrix describing a ray going from a medium with index n1
to a medium with index n2 is the unity matrix

r2 = r1 (2.244)
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Free space propagation

For propagation in free space, see Figure 2.66, the relationship between input
and output ray parameters is

r2 = r1 + r01 · L
r02 = r01
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or the propagation matrix is

M =

µ
1 L
0 1

¶
. (2.246)
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Figure 2.66: Free space propagation

Propagation in medium with length L and index n

Free propagation through a medium with index n does result in a reduced
position shift with respect to the optical axis in comparison to free space,
because the beam is first bent to the optical axis according to Snell’s law,
see Figure 2.67. Therefore the corresponding ABCD-matrix is

M =

µ
1 L/n
0 1

¶
. (2.247)
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Figure 2.67: Ray propagation through a medium with refractive index n,
shortens the path length of the beam by a factor of n.



100 CHAPTER 2. CLASSICAL ELECTROMAGNETISM AND OPTICS

Parbolic surface or thin lens

Plano-Convex Lens When a ray penetrates a parabolic surface between
two media with refractive indices n1 and n2, it changes its inclination. A
parabolic surface can be closely approximated by the surface of a sphere, see
Figure 2.68. Snells law in paraxial approximation is

n1 (r
0
1 + α) = n2 (r

0
2 + α) . (2.248)
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Figure 2.68: Derivation of ABCD-matrix of a thin plano-convex lens.

The small angle α can be approximated by α ≈ r1/R. In total we then
obtain the mapping

r2 = r1 (2.249)
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or
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Note, the second normal interface does not change the ray propagation matrix
and therefore Eq.(2.251) describes correctly the ray propagation through a
thin plano-convex lens.
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Biconvex Lens If the lens would have a second convex surface, this would
refract the ray twice as strongly and we would obtain

M =

µ
1 0

2n1−n2
R

1

¶
. (2.252)

The quantity 2n2−n1
R

is called the refractive strength of the biconvex lense
or inverse focal length 1/f.Because the system of a thin lens plus free space
propagation results in the matrix (calculated in the reverse order)
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which ensures that each ray parallel to the optical axis goes through the on
axis focal point at the end of the free space section, see Figure 2.69.
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Figure 2.69: Imaging of parallel rays through a lens with focal length f.

Curved Mirrors

Other often used optical components in imaging systems are curved mirrors
with radius of curvature ROC = R, see Figure 2.70. The advantage of
reflective optics is that the rays don’t have to pass through dispersive material
like through a lense, which is very disturbing for ultrashort pulses.
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Figure 2.70: Derivation of ray matrix for concave mirror with Radius R.

As in the case of the thin lens,e the imaging does not change the distance
of the ray from the optical axis, however, the slope of the rays obey

r01 − α = r02 + α. (2.254)

with α ≈ r1/R in paraxial approximation. Therefore the ABCD matrix
describing the reflection of rays at a curved mirror with ROC = R is

M =

µ
1 0
− 1

f
1

¶
, with f =

R

2
. (2.255)

2.5.2 Gauss’ Lens Formula

As a simple application of the ray matrices for optical system design, we
derive Gauss’ lens formula, which says that all rays emitted from an orignial
placed a distance d1 from a lens with focal length f form an image at a
distance d2, which is related to d1 by

1

d1
+
1

d2
=
1

f
, (2.256)

see Figure 2.71.
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Figure 2.71: Gauss’ lens formula.

The magnification of the lens system is Mr =
r2
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= d2
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matrix that describes the imagaing from the orignal plane I to the image
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In order that the distance r2 only depends on r1, but not on r01, B must be
0, which is Eq. (2.256). Thus in total we have

Magnification Mr =
¯̄̄

f
d1−f

¯̄̄
Distance to focus d2 − f =M2

r (d1 − f)
(2.258)

More complicated imaging systems, such as thick lenses, can be described
by ray matrices and arbitrary paraxial optical systems can be analyzed with
them, which shall not be pursued further here. Rather, we want to study
how Gaussian beams are imaged by paraxial optical systems




