
Chapter 6

Interaction of Light and Matter

Atomic or molecular gases in low concentration show sharp energy eigen-
spectra. This was shown for the hydrogen atom. Usually, there are infinitely
many energy eigenstates in an atomic, molecular or solid-state medium and
the spectral lines are associated with allowed transitions between two of these
energy eigenstates. For many physical considerations it is already sufficient
to take only two of these possible energy eigenstates into account, for exam-
ple those which are related to the laser transition. The pumping of the laser
can be later described by phenomenological relaxation processes into the up-
per laser level and out of the lower laser level. The resulting simple model is
often called a two-level atom, which is mathematically also equivalent to a
spin 1/2 particle in an external magnetic field, because the spin can only be
parallel or anti-parallel to the field, i.e. it has two energy levels and energy
eigenstates [4]. The interaction of the two-level atom with the electric field
of an electromagnetic wave is described by the Bloch equations.

6.1 The Two-Level Model

An atom with only two energy eigenvalues is described by a two-dimensional
state space spanned by the two energy eigenstates |ei and |gi. The two
states constitute a complete orthonormal system. The corresponding energy
eigenvalues areEe andEg, see Fig. 6.1. In the position-, i.e. x-representation,
these states correspond to the wave functions

ψg(x) = hx |gi , and ψe(x) = hx |ei . (6.1)
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Figure 6.1: Two-level atom

The Hamiltonian operator of the two-level atom is in the energy representa-
tion

HA = Ee |ei he|+Eg |ei hg| . (6.2)

In this two-dimensional state space only 2×2 = 4 linearly independent linear
operators are possible. A possible choice for an operator base in this space is

1 = |ei he|+ |gi hg| , (6.3)

σz = |ei he|− |gi hg| , (6.4)

σ+ = |ei hg| , (6.5)

σ− = |ei he| . (6.6)

The non-Hermitian operators σ± could be replaced by the Hermitian oper-
ators σx,y

σx = σ+ + σ−, (6.7)

σy = −jσ+ + jσ−. (6.8)

The physical meaning of these operators becomes obvious, if we look at the
action when applied to an arbitrary state

|ψi = cg |gi+ ce |ei . (6.9)

We obtain

σ+ |ψi = cg |ei , (6.10)

σ− |ψi = ce |gi , (6.11)

σz |ψi = ce |ei− cg |gi . (6.12)
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The operator σ+ generates a transition from the ground to the excited state,
and σ− does the opposite. In contrast to σ+ and σ−, σz is a Hermitian
operator, and its expectation value is an observable physical quantity with
expectation value

hψ|σz |ψi = |ce|2 − |cg|2 = w, (6.13)

the inversion w of the atom, since |ce|2 and |cg|2 are the probabilities for
finding the atom in state |ei or |gi upon a corresponding measurement. If
we consider an ensemble of N atoms the total inversion would be W =
N hψ|σz |ψi. If we separate from the Hamiltonian (6.1) the term (Ee +
Eg)/2 ·1, where 1 denotes the unity matrix, we rescale the energy values
correspondingly and obtain for the Hamiltonian of the two-level system

HA =
1

2
~ωegσz, (6.14)

with the transition frequency

ωeg =
1

~
(Ee − Eg). (6.15)

This form of the Hamiltonian is favorable. There are the following commu-
tator relations between operators (6.4) to (6.6)

[σ+,σ−] = σz, (6.16)

[σ+,σz] = −2σ+, (6.17)

[σ−,σz] = 2σ−, (6.18)

and anti-commutator relations, respectively

[σ+,σ−]+ = 1, (6.19)

[σ+,σz]+ = 0, (6.20)

[σ−,σz]+ = 0, (6.21)

[σ−,σ−]+ = [σ+,σ+]+ = 0. (6.22)

The operators σx, σy, σz fulfill the angular momentum commutator relations

[σx,σy] = 2jσz, (6.23)

[σy,σz] = 2jσx, (6.24)

[σz,σx] = 2jσy. (6.25)
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The two-dimensional state space can be represented as vectors in C2 accord-
ing to the rule:

|ψi = cg |gi+ ce |ei →
µ

ce
cg

¶
. (6.26)

The operators are then represented by matrices

σ+ →
µ
0 1
0 0

¶
, (6.27)

σ− →
µ
0 0
1 0

¶
, (6.28)

σz →
µ
1 0
0 −1

¶
, (6.29)

1 →
µ
1 0
0 1

¶
. (6.30)

6.2 The Atom-Field Interaction In Dipole Ap-
proximation

The dipole moment of an atom �d is determined by the position operator �x
via

�d = −e0�x. (6.31)

Then the expectation value for the dipole moment of an atom in state (6.9)
is

hψ| �d |ψi = −e0(|ce|2 he|�x |ei+ cec
∗
g hg|�x |ei (6.32)

+cgc
∗
e he|�x |gi+ |cg|2 hg|�x |gi).

For simplicity, we may assume that the medium is an atomic gas. The atoms
posses inversion symmetry, therefore, energy eigenstates must be symmetric
or anti-symmetric, i.e. he|�x |ei = hg|�x |gi = 0, see problem set 8. We obtain

hψ| �d |ψi = −e0 (cec∗g hg|�x |ei+ cgc
∗
e hg|�x |ei

∗). (6.33)

Note, this means there is no permanent dipole moment in an atom, which
is in an energy eigenstate. This might not be the case in a solid. The
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atoms consituting the solid are oriented in a lattice, which may break the
symmetry. If so, there are permanent dipole moments and consequently the
matrix elements he|�x |ei and hg|�x |gi would not vanish.
An atom does only exhibit a dipole moment, if the product cec∗g 6= 0, i.e.

the state of the atom is in a superposition of states |ei and |gi. With the
dipole matrix elements

�M = e0 hg|�x |ei (6.34)

the expectation value for the dipole moment can be written as

hψ| �d |ψi = −(cec∗g �M + cgc
∗
e
�M∗) = − hψ| (σ− �M∗ + σ+ �M) |ψi . (6.35)

Since this is true for an arbitrary state, the dipole operator (6.31) is repre-
sented by

�d = −
³
σ− �M∗ + σ+ �M

´
. (6.36)

The energy of an electric dipole in an electric field is

HA−F = −�d · �E(�xA, t). (6.37)

We assume that the electric field is due to a monochromatic electromagntic
wave. Then the electric field at the position of the atom, �xA, can be written
as

�E(�xA, t) =
1

2

¡
E0e

jωt �ep + E∗0e
−jωt �e∗p

¢
, (6.38)

where E0 denotes the complex electric field amplitude at the position of the
atom and �ep is the polarization vector of the wave. As we will see shortly,
when there is a strong interaction of the wave with the atomic levels, the
frequency of the electromagnetic wave is close to the atomic transistion fre-
quency ω ≈ ωeg. The atom-field interaction Hamiltonian operator is then

HA−F = −�d · �E(�xA, t) =
³
σ− �M∗ + σ+ �M

´ 1
2

¡
E0e

jωt �ep +E∗0e
−jωt �e∗p

¢
(6.39)

In the Rotating-Wave Approximation (RWA)[3], we only keep the slowly
varying components in the interaction Hamiltonian. If there is no field,
the operator σ+ evolves in the Heisenberg picture of the atom according to
σ+(t) = σ+(0)ejωegt, thus terms proportional to the products σ+ejωt rotate
at twice the optical frequency and will be neglected in the following

HA−F ≈ HRWA
A−F =

1

2

³
�M · �e∗p

´
E∗0e

−jωtσ+ + h.c.. (6.40)
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The Schrödinger Equation for a two-level atom in a classical field is then

j~
d

dt
|ψi = (HA +HA−F ) |ψi (6.41)

≈ (HA +H
RWA
A−F ) |ψi .

Written in the energy representation, we obtain

d

dt
ce = −jωeg

2
ce − jΩre

−jωtcg, (6.42)

d

dt
cg = +j

ωeg

2
cg − jΩ∗re+jωtce, (6.43)

with the Rabi-frequency defined as

Ωr =
�M · �e∗p
2~

E∗0. (6.44)

For the time being, we assume that the the Rabi-frequency is real. If this is
not the case, a transformation including a phase shift in the amplitudes c∈,g
would be necessary to eliminate this phase. As expected the field couples the
energy eigenstates.

6.3 Rabi-Oscillations

If the incident light has a constant field amplitude, E0, Eqs. (6.42) and (6.43)
can be solved and we observe an oscillation in the population difference, the
Rabi-oscillation [1]. To show this we introduce the detuning between field
and atomic resonance

∆ =
ωeg − ω

2
(6.45)

and the new probability amplitudes

Ce = cee
jω
2
t, (6.46)

Cg = cge
−jω

2
t. (6.47)

This leads to the new system of equations with constant coefficients

d

dt
Ce = −j∆Ce − jΩrCg, (6.48)

d

dt
Cg = +j∆Cg − jΩrCe. (6.49)
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Note, these equations are identical to the coupled mode equations between
two waveguide modes as studied in section 2.7.4. But now the coupling
is between modes in time, i.e. resonances. The modes are electronic ones
instead of photonic modes. But otherwise what has been said in section 2.7.4
applies in the same way. For the case of vanishing detuning it is especially
easy to eliminate one of the variables and we arrive at

d2

dt2
Ce = −Ω2rCe (6.50)

d2

dt2
Cg = −Ω2rCg. (6.51)

The solution to this set of equations are the oscillations we are looking for. If
the atom is at time t = 0 in the ground-state, i.e. Cg(0) = 1 and Ce(0) = 0,
respectively, we arrive at

Cg(t) = cos (Ωrt) (6.52)

Ce(t) = −j sin (Ωrt) . (6.53)

Then, the probabilities for finding the atom in the ground or excited state
are

|cb(t)|2 = cos2 (Ωrt) (6.54)

|ca(t)|2 = sin2 (Ωrt) , (6.55)

as shown in Fig. 6.2. For the expectation value of the dipole operator under
the assumption of a real dipole matrix element �M = �M∗ we obtain

hψ| �d |ψi = − �Mcec
∗
g + c.c. (6.56)

= − �M sin (2Ωrt) sin (ωegt) . (6.57)
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Figure 6.2: Evolution of occupation probabilities of ground and excited state
and the average dipole moment of a two-level atom in resonant interaction
with a coherent classical field.

The coherent external field drives the population of the atomic system
between the two available states with a period Tr = π/Ωr. Applying the field
only over half of this period leads to a complete inversion of the population.
These Rabi-oscillations have been observed in various systems ranging from
gases to semiconductors. Interestingly, the light emitted from the coherently
driven two-level atom is not identical in frequency to the driving field. If
we look at the Fourier spectrum of the polarization according to Eq.(6.57),
we obtain lines at frequencies ω± = ωeg ± 2Ωr. This is clearly a nonlinear
output and the sidebands are called Mollow-sidebands [2] . Most important
for the existence of these oscillations is the coherence of the atomic system
over at least one Rabi-oscillation. If this coherence is destroyed fast enough,
the Rabi-oscillations cannot happen and it is then impossible to generate
inversion in a two-level system by interaction with light. This is the case for
a large class of situations in light-matter interaction and especially for typical
laser materials. So we are interested in finding out what happens in the case
of loss of coherence in the atomic system due to additional interaction of the
atoms with its environment.




