
Chapter 4

Schroedinger Equation

Einstein’s relation between particle energy and frequency Eq.(3.83) and de
Broglie’s relation between particle momentum and wave number of a corre-
sponding matter wave Eq.(3.84) suggest a wave equation for matter waves.
This search for an equation describing matter waves was carried out by Erwin
Schroedinger. He was successful in the year 1926.
The energy of a classical, nonrelativistic particle with momentum p that

is subject to a conservative force derived from a potential V (r) is

E =
p 2

2m
+ V (r) . (4.1)

For simplicity lets begin first with a constant potential V (r) = V0 = const.
This is the force free case. According to Einstein and de Broglie, the dis-
persion relation between ω and k for waves describing the particle motion
should be

~ω =
~2k2

2m
+ V0. (4.2)

Note, so far we had a dispersion relation for waves in one dimension, where
the wavenumber k(ω), was a function of frequency. For waves in three dimen-
sions the frequency of the wave is rather a function of the three components
of the wave vector. Each wave with a given wave vector k has the following
time dependence

ej(k·r−ωt), with ω =
~k2

2m
+

V0
~

(4.3)

Note, this is a wave with phase fronts traveling to the right. In contrast to our
notation used in chapter 2 for rightward traveling electromagnetic waves, we
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switched the sign in the exponent. This notation conforms with the physics
oriented literature. A superposition of such waves in k−space enables us to
construct wave packets in real space

Ψ (r, t) =

Z
φω

³
k, ω

´
ej(k·r−ωt)d3k dω (4.4)

The inverse transform of the above expression is

φω

³
k, ω

´
=

1

(2π)4

Z
Ψ (r, t) e−j(k·r−ωt)d3r dt, (4.5)

with

φω

³
k, ω

´
= φ (k) δ

Ã
ω − ~k

2

2m
− V0
~

!
. (4.6)

Or we can rewrite the wave function in Eq.(4.4) by carrying out the trivial
frequency integration over ω

Ψ (r, t) =

Z
φ (k) exp

Ã
j

"
k·r −

Ã
~k2

2m
+

V0
~

!
t

#!
d3k. (4.7)

Due to the Fourier relationship between the wave function in space and time
coordinates and the wave function in wave vector and frequency coordinates

φω

³
k, ω

´
↔ Ψ (r, t) (4.8)

we have

ω φω (k, ω) ↔ j
∂Ψ (r, t)

∂t
, (4.9)

k φω (k, ω) ↔ − j∇Ψ (r, t) , (4.10)

k2 φω (k, ω) ↔ −∆ Ψ (r, t) . (4.11)

where

∇ = ex
∂

∂x
+ ey

∂

∂y
+ ez

∂

∂z
, (4.12)

∆ = ∇ ·∇ ≡ ∇2 = ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (4.13)
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From the dispersion relation follows by multiplication with the wave function
in the wave vector and frequency domain

~ω φω (k, ω) =
~2k2

2m
φω (k, ω) + V0 φω (k, ω) . (4.14)

With the inverse transformation the corresponding equation in the space and
tieme domain is

j ~
∂Ψ (r, t)

∂t
= − ~

2

2m
∆ Ψ (r, t) + V0 Ψ (r, t) . (4.15)

Generalization of the above equation for a constant potential to the instance
of an arbitrary potential in space leads finally to the Schroedinger equation

j ~
∂Ψ (r, t)

∂t
= − ~

2

2m
∆ Ψ (r, t) + V (r) Ψ (r, t) . (4.16)

Note, the last few pages ar not a derivation of the Schroedinger Equation
but rather a motivation for it based on the findings of Einstein and deBroglie.
The Schroedinger Equation can not be derived from classical mechanics. But
classical mechanics can be rederived from the Schroedinger Equation in some
limit. It is the success of this equation in describing the experimentally ob-
served quantummechanical phenomena correctly, that justifies this equation.
The wave function Ψ (r, t) is complex. Note, we will no longer underline

complex quantities. Which quantities are complex will be determined from
the context.
Initially the magnitude square of the wave function |Ψ (r, t)|2 was inter-

preted as the particle density. However, Eq.(4.15) in one spatial dimension
is mathematical equivalent to the dispersive wave motion Eq.(2.72), where
the space and time variables have been exchanged. The dispersion leads to
spreading of the wave function. This would mean that any initially compact
particle, which has a well localized particle density, would decay, which does
not agree with observations. In the framwork of the "Kopenhagen Interpre-
tation" of Quantum Mechanics, whose meaning we will define later in detail,
|Ψ (r, t)|2 dV is the probability to find a particle in the volume dV at position
r , if an optimum measurement of the particle position is carried out at time
t. The particle is assumed to be point like. Ψ (r, t) itself is then considered
to be the probability amplitude to find the particle at position r at time t.
Note, that the measurement of physical observables like the position of

a particle plays a central role in quantum theory. In contrast to classical
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mechanics where the state of a particle is precisely described by its position
and momentum in quantum theory the full information about a particle is
represented by its wave function Ψ (r, t). Ψ (r, t) enables to compute the
outcome of a measurement of any possible observable related to the particle,
like its position or momentum.
Before, we discuss this issue in more detail lets look at a few examples to

get familiar with the mathematics of quantum mechanics.

4.1 Free Motion

Eq.(4.15) describes the motion of a free particle. For simplicity, we consider
only a one-dimensional motion along the x-axis. Initially, we might only
know the position of the particle with finite precision and therefore we use a
Gaussian wave packet with finite width as the initial wave function

Ψ (x, t = 0) = A exp

µ
− x2

4σ20
+ jk0x

¶
. (4.17)

The probability density to find the particle at position x is a Gaussian dis-
tribution

|Ψ (x, t = 0)|2 = |A |2 exp
µ
− x2

2σ20

¶
, (4.18)

σ20 is the variance of the initial particle position. Since the probability to find
the particle somewhere must be one, we can determine the amplitude of the
wave function by requireing

∞Z
−∞

|Ψ (x, t = 0)|2 dx = 1→ A =
1

4
√
2π
√
σ0

(4.19)

The meaning of the wave number k0 in the wave function (4.17) becomes
obvious by expressing the solution to the wave equation by its Fourier trans-
form

Ψ (x, t) =

+∞Z
−∞

φ (k) exp j (kx− ω (k) t) dk (4.20)
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or specifically for t = 0

Ψ (x,0) =

+∞Z
−∞

φ (k) e jkx dk , (4.21)

or

φ (k) =
1

2π

+∞Z
−∞

Ψ(x,0) e− jkx dx . (4.22)

For the initial Gaussian wavepacket of

Ψ (x, 0) = A exp

µ
− x2

4σ20
+ jk0x

¶
(4.23)

we obtain
φ (k) =

Aσ0√
π
exp

£
−σ20 (k − k0)

2¤ . (4.24)

This is a Gaussian distribution for the wave number, and therefore momen-
tum, of the particle with its center at k0. With the dispersion relation

ω =
~ k2

2 m
, (4.25)

with the constant potential V0 set to zero, the wave function at any later
time is

Ψ (x, t) =
Aσ0√
π

+∞Z
−∞

exp

∙
−σ20 (k − k0)

2− j~k
2

2m
t+ jkx

¸
dk. (4.26)

This is exactly the same Gaussian integral we were studying for dispersive
pulse propagation or the diffraction of a Gaussian beam in chapter 2 which
results in

Ψ (x, t) =
Aq

1 + j ~ t
m2σ20

exp

⎡⎣− x2 − 4 jσ20k0 x+ j
~2σ20k20

m
t

4σ20

³
1 + j ~

m2σ20
t
´

⎤⎦ . (4.27)

As expected the wave packet stays Gaussian. The probability density is

|Ψ(x, t)|2 = |A|2q
1 + ( ~ t

2mσ20
))
exp

⎡⎢⎢⎣−
¡
x− ~ k0

m
t
¢2

2σ20

∙
1 +

³
~ t
2mσ20

´2¸
⎤⎥⎥⎦ . (4.28)
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With the value for the amplitude A according to Eq.(4.19), the wave packet
remains normalized

+∞Z
−∞

|Ψ(x, t)|2 dx = 1. (4.29)

Using the probability distribution for the particle position, we obtain for its
expected value

hxi =
+∞Z
−∞

x |Ψ(x, t)|2 dx (4.30)

or

hxi = ~ k0
m

t . (4.31)

Thus the center of the wave packet moves with the velocity of the classical
particle

υ0 =
~ k0
m

, (4.32)

which is the group velocity derived from the dispersion relation (4.2)

υ0 =
∂ω(k)

∂k

¯̄̄̄
k=k0

=
1

~
∂E(k)

∂k

¯̄̄̄
k=k0

. (4.33)

As we will see later, the expected value for the center of mass of the par-
ticle follows Newton’s law, which is called Ehrenfest’s Theorem. For the
uncertainty in the particle position

∆x =

q
hx2i− hxi2 (4.34)

follows for the freely moving particle

∆x = σ0

s
1 +

µ
~ t
2mσ20

¶2
. (4.35)

The probability density for the particle position disperses over time. Asymp-
totically one finds

∆x
.
=

~ t
2mσ20

for
~ t
2mσ20

À 1 . (4.36)

Figure 4.1 (a) is a sketch of the complex wave packet and (b) indicates the
temporal evolution of the average and variance of the particle center of mass
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motion described by the complex wave packet. The wave packet disperses
faster, if it is initially stronger localised.

Figure 4.1: Gaussian wave packet: (a) Real and Imaginary part of the com-
plex wave packet. (b) width and center of mass of the wave packet.

Example:
Using this one dimensional model, we can estimate how rapidly an elec-

tron moves in a hydrogen atom. If we localize an electron in a box with a size
similar to that of a hydrogen atom, i.e. σ0 = a0 = 0.5 · 10−10m, without the
presence of the proton that holds the electron back from escaping, it will only
take t = 2mσ20/~ = 2 ·9.81 ·10−31kg· (0.5 · 10−10)

2m2/6.626 ·10−34Js = 46.5as
(attoseconds=10−18 sec) until its wave function disperses significantly. This
result indicates that electronic motion in atoms occurs on a attosecond time
scale. Note, these time scales quickly become very long if macroscopic ob-
jects are described quantum mechanically. For example, for a particle with
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a mass of 1μg localized in a box with dimensions 1μm, the equivalent time
for significant dispersion of the wave function is t = 2 · 1019s = 2Million
years. This result gives us a first indication why we are far, far away from
encountering quantum mechanical effects in our everyday life and why the
mechanics of the micro cosmos, on an atomic or molecular level, is so dif-
ferent from our macroscopic experience. The reason is the smallness of the
quantum of action h.
The reason for this behaviour is that a well localized particle has a wider

momentum or wave number distribution. This is in one to one analogy that
an otpical pulse disperses faster in a medium with a given dispersion if it is
shorter because of larger spectral width. The wave number spread is

(∆k)2 =

∞Z
−∞

(k − k0)
2 |φ (k)|2 dk

∞Z
−∞

|φ (k)|2 dk

. (4.37)

Here, we have

∆k =
1

2σ0
, (4.38)

or for the momentum spread

∆p =
~
2σ0

. (4.39)

The position-momentum uncertainty product is then

∆p ∆x =
~
2

s
1 +

µ
~ t
2m2

0

¶2
. (4.40)

The position-momentum uncertainty product is a minimum at t = 0 and
steadily increases from this initial value. As we will show later it is in gen-
erally true that the position-momentum uncertainty product satisfies the
condition

∆xi∆pi >
~
2
. (4.41)

Note, that the index i indicates the coordinate. This is Heisenberg’s uncer-
tainy relation between particle position and moment, which holds for each
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component individually. Later, we will find other pairs of physical obser-
vavles, which are called conjugate observables and which satiesfy similar
uncertainty relations. The product of such quantities is always an action.
This is for example also true for the product of energy and frequency and
the resulting energy-time uncertainty relation is

∆E∆t > ~
2
. (4.42)

Note, whereas the position-momentum uncertainy is related to the choice of
the particle state described by the wave function, the energy-time uncertainty
relation is related to the dynamics of a quantum process. What it means is
that a quantum system can only change its state significantly within a time
span ∆t, if the state, the quantum system is in, has an energy uncertainty
larger than δE > ~

2δt
.

Position and momentum variables that do not belong to the same degree
of freedom, such as y, and px are not subject to an uncertainty relation.

4.2 Probability Conservation and Propabil-
ity Currents

Max Born was the first to introduce the propabilistic interpretation of the
wave function found by Schroedinger, that is the propability to find the center
of mass of a particle at position r in a volume element dV is given by the
magnitude square of the wave function multiplied by dV

p (r, t) = |Ψ (r, t)|2 dV . (4.43)

If this interpretation makes sense, then the total propability that the parti-
cle can be found somewhere should by 1 and this normalization should not
change during the dynamics. We found that this is true for the Gaussian
wave packet undergoing free motion. Here, we want to show that this is true
under the most general circumstances. We look at the rate of change of the
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probability to find the particle in an arbitrary but fixed volume V = V ol

d

dt

Z
V ol

p (r, t) d3r = (4.44)

=

Z
V ol

∂

dt
|Ψ (r, t)|2 d3r

=

Z
V ol

∙µ
∂

∂t
Ψ∗ (r, t)

¶
Ψ (r, t) +Ψ∗ (r, t)

µ
∂

∂t
Ψ (r, t)

¶ ¸
d3r

Using the Schroedinger Equation (4.16) for the temporal change of the wave
function we obtain

d

dt

Z
V ol

p (r, t) d3r =

=

Z
V ol

∙µ
~

j2m
∇ ·∇ Ψ∗ (r, t)− j

~
V (r) ∗Ψ∗ (r, t)

¶
Ψ (r, t)

¸
d3r (4.45)

+

Z
V ol

∙
Ψ∗ (r, t)

µ
− ~
j2m
∇ ·∇ Ψ (r, t) +

j

~
V (r) Ψ (r, t)

¶¸
d3r

Since the potential V (r) is real the terms related to it cancel. The other two
terms can be written of the divergence of a current densityZ

V ol

∂

∂t
p (r, t) d3r = −

Z
V ol

∇ · J (r, t) d3r, (4.46)

with

J (r, t) =
~

j2m
(Ψ∗ (r, t) (∇Ψ (r, t))−Ψ (r, t) (∇Ψ∗ (r, t))) . (4.47)

Eq.(4.46) is true for any volume, i.e.Z
V ol

∙
∂

∂t
p (r, t) +∇ · J (r, t)

¸
d3r = 0, (4.48)

which is only possible if the integrand vanishes

∂

∂t
p (r, t) = − ∇ · J (r, t) . (4.49)

Clearly, J (r, t) has the physical meaning of a probability current. The prob-
ability in a volume element changes because of probablity flowing out of
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this volume element. Note, this is the same local law that we have for the
conservation of charge. In fact, if the particle is a charged particle, like an
electron is, multiplication of J with −e0 would result in the electrical current
associated with the wave function Ψ (r, t) .
Gauss’s theorem statesZ

V ol

∇ · J (r, t) d3r =

Z
S

J (r, t) dS, (4.50)

where V ol is the volume over which the integration is carried out and S is
the surface that encloses the volume with dS an outward pointing surface
normal vector. With Gauss’s theorem the local conservation of probability
can be transfered to a global result, since

d

dt

Z
V ol

p (r, t) d3r = −
Z
V ol

∇ · J (r, t) d3r = −
Z
S

J (r, t) dS. (4.51)

If we choose as the volume the whole space and if Ψ (r, t) and ∂
∂t
Ψ (r, t)

vanish rapidly enough for r →∞ such that the probability current vanishes
at infinity, the total probability is conserved. These findings proove that
the probabilty interpretation of the wave function is a valid interpretation
not contradicting basic laws of probability. If the wave function properly
normalized at the beginning it will stay normalized.

Example The Gaussian wave packet satisfies the condition that the prob-
ability current decays rapidly enough at the surface of a large enough chosen
volume so that the normalization is preserved. A monochromatic plane wave
does not satisfy this condition. However, the probability current density gives
a physical meaning to it. The wave function corresponding to a plan wave

Ψ (r, t) = ej(k·r−ωt), with ω =
~k2

2m
+

V0
~

(4.52)

which is not normalizable, results in a homogenous probability current

J (r, t) =
~

j2m
(Ψ∗ (r, t) (∇Ψ (r, t))−Ψ (r, t) (∇Ψ∗ (r, t))) (4.53)

=
~k
m
|Ψ (r, t)|2 = p

m
= v,
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that is identical to the classical velocity of the particle. Thus a plane wave
describes a particle with a precise velocity or momentum but completely
unknown position, therefore the related probability current density is com-
pletely homogenous but directed into the direction of v. Such waves describe
the initial state in a scattering experiment, where we shoot particles with a
precisely defined velocity v or momentum p or energy E = mv2

2
= ~p2

2m
= ~k2

2m

onto another object described by a scattering potential, see problem set. The
position of these particles is completely unspecified, i.e. |Ψ (r, t)|2 =const.

4.3 Measureability of Physical Quantities (Ob-
servables)

The reason for the more intricate description necessary for microscopic pro-
cesses in comparison with macroscopic processes is simply the fact that these
systems are so small that the interaction of the system with an eventual mea-
surement apparatus can no longer be neglected. It turns out this fact is not
to overcome by choosing more and more sophisticated measurement apparati
but rather is a principle limitation. If this is so, then it eventually doesn’t
make sense or it becomes even inconsistent to attribute to a system more
precisely defined physical quantities than actually can be retrieved by mea-
surements. This is the physical reason behind the introduction of the wave
function in stead of the precisely defined position and momentum of the par-
ticle that we used to deterministically predict the trajectory of a particle in
an external field.
It is impossible to assign to a microscopic particle a precise position and

momentum at the same time. To demonstrate this, we consider the following
(Heisenberg) microscope to measure the exact position of a particle. We use
light with wavelength λ and focus it strongly with a lense of some focal
distance d, see Figure 4.2.
From our construction of the Gaussian beam in section 2.4.2, we found

that if we generate a focused beam with a waist wo having a Rayleigh range
zR =

πw2o
λ
, the beam is composed of plane waves which have a Gaussian distri-

bution in its transverse k-vector, which has a variance k2T/2, see Eq.(2.220).
The Rayleigh range of the beam is related to the transverse wave number
spread of the beam by zR = k0/k

2
T , with k0 = 2π/λ, see (2.221) and there-

after. Note, the intensity profile of the beam has a variance w2o /4. If a particle
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crosses the focus of the beam and scatters a single photon, which we detect
with the surrounding photo detector arrangement, then it is reasonable to
assume that we know the position of the particle in the x-direction, with an
uncertainty equal to the uncertainty in the transverse photon or intensity
distribution of the beam, i.e. ∆x = wo /2.

Photodector

Weak particle beam
with precise momentum p

p

Figure 4.2: Determination of particle position with an optical microscope.
A weak particle beam with precisely defined moment p of the particles is
directed towards the focus of the Gaussian beam. In the focus the particle
scatters at least one photon. Detection of the scattered photon with the
surrounding photodetector signals, that the position of the particle in x-
direction has been determined within the beam waist of the Gaussian beam.
However, due to the scattering of the photon a momentum uncertainty has
been introduced to the particle state.

During the measurement, the photon recoil induces a momentum kick
with an uncertainty∆px = ~kT/

√
2. So even if the momentum of the particle

was perfectly know before the measurement, after the additional determina-
tion of its position with a precision ∆x it has at least aquired an uncertainty
in its momentum of magnitude ∆px. The product of the uncertainties in
postion and momentum after the measurement is

∆px ·∆x = ~kTwo/
³
2
√
2
´
=
~
2
. (4.54)
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Note, this result is exact and is independent of focusing. Tighter focusing
will enable us to more precisely determine the position of the particle, but
we will introduce more momentum uncertainty due to the photon recoil; the
opposite is true for less focusing. Since we can not determine, and therefore,
prepare a particle in a state with its position and momentum more precisely
determined than this uncertainty product allows, there is nowsuch state and
(4.54) is the minimum uncertainty product achievable.
The experimental setup can easily be extended to measure the momentum

and position of a particle in all three dimensions. For example one can use
three focused laser beams at different wavelength, which are orthogonal to
each other. Once a particle will fly through the focus and scatters three
photons, each of different color. If we knew its momentum initially precisely,
we would know afterwards its 3-dimensional position with a position and
momentum spread as described by Eq.(4.54).

4.4 Stationary States

One of the great mysteries before the advent of quantum mechanics was the
orgin of the discrete energy spectra observed in spectroscopic investigations
and empirically described by the Bohr-Sommerfeld model of the atom. This
mystery is easily explained by the Schroedinger Equation (4.16)

j~
∂Ψ (r, t)

∂t
= − ~

2

2m
∆ Ψ (r, t) + V (r) Ψ (r, t) . (4.55)

It allows for solutions
Ψ (r, t) = ψ (r) ejωt, (4.56)

which have a time independent probability density, i.e.

|Ψ (r, t)|2 = |ψ (r)|2 = const., (4.57)

which is the reason for calling these states stationary states. Since the right
side of the Schroedinger Equation is equal to the total energy of the sys-
tem, these states correspond to energy eigenstates of the system with energy
eigenvalues

E = ~ω. (4.58)
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These energy eigenstates ψ (r) are eigen solutions to the stationary or time
independent Schroedinger Equation

− ~
2

2m
∆ ψ (r) + V (r) ψ (r) = E ψ (r) . (4.59)

We get familiar with this equation by considering a few one-dimensional
examples, before we apply it to the Hydrogen atom.

4.4.1 The One-dimensional Infinite Box Potential

A simple example for a quantum mechanical system is an electron that can
freely move in one dimension x but only over a finite distance a. Such a
situation closely describes an electron that is strongly bound to a molecule
with a cigar like shape with length a. The potential describing this situation
is the one-dimensional box potential

V (x) =

½
0, for |x| < a/2
∞, for |x| ≥ a/2

, (4.60)

see Figure 4.3.

Figure 4.3: One dimensional box potential with infinite barriers.

In the interval [−a/2, a/2] the stationary Schroedinger equation is

−~
2 d2ψ (x)

2m dx2
= E ψ (x) . (4.61)
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For |x| ≥ a/2 the wave function must vanish, otherwise the energy eigenvalue
can not be finite, i.e. ψ (x = ±a/2) = 0. This is analogous to the electric
field solutions for the TE-modes for a planar mirror waveguide and we find

ψn (x) =

r
2

a
cos

nπx

a
for n = 1, 3, 5 . . . , (4.62)

ψn (x) =

r
2

a
sin

nπx

a
for n = 2, 4, 6 . . . . (4.63)

The corresponding energy eigenvalues are

En =
n2π2~2

2ma2
. (4.64)

We also find that the stationary states constitute an orthogonal system of
functions

+∞Z
−∞

ψm (x)
∗ ψn (x) dx = δmn. (4.65)

In fact this system is complete. Any function in the interval [−a/2, a/2]
can be expanded in a superposition of the basis functions ψn (x), which is a
Fourier series

f (x) =
∞X
n=0

cnψn (x) (4.66)

with

cm =

Z a/2

−a/2
ψm (x)

∗ f (x) dx, (4.67)

which is a consequence of the orthogonality relation (4.65).

Example: If we approximate the binding potential of a hydrogen atom
by a one-dimensional box potential with a width equal to twice the Bohr
radius a = 2a0 = 10−10m, the energy eigenvalues are En = n2 · 35eV. Clearly,
the spacing of the energy eigenvalues does not conform with what has been
observed experimentaly, compare with section 3.4, however the energy scale
is within an order of magnitude. The ionization potential of the hydrogen
atom is 13.5eV .
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4.4.2 The One-dimensional Harmonic Oscillator

The most important example of a quantum system is the one-dimensional
harmonic oscillator. It is the most basic mechanical and electrical system
and it describes the dynamics of a mode of the radiation field, see Figure 4.4.

Figure 4.4: Elastically bound particle

Mechanically, a harmonic oscillation comes about by the elastic force
obeying Hook’s law

F (x) = −Kx, (4.68)

that pulls back a particle with mass m in its equilibrium position. This force
is conservative and can be derived from a potential by

F (x) = −d V (x)

dx
, (4.69)

with
V (x) =

1

2
Kx2 . (4.70)

Newton’s law results in the classical equation of motion

mẍ = F (x) , (4.71)

or
ẍ+ ω20x = 0, (4.72)

with the oscillation frequency

ω0 =

r
K

m
(4.73)
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The corresponding stationary Schroedinger Equation is

d2ψ (x)

dx2
+
2m

~2

µ
E − 1

2
Kx2

¶
ψ (x) = 0. (4.74)

This equation is well known in mathematical physics and we want to bring
it into standardized form by the scale transformation, i.e. introducing a
normalized distance

ξ = ax, (4.75)

with the scale factor

a =

µ
mK

~2

¶ 1
4

=

r
ω0m

~
=

r
K

~ω0
. (4.76)

In addition we introduce the energy scale factor

γ =
2E

~ω0
. (4.77)

Then the stationary Schroedinger Equation for the harmonic oscillator is

d2ψ (ξ)

dξ2
+
¡
γ − ξ2

¢
ψ (ξ) = 0. (4.78)

It turns out [4][6], that this equation has only solutions that are bounded,
i.e. ψ (ξ → ±∞) = 0, if the normalized energies are

γn = 2n+ 1. (4.79)

And the corresponding eigensolutions are the Hermite Gaussians,

ψn (ξ) = const. Hn (ξ) e−
1
2
ξ2, (4.80)

which we discovered already as solutions of the paraxial wave equation, see
Eqs.(2.298) and (2.299), i.e.

Hn (ξ) = (−1)n eξ
2 dn

dξn
e−ξ

2

(4.81)

H0 (ξ) = 1 , H3 (ξ) = 8 ξ
3 − 12 ξ ,

H1 (ξ) = 2 ξ , H4 (ξ) = 16 ξ
4 − 48 ξ2 + 12 ,

H2 (ξ) = 4 ξ
2 − 2 , H5 (ξ) = 32 ξ

5 − 160 ξ3 + 120 ξ .
(4.82)
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After denormalization and normalization the stationary wave functions are

ψn (x) =

r
a

2n
√
π n!

Hn (ax) e−
1
2
a2x2. (4.83)

Again, we find that the Hermite Gaussians constitute an orthogonal system
of functions such that

+∞Z
−∞

ψm (x)
∗ ψn (x) dx = δmn. (4.84)

Figure 4.5 shows the first six stationary states or energy eigenstates of the
harmonic oscillator.

Figure 4.5: First six stationary states of the harmonic oscillators.

The energy eigenvalues of the stationary states are

En =

µ
n+

1

2

¶
~ω0 . (4.85)

Note, that the energy eigenvalues are equidistant and the difference between
two energy eigenstates follows the findings of Planck. An oscillator has dis-
crete energy levels which differ by energy quanta of size ~ω0, see Figure
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Figure 4.6: Lowest order wavefunctions of the harmonic oscillator and the
corresponding energy eigenvalues [3].

.The only difference is, that the whole energy scale is shifted by the energy
of half a quantum, which is the lowest energy eigenvalue. Thus the minimum
energy, or ground state energy, of a harmonic oscillator is not zero but E0 =
1
2
~ω0.It is obvious, that an oscillator can not have zero energy because its
energy is made up of kinetic and potential energy

E =
p2

2m
+
1

2
Kx2. (4.86)

Since every state has to fulfill Heisenberg’s uncertainty relation ∆p ·∆p ≥ ~
2
,

one can show that the state with minimum energy possible has an energy
E0 =

1
2
~ω0, which is true for the ground state ψ0 (x) according to Eq.(4.83).

The stationary states of the harmonic oscillator correspond to states with
precisely definied energy but completely undefined phase. If we assume a
classical harmonic oscillator with a well defined energy E = 1

2
Kx20. Note,

that during a harmonic oscillation the energy is periodically converted from
potential energy to kinetic energy. Then the oscillator oscillates with a fixed
ampltiude x0

x(t) = x0 cos (ω0t+ ϕ) . (4.87)

If the phase is assumed to be random in the interval [-π, π], one finds for the
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probability density of the position x to be

p (x) =
1

π
p
x20 − x2

.

Figure 4.7 shows this probability density corresponding to an energy eigen-
state ψn (x) with quantum large quantum number n = 10.

Figure 4.7: Probability density |ψ10|2 of the harmonic oscillator containing
exactly 10 energy quanta.

On average, the quantum mechanical probability density agrees with
the classical probability density, which is some form of the correspondence
principle, which says that for large quantum numbers n the wave functions
resume classical properties.

4.5 The Hydrogen Atom

The simplest of all atoms is the Hydrogen atom, which is made up of a
positively charged proton with rest mass mp = 1.6726231 × 10−27 kg, and
a negatively charged electron with rest mass me = 9.1093897 × 10−31 kg.
Therefore, the hydrogen atom is the only atom which consists of only two
particles. This makes an analytical solution of both the classical as well as
the quantum mechanical dynamics of the hydrogen atom possible. All other
atomes are composed of a nucleus and more than one electron. According
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Figure 4.8: Bohr Sommerfeld model of the Hydrogen atom.

to the Bohr-Somerfeld model of hydrogen, the electron circles the proton on
a planetary like orbit, see Figure 4.8.The stationary Schroedinger Equation
for the Hydrogen atom is

∆ψ (r) +
2m0

~2
(E − V (r)) ψ (r) = 0 (4.88)

The potential is a Coulomb potential between the proton and the electron
such that

V (r) = − e20
4π ε0 |r|

(4.89)

and the mass is actually the reduced mass

m0 =
mp · me

mp +me
(4.90)

that arises when we transform the two body problem between electron and
proton into a problem for the center of mass and relative coordinate motion.
Due to the large, but finite, mass of the proton, i.e. the proton mass is 1836
times the electron mass, both bodies circle around a common center of mass.
The center of mass is very close to the position of the proton and the reduced
mass is almost identical to the proton mass. Due to the spherical symmetry
of the potential the use of spherical coordinates is advantageous

∆ψ =
∂2ψ

∂r2
+
2

r

∂ψ

∂r
+
1

r2

∙
1

sinϑ

∂

∂ϑ

µ
sinϑ

∂ψ

∂ϑ

¶
+

1

sin2 ϑ

∂2ψ

∂ ϕ2

¸
(4.91)

We will derive separate equations for the radial and angular coordinates by
assuming trial solutions which are products of functions only depending on
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one of the coordinates r , ϑ , or ϕ

ψ (r, ϑ, ϕ) = R (r) θ (ϑ) φ (ϕ) . (4.92)

Substituting this trial solution into the stationary Schroedinger Eq.(4.91)
and separating variables leads to radial equation

d2R

dr2
+
2

r

dR

dr
+

µ
2m0E

~2
+

m0e
2
0

2πε0~2r
− α

r2

¶
R = 0 , (4.93)

the azimuthal equation

1

sinϑ

d

dϑ

µ
sinϑ

dθ

dϑ

¶
+

µ
α− m2

sin2 ϑ

¶
θ = 0 , (4.94)

and the polar equation
d2φ

dϕ2
+m2φ = 0 , (4.95)

where α and m are constants yet to be determined. The polar equation has
the complex solutions

φ (ϕ) = const. ejmϕ, with m = . . .− 2,−1, 0, 1, 2 . . . (4.96)

because of the symmetry of the problem in the polar angle ϕ, i.e. the wave-
function must be periodic in ϕ with period 2π.

4.5.1 Spherical Harmonics

The azimuthal equation is transformed by the substitution

ξ = cosϑ (4.97)

into ¡
1− ξ2

¢ d2θ
dξ2
− 2ξ dθ

dξ
+

µ
α− m2

1− ξ2

¶
θ = 0 . (4.98)

It turns out, that this equation has only bounded solutions on the interval
ξ [−1, 1], if the constant α is a whole number

α = l (l + 1) with, l = 0, 1, 2 . . . (4.99)
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and
m = −l,−l + 1, . . . − 1, 0, 1 . . . l − 1, l (4.100)

For m = 0, Eq.(4.98) is Legendre’s Differential Equation and the solutions
are the Legendre-Polynomialsm [5]

P0 (ξ) = 1 , P3 (ξ) =
5
2
ξ3 − 3

2
ξ ,

P1 (ξ) = ξ , P4 (ξ) =
35
8
ξ4 − 15

4
ξ2 + 3

8
,

P2 (ξ) =
3
2
ξ2 − 1

2
, P5 (ξ) =

63
8
ξ5 − 35

4
ξ3 + 15

8
ξ .

(4.101)

For m 6= 0, Eq.(4.98) is the associated Legendre’s Differential Equation and
the solutions are the associated Legendre-Polynomials, which can be gener-
ated from the Legendre-Polynomials by

Pm
1 (ξ) =

¡
1− ξ2

¢m/2 dmP1 (ξ)

dξm
. (4.102)

Overall the angular functions can be combined to form the spherical harmon-
ics

Y m
1 (ϑ, ϕ) = (−1)

m

s
(2l + 1)

4π

(l − |m|)!
(l + |m|)! P

m
1 (cosϑ) e

jm ϕ

, (4.103)

which play an important role whenever a partial differential equation that
contains the Laplace operator is solved in spherical coordinates. The spheri-
cal harmonics form a system of orthogonal functions on the full volume angle
4π, i.e. ϑ [0, π] and ϕ [−π, π]

πZ
0

2πZ
0

Y m
l
∗(ϑ, ϕ)Y m0

l0 (ϑ, ϕ) sinϑ dϑ dϕ = δll0 , δmm0 . (4.104)

Therefore, a function of the angular variable (ϑ, ϕ) can be expanded in spher-
ical harmonics. The spherical harmonics with negative azimuthal number -m
can be expressed in terms of those with positive azimuthal number m.

Y −m1 (ϑ, ϕ) = (−1)m (Y m
l (ϑ, ϕ))

∗ . (4.105)

The lowest order spherical harmonics are listed in Table 4.1. Figure 4.9 shows
a cut through the spherical harmonics Y m

1 (ϑ, ϕ) along the meridional plane.




