
2.8 Wave Propagation in Anisotropic Media

So far we have always assumed that the medium in which the electromagnetic
wave propagates is isotropic. This causes the induced polarization to be
parallel to the applied electric field. In crystaline materials or materials with
microscopic fine structure in general, this is no longer the case. Instead of
the simple relation

P = 0χ · E, (2.390)

where the susceptibility is a scalar, the induced polarization may have a
general lineare dependence on E not necessarily parallel to the applied field

P x = 0

³
χ
xx
Ex + χ

xy
Ey + χ

xz
Ez

´
, (2.391)

P y = 0

³
χ
yx
Ex + χ

yy
Ey + χ

yz
Ez

´
, (2.392)

P z = 0

³
χ
zx
Ex + χ

zy
Ey + χ

zz
Ez

´
. (2.393)

The tensor χ is called the electric susceptibility tensor. As shown in Table
2.7 the crytaline structure determines to a large extend the values of the
susceptibility tensor elements or in other words the symmetry properties of
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isotropic

⎡⎣ xx 0 0
0 xx 0
0 0 xx

⎤⎦ cubic

uniaxial

⎡⎣ xx 0 0
0 xx 0
0 0 zz

⎤⎦ Tetragonal
Trigonal
Hexagonal

biaxial

⎡⎣ xx 0 0
0 yy 0
0 0 zz

⎤⎦ Orthorhombic⎡⎣ xx 0 xz
0 yy 0
xz 0 zz

⎤⎦ Monoclinic⎡⎣ xx xy xz
xy yy yz
xz yz zz

⎤⎦ Triclinic

Table 2.7: Form of the electric susceptibility tensor for various crystal sys-
tems.

the crystal reflect themselves in the symmetry properties of the susceptibility
tensor.
Elementary algebra tells us that we can choose a new coordinate system

with axis x0, y0, z0, such that the susceptibility tensor has diagonal form

P x0 = 0χx0x0Ex0 , (2.394)

P y0 = 0χy0y0Ey0 , (2.395)

P z0 = 0χz0z0Ez0 . (2.396)

These directions are called the principle axes of the crystal. In the following,
we consider that the crystal axes are aligned with the principle axes. If a
TEM-wave is launched along the z−axis with the elecric field polarized along
one of the prinicple axes, lets say x, the wave will experience a refractive index

n2x = 1 + χ
xx

(2.397)

and the wave will have a phase velocity

c = c0/nx. (2.398)
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If on the other hand the wave is polarized along the y-axis it will have a dif-
ferent phase velocity corresponding to ny. If the wave propagates along the
z−axis with electric field components along both the x- and y-axis, the wave
can be decomposed into the two polarization components. During propaga-
tion of the wave the will experience a differential phase shift with respect to
each other and the state of polarization may change. Later, this phenomenon
will be exploited for the construction of modulators and switches.

2.8.1 Birefringence and Index Ellipsoid

If we consider the propagation of a wave into an arbitrary direction of the
crystal it is no longer obvious what the plane wave solution and its phase
velocity is. We have

D = εE (2.399)

with

ε =ε0

⎡⎣ εx 0 0
0 εy 0
0 0 εz

⎤⎦ . (2.400)

Let’s assume there are plane wave solutions

E = E0e
−jk·r

then Ampere’s and Faraday’s law give

k ×H = −ωεE, (2.401)

k ×E = ωμ0H, (2.402)

resulting in the wave equation

k × k ×E = −ω2μ0εE. (2.403)

Note, that the wavevector k is orthogonal to the dielectric displacement D
and the magnetic field H, but not necessarily to the electric field E. There is

k⊥
³
εE = D

´
⊥B. (2.404)

This situation is reflected in Figure 2.114
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Figure 2.114: Wave propagation in anisotropic media. KDB-system.

One distinguishes between isotropic, uniaxial und biaxial media. We have
extensively studied the isotropic case. The most general case is the biaxial
case, where the dielectric constants along the three axes are all different.
These dielectic constants, or corresponding indices, define an index ellipsoid

x2

n2x
+

y2

n2y
+

z2

n2z
= 1, (2.405)

see Figure 2.115.
Here we want to consider the case of an uniaxial crystal, where

εxx = εyy = ε1 6= εzz = ε3. (2.406)

The refractive indices corresponding to these susceptibilities are called ordi-
nary and extraordinary indices

n1 = no 6= n3 = ne. (2.407)

Further, there is a distinction between positive, ne > no, and negative, ne <
no, uniaxial crystals. The uniaxial case corresponds to an index ellipsoid that
has rotational symmectry around the z-axis, see Figure 2.115.
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Figure 2.115: Index Ellipsoid

The general case is then a wave with wave vector k propagating under
an angle θ with respect to the z-axis; the z-axis is also often called the fast
axis or c-axis or optical axis. Without restrictions, we assume that the wave
vector is in the x − z−plane. If the wave vector is aligned with the fast
axis, there is no birefringence, because the index experienced by the wave
is independent from its polarization. If there is a finite angle, θ 6= 0, then
there are two waves with different phase velocity and group velocity as we
will show now, see 2.115, and birefringence occurs. With the identity A

×
³
B × C

´
=
³
A · C

´
B −

³
A ·B

´
C, when applied to Eq.(2.403), follows³

k ·E
´
k − k2E + ω2μ0εE = 0. (2.408)

This equation determines the dispersion relation and polarization of the pos-
sible waves with wave vector k. Since the wave vector is in the x− z−plane
this equation reads⎛⎝ k20n

2
o + k2x−k2 kxkz

k20n
2
o−k2

kzkx k20n
2
e + k2z−k2

⎞⎠E = 0 (2.409)

This equation clearly shows that a wave polarized along the y−axis or in
general orthogonal to the plane composed of the wave vector and the fast
axis decouples from the other components.
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2.8.2 Ordinary Wave

This wave is called the ordinary wave, because it has the dispersion relation

k2 = k20n
2
o. (2.410)

As with the TEM waves in an isotropic medium, the wave vector and the
field components build an orthogonal trihedral, k⊥E⊥H.

2.8.3 Extraordinary Wave

Eq.(2.409) allows for another wave with a polarization in the x − z−plane,
and therefore this wave has a longitudinal electric field component. This
wave is called extraordinary wave and its dispersion relation follows from

det

¯̄̄̄
k20n

2
o + k2x−k2 kxkz

kzkx k20n
2
e + k2z−k2

¯̄̄̄
= 0. (2.411)

Calculating the determinant and simplifying we find

k2z
n2o
+

k2x
n2e
= k20. (2.412)

With kx = k sin (θ) , kz = k cos (θ) and k = n (θ) k0 we obtain for the
refractive index seen by the extraordinary wave

1

n (θ)2
=
cos2 (θ)

n2o
+
sin2 (θ)

n2e
. (2.413)
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Figure 2.116: Cut through the surface with a constant free space wave num-
ber ko(kx, ky, kz) or frequency, which is also an ellipsoid, but with exchanged
principle axis when compared with Figure 2.114

Eqs.(2.412) and (2.413) also describe an ellipse. This ellipse is the location
of a constant free space wave number or frequency, ω = k0c0, and therefore
determines the refractive index, n (θ) , of the extraordinary wave, see Figure
2.115. The group velocity is found to be parallel to the Poynting vector

υg = ∇kω(k) k S, (2.414)

and is orthogonal to the surface. For completeness, we give a derivation of
the walk-off angle between the ordinary and extraordinary wave

tan θ =
kx
kz

(2.415)

tanφ = −dkz
dkx

(2.416)
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From Eq.(2.412) we obtain by differentiation along the surface of the ellipsoid

2kzdkz
n2o

+
2kxdkx
n2e

= 0. (2.417)

tanφ =
n2okx
n2ekz

=
n2o
n2e
tan θ

Thus, we obtain for the walk-off-angle between Poynting vector and wave
vector

tan = tan (θ − φ) =
tan θ − tanφ
1 + tan θ tanφ

(2.418)

or

tan = −

³
n20
n2e
− 1
´
tan θ

1 +
n20
n2e
tan2 θ

. (2.419)

2.8.4 Example: Calcite

One example of a birefringent materialis calcite, which is also often used in
optical devices, such as polarizers for example. Figure 2.117 and 2.118 show
the arrangement of atoms in calcite.

Figure 2.117: Arrangement of atoms in calcite, [1], p. 231.
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Figure 2.118: Atomic arrangement of calcite looking down the optical axis
[1], p. 232.

Figure 2.119 shows a crystal cleaved along the crystal axis (cleavage
form).

Figure 2.119: Calcite cleavage form [1], p. 232.

Figure 2.120 shows the light path of two orthogonally polarized light
beams where one propagates as an ordinary and the other as an extraordinary
wave through the crystal. This leads to a double image when an object is
viewed through the crystal, see Figure 2.121.



160 CHAPTER 2. CLASSICAL ELECTROMAGNETISM AND OPTICS

Figure 2.120: A light beam with two orthogonal field components traversing
a calcite principal section [1], p. 234.

Figure 2.121: Double image formed by a calcite crystal (not cleavage form)
[1], p. 233.

Table 2.8 gives the ordinary and extraordinary refractive indices of some
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uniaxial crystals. Birefringent materials enable the construction of wave

Crystal no ne
Tourmaline 1.669 1.638
Calcite 1.6584 1.4864
Quartz 1.5443 1.5534
Sodim Nitrate 1.5854 1.3369
Ice 1.309 1.313
Rutile (TiO2) 2.616 1.903

Table 2.8: Refractive indices of some uniaxial birefringent crystals (λ =
589.3nm) [1], p.236

plates or retardation plates, which enable the manipulation of polarization
in a very unique way.

2.9 Polarization and Crystal Optics

So far we have discussed linearly polarized electromagnetic waves, where the
electric field of a TEM-wave propagating along the z−direction was either
polarized along the x− or y−axis. The most general TEM-wave has simul-
taneously electric fields in both polarizations and the direction of the electric
field in space, i.e. its polarization, can change during propagation. A de-
scription of polarization and polarization evolution in optical systems can be
based using Jones vectors and matrices.

2.9.1 Polarization

A general complex TEM-wave propagating along the z−direction is given by

E(z, t) =

⎛⎝ E0x

E0y

0

⎞⎠ ej(ωt−kz), (2.420)

where E0x = E0xe
jϕx and E0y = E0ye

jϕy are the complex field amplitudes of
the x− and y− polarized components of the wave. The real electric field is
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given by

E(z, t) =

⎛⎝ E0x cos (ωt− kz + ϕx)
E0y cos

¡
ωt− kz + ϕy

¢
0

⎞⎠ , (2.421)

Both components are periodic functions in ωt− kz = ω (t− z/c) .

Linear Polarization

If the phases of the complex field amplitudes along the x− and y−axis are
equal, i.e.

E0x = |E0x| ejϕ and E0y =
¯̄
E0y

¯̄
ejϕ

then the real electric field

E(z, t) =

⎛⎝ E0x

E0y

0

⎞⎠ cos (ωt− kz + ϕ) (2.422)

always oscillates along a fixed direction in the x-y-plane, see Figure 2.122

Figure 2.122: Linearly polarized light. (a) Time course at a fixed position z.
(b) A snapshot at a fixed time t, [6], p. 197.

The angle between the polarization direction and the x-axis, α, is given
by α = arctan (E0y/E0x) . If there is a phase difference of the complex field
amplitudes along the x− and y−axis, the direction and magnitude of the
electric field amplitude changes periodically in time at a given position z.
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Circular Polarization

Special cases occur when the magnitude of the fields in both linear polariza-
tions are equal E0x = E0y = E0, but there is a phase difference ∆ϕ = ±π

2
in

both components. Then we obtain

E(z, t) = E0Re

⎧⎨⎩
⎛⎝ ejϕ

ej(ϕ−∆ϕ)

0

⎞⎠ ej(ωt−kz)

⎫⎬⎭ (2.423)

= E0

⎛⎝ cos (ωt− kz + ϕ)
sin (ωt− kz + ϕ)

0

⎞⎠ . (2.424)

For this case, the tip of the electric field vector describes a circle in the
x− y−plane, as

|Ex(z, t)|2 + |Ey(z, t)|2 = E2
0 for all z, t, (2.425)

see Figure 2.123.

Figure 2.123: Trajectories of the tip of the electric field vector of a right and
left circularly polarized plane wave. (a) Time course at a fixed position z.
(b) A snapshot at a fixed time t. Note, the sense of rotation in (a) is opposite
to that in (b) [6], p. 197.
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Right Circular Polarization If the tip of the electric field at a given time,
t, rotates counter clockwise with respect to the phase fronts of the wave, here
in the positive z−direction, then the wave is called right circularly polarized
light, i.e.

Erc(z, t) = E0Re

⎧⎨⎩
⎛⎝ 1

j
0

⎞⎠ ej(ωt−kz+ϕ)

⎫⎬⎭ = E0

⎛⎝ cos (ωt− kz + ϕ)
− sin (ωt− kz + ϕ)

0

⎞⎠ .

(2.426)
A snapshot of the lines traced by the end points of the electric-field vec-

tors at different positions is a right-handed helix, like a right-handed screw
pointing in the direction of the phase fronts of the wave, i.e. k−vector see
Figure 2.123 (b).

Left Circular Polarization If the tip of the electric field at a given fixed
time, t, rotates clockwise with respect to the phase fronts of the wave, here
in the again in the positive z−direction, then the wave is called left circularly
polarized light, i.e.

Elc(z, t) = E0Re

⎧⎨⎩
⎛⎝ 1
−j
0

⎞⎠ ej(ωt−kz+ϕ)

⎫⎬⎭ = E0

⎛⎝ cos (ωt− kz + ϕ)
sin (ωt− kz + ϕ)

0

⎞⎠ .

(2.427)

Eliptical Polarization The general polarization case is called eliptical
polarization, as for arbitrary E0x = E0xe

jϕx and E0y = E0ye
jϕy , we obtain

for the locus of the tip of the electric field vector from

E(z, t) =

⎛⎝ E0× cos (ωt− kz + ϕx)
E0y cos

¡
ωt− kz + ϕy

¢
0

⎞⎠ . (2.428)

the relations

Ey

E0y
= cos

¡
ωt− kz + ϕy

¢
(2.429)

= cos (ωt− kz + ϕx) cos
¡
ϕy − ϕx

¢
(2.430)

− sin (ωt− kz + ϕx) sin
¡
ϕy − ϕx

¢
.
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and

Ex

E0x
= cos (ωt− kz + ϕx) . (2.431)

These relations can be combined to
Ey

E0y
− Ex

E0x
cos
¡
ϕy − ϕx

¢
= − sin (ωt− kz + ϕx) sin

¡
ϕy − ϕx

¢
(2.432)

sin (ωt− kz + ϕx) =

s
1−

µ
Ex

E0x

¶2
(2.433)

Substituting Eq.(2.433) in Eq.(2.432) and building the square results in

µ
Ey

E0y
− Ex

E0x
cos
¡
ϕy − ϕx

¢¶2
=

Ã
1−

µ
Ex

E0x

¶2!
sin2

¡
ϕy − ϕx

¢
. (2.434)

After reordering of the terms we obtainµ
Ex

E0x

¶2
+

µ
Ey

E0y

¶2
− 2 Ex

E0x

Ey

E0y
cos
¡
ϕy − ϕx

¢
= sin2

¡
ϕy − ϕx

¢
. (2.435)

This is the equation of an ellipse making an angle α with respect to the x-axis
given by

tan 2α =
2E0xE0y cos

¡
ϕy − ϕx

¢
E2
0x −E2

0y

. (2.436)

see Figure 2.124.

Figure 2.124: (a) Rotation of the endpoint of the electric field vector in the
x-y-plane at a fixed position z. (b) A snapshot at a fixed time t [6], p. 197.



166 CHAPTER 2. CLASSICAL ELECTROMAGNETISM AND OPTICS

Elliptically polarized light can also be understood as a superposition of a
right and left cicular polarized light, see Figure 2.125.

Figure 2.125: Elliptically polarized light as a superposition of right and left
circularly polarized light [1], p. 223.

2.9.2 Jones Calculus

As seen in the last section, the information about polarization of a TEM-wave
can be tracked by a vector that is proportional to the complex electric-field
vector. This vector is called the Jones vector

µ
E0x

E0y

¶
∼ V =

µ
V x

V y

¶
: Jones Vector (2.437)

Jones Matrix

Figure 2.126 shows a light beam that is normally incident on a retardation
plate along the z−axis with a polarization state described by a Jones vector
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Figure 2.126: A retardation plate rotated at an angle ψ about the z-axis.
f("fast") and s("slow") are the two principal dielectric axes of the crystal for
light propagating along the z−axis [2], p. 17.

The principle axis (s− for slow and f− for fast axis) of the retardation
plate are rotated by an angle ψ with respect to the x− and y−axis. Let ns
and nf be the refractive index of the slow and fast principle axis, respectively.
The polarization state of the emerging beam in the crystal coordinate system
is thus given by µ

V 0
s

V 0
f

¶
=

µ
e−jkonsL 0
0 e−jkonfL

¶µ
Vs
Vf

¶
, (2.438)

The phase retardation is defined as the phase difference between the two
components

Γ = (ns − nf) koL. (2.439)

In birefringent crystals the difference in refractive index is much smaller
than the index itself, |ns − nf | ¿ ns, nf , therefore parallel to the evolving
differential phase a large absolute phase shift occurs. Taking the mean phase
shift

φ =
1

2
(ns + nf) koL, (2.440)

out, we can rewrite (2.438) asµ
V 0
s

V 0
f

¶
= e−jφ

µ
e−jΓ/2 0
0 ejΓ/2

¶µ
Vs
Vf

¶
. (2.441)
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The matrix connecting the Jones vector at the input of an optical component
with the Jones vector at the output is called a Jones matrix.
If no coherent additon with another field is planned at the output of the

system, the average phase φ can be dropped. With the rotation matrix, R,
connecting the (x, y) coordinate system with the (s, f) coordinate system

R (ψ) =

µ
cosψ sinψ
− sinψ cosψ

¶
, (2.442)

we find the Jones matrix W describing the propagation of the field compo-
nents through the retardation plate asµ

V 0
x

V 0
y

¶
=W

µ
Vx
Vy

¶
. (2.443)

with
W = R (−ψ)W0R (ψ) . (2.444)

and

W0 =

µ
e−jΓ/2 0
0 ejΓ/2

¶
. (2.445)

Carrying out the matix multiplications leads to

W =

µ
e−jΓ/2 cos2(ψ) + ejΓ/2 sin2(ψ) −j sin Γ

2
sin (2ψ)

−j sin Γ
2
sin (2ψ) e−jΓ/2 sin2(ψ) + ejΓ/2 cos2(ψ)

¶
.

(2.446)
Note that the Jones matrix of a wave plate is a unitary matrix, that is

W †W = 1.

Unitary matrices have the property that they transform orthogonal vectors
into another pair of orthogonal vectors. Thus two orthogonal polarization
states remain orthogonal when propagating through wave plates.

Polarizer

A polarizer is a device that absorbs one component of the polarization vector.
The Jones matrix of polarizer along the x-axis or y-axis is

Px =

µ
1 0
0 0

¶
, and Py =

µ
0 0
0 1

¶
. (2.447)
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Half-Wave Plate

A half-wave plate has a phase retardation of Γ = π, i.e. its thickness is
t = λ/2(ne − no). The corresponding Jones matrix follows from Eq.(2.446)

W = −j
µ
cos(2ψ) sin (2ψ)
sin (2ψ) − cos(2ψ)

¶
. (2.448)

For the special case of ψ = 45o, see Figure 2.127, the half-wave plate rotates
a linearly polarized beam exactly by 900, i.e. it exchanges the polarization
axis. It can be shown, that for a general azimuth angle ψ, the half-wave
plate will rotate the polarization by an angle 2ψ, see problem set. When
the incident light is circularly polarized a half-wave plate will convert right-
hand circularly polarized light into left-hand circularly polarized light and
vice versa, regardless of the azimuth angle ψ.

Figure 2.127: The effect of a half-wave plate on the polarziation state of a
beam, [2], p.21.

Quarter-Wave Plate

A quarter-wave plate has a phase retardation of Γ = π/2, i.e. its thickness
is t = λ/4(ne − no). The corresponding Jones matrix follows again from
Eq.(2.446)
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W =

Ã
1√
2
[1− j cos(2ψ)] −j 1√

2
sin (2ψ)

−j 1√
2
sin (2ψ) 1√

2
[1 + j cos(2ψ)]

!
. (2.449)

and for the special case of ψ = 45o, see Figure 2.127 we obtain

W =
1√
2

µ
1 −j
−j 1

¶
, (2.450)

see Figure 2.128.

Figure 2.128: The effect of a quarter wave plate on the polarization state of
a linearly polarized input wave [2], p.22.

If the incident beam is vertically polarized, i.e.µ
Vx
Vy

¶
=

µ
0
1

¶
, (2.451)

the effect of a 45o -oriented quarter-wave plate is to convert vertically polar-
ized light into left-handed circularly polarized light. If the incident beam is
horizontally polarized the outgoing beam is a right-handed circularly polar-
ized, see Figure 2.128. µ

V 0
x

V 0
y

¶
=
−j√
2

µ
1
j

¶
. (2.452)
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