
2.6 Gaussian Beams and Resonators

2.6.1 Gaussian Beam Propagation

The propagation of Gaussian beams through paraxial optical systems can
be efficiently evaluated using the ABCD-law [4], which states that the q-
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parameter of a Gaussian beam passing a optical system described by an
ABCD-marix is given by

q2 =
Aq1 +B

Cq1 +D
, (2.259)

where q1 and q2 are the beam parameters at the input and the output planes
of the optical system or component, see Figure 2.72

Figure 2.72: Gaussian beam transformation by ABCD law, [6], p. 99.

To proove this law, we realize that it is true for the case of free space prop-
agation, i.e. pure diffraction, comparing (2.259) with (2.229) and (2.246). If
we can proove that it is additionally true for a thin lens, then we are finished,
because every ABCD matrix (2x2 matrix) can be written as a product of a
lower and upper triangular matrix (LR-decomposition) like the one for free
space propagation and the thin lens. Note, the action of the lens is identi-
cal to the action of free space propagation, but in the Fourier-domain. In
the Fourier domain the Gaussian beam parameter is replaced by its inverse
(2.222)

eE0(x, y, z) =
j

q(z)
exp

∙
−jk0

µ
x2 + y2

2q(z)

¶¸
. (2.260)

eE0(kz, ky, z) = 2πj exp

∙
−jq(z)

µ
k2z + k2y
2k0

¶¸
(2.261)

But the inverse q-parameter transforms according to (2.259)

1

q2
=

D 1
q1
+ C

B 1
q1
+A

, (2.262)
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which leads for a thin lens to

1

q2
=
1

q1
−1
f
. (2.263)

This is exactly what a thin lens does, see Eq.(2.225), it changes the radius
of curvature of the phase front but not the waist of the beam according to

1

R2
=
1

R1
−1
f
. (2.264)

With that finding, we have proven the ABCD law for Gaussian beam prop-
agation through paraxial optical systems.
The ABCD-matrices of the optical elements discussed so far including

nonnomal incidence are summarized in Table 2.6. As an application of the

Optical Element ABCD-Matrix
Propagation in Medium with
index n and length L

µ
1 L/n
0 1

¶
Thin Lens with
focal length f

µ
1 0
−1/f 1

¶
Mirror under Angle
θ to Axis and Radius R
Sagittal Plane

µ
1 0

−2 cos θ
R

1

¶
Mirror under Angle
θ to Axis and Radius R
Tangential Plane

µ
1 0
−2

R cos θ
1

¶
Brewster Plate under
Angle θ to Axis and Thickness
d, Sagittal Plane

µ
1 d

n

0 1

¶
Brewster Plate under
Angle θ to Axis and Thickness
d, Tangential Plane

µ
1 d

n3

0 1

¶

Table 2.6: ABCD matrices for commonly used optical elements.

Gaussian beam propagation, lets consider the imaging of a Gaussian beam
with a waist w01 by a thin lens at a distance d1 away from the waist to a
beam with a different size w02, see Figure 2.73.
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d1 d2

zR1 zR2

Figure 2.73: Focusing of a Gaussian beam by a lens.

There will be a new focus at a distance d2.The corresponding ABCD
matrix is of course the one from Eq.(2.257), which is repeated hereµ

A B
C D

¶
=

Ã
1− d2

f

³
1− d2

f

´
d1 + d2

− 1
f

1− d1
f

!
. (2.265)

The q-parameter of the Gaussian beam at the position of minimum waist is
purely imaginary q1 = jzR1 = j

πw201
λ
and q2 = jzR2 = j

πw202
λ

, where

q2 =
A q1 +B

C q1 +D
=
jzR1A+B

jzR1C +D
=

jzR1A+B

jzR1C +D
= jzR2. (2.266)

In the limit of ray optics, where the beam waists can be considered to by
zero, i.e. zR1 = zR2 = 0 we obtain B = 0, i.e. the imaging rule of classical
ray optics Eq.(2.256). It should not come at a surprise that for the Gaus-
sian beam propagation this law does not determine the exact distance d2
of the position of the new waist. Because, in the ray analysis we neglected
diffraction. Therefore, the Gaussian beam analysis, although it uses the same
description of the optical components, gives a slightly different and improved
answer for the position of the focal point. To find the position d2, we request
that the real part of the right hand side of (2.266) is zero,

BD − z2R1AC = 0 (2.267)

which can be rewritten as

1

d2
=
1

f
− 1

d1+
z2R1
d1−f

. (2.268)
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Again for zR1 → 0, we obtain the ray optics result. And the imaginary part
of Eq.(2.266) leads to

1

zR2
=

1

zR1

¡
D2 + z2R1C

2
¢
, (2.269)

or
1

w202
=

1

w201

µ
1− d1

f

¶2 "
1 +

µ
zR1

d1 − f

¶2#
. (2.270)

With the magnification M for the spot size, with is closely related to the
Magnification Mr of ray optics, we can rewrite the results as

Magnification M =Mr/
p
1 + ξ2, with ξ = zR1

d1−f and Mr =
¯̄̄

f
d1−f

¯̄̄
Beam waist w02 =M · w01
Confocal parameter 2zR2 =M2 2zR2
Distance to focus d2 − f =M2 (d1 − f)
Divergence θ02 = θ01/M

(2.271)

2.6.2 Resonators

With the Gaussian beam solutions, we can finally construct optical resonators
with finite transverse extent, i.e. real Fabry-Perots, by inserting into the
Gaussian beam, see Figure 2.74, curved mirrors with the proper radius of
curvature, such that the beam is imaged upon itself.

z1

L

z2

R1 R2

Figure 2.74: Fabry-Perot resonator with finite beam cross section by inserting
curved mirrors into the beam to back reflect the beam onto itself.
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Any resonator can be unfolded into a sequence of lenses and free space
propagation. Here, we replace the curved mirrors by equivalent lenses with
f1 = R1/2, and f2 = R2/2, see Figure 2.75.

Figure 2.75: Two-mirror resonator unfolded. Note, only one half of the
focusing strength of mirror 1 belongs to a fundamental period describing one
resonator roundtrip.

The product of ABCD matrices describing one roundtrip of the beam in
the resonator according to Figure 2.75 is

M =

µ
1 0
−1
2f1

1

¶µ
1 L
0 1

¶µ
1 0
−1
f2

1

¶µ
1 L
0 1

¶µ
1 0
−1
2f1

1

¶
. (2.272)

To carry out this product and to formulate the cavity stability criteria, it is
convenient to use the cavity parameters gi = 1−L/Ri, i = 1, 2. The resulting
cavity roundtrip ABCD-matrix can be written in the form

M =

µ
(2g1g2 − 1) 2g2L

2g1 (g1g2 − 1) /L (2g1g2 − 1)

¶
=

µ
A B
C D

¶
. (2.273)

Resonator Stability

The ABCD matrices describe the dynamics of rays propagating inside the
resonator. The resonator is stable if no ray escapes after many round-trips,
which is the case when the magnitude of the eigenvalues of the matrix M
are less than one. Since we have a lossless resonator, i.e. det|M | = 1, the
product of the eigenvalues has to be 1 and, therefore, the stable resonator
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corresponds to the case of a complex conjugate pair of eigenvalues with a
magnitude of 1. The eigenvalue equation to M is given by

det |M − λ · 1| = det
¯̄̄̄µ

(2g1g2 − 1)− λ 2g2L
2g1 (g1g2 − 1) /L (2g1g2 − 1)− λ

¶¯̄̄̄
= 0, (2.274)

λ2 − 2 (2g1g2 − 1)λ+ 1 = 0. (2.275)

The eigenvalues are

λ1/2 = (2g1g2 − 1)±
q
(2g1g2 − 1)2 − 1, (2.276)

=

½
exp (±θ) , cosh θ = 2g1g2 − 1, for |2g1g2 − 1| > 1
exp (±jψ) , cosψ = 2g1g2 − 1, for |2g1g2 − 1| ≤ 1

.(2.277)

The case of a complex conjugate pair corresponds to a stable resontor. There-
fore, the stability criterion for a stable two mirror resonator is

|2g1g2 − 1| ≤ 1. (2.278)

The stable and unstable parameter ranges are given by

stable : 0 ≤ g1 · g2 = S ≤ 1 (2.279)

unstable : g1g2 ≤ 0; or g1g2 ≥ 1. (2.280)

where S = g1 · g2, is the stability parameter of the cavity. The stability
criterion can be easily interpreted geometrically. Of importance are the dis-
tances between the mirror mid-points Mi and the cavity end points, i.e.
gi = (Ri − L)/Ri = −Si/Ri, as shown in Figure 2.76.

Figure 2.76: The stability criterion involves distances between the mirror
mid-points Mi and the cavity end points. i.e. gi = (Ri − L)/Ri = −Si/Ri.
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The following rules for a stable resonator can be derived from Figure 2.76
using the stability criterion expressed in terms of the distances Si. Note, that
the distances and radii can be positive and negative

stable : 0 ≤ S1S2
R1R2

≤ 1. (2.281)

The rules are:

• A resonator is stable if the mirror radii, laid out along the optical axis,
overlap.

• A resonator is unstable if the radii do not overlap or one lies within the
other.

Figure 2.77 shows stable and unstable resonator configurations.

Figure 2.77: Illustration of stable and unstable resonator configurations.

For a two-mirror resonator with concave mirrors and R1 ≤ R2, we obtain
the general stability diagram as shown in Figure 2.78.
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Figure 2.78: Stabile regions (black) for the two-mirror resonator.

There are two ranges for the mirror distance L, within which the cavity
is stable, 0 ≤ L ≤ R1 and R2 ≤ L ≤ R1 +R2. It is interesting to investigate
the spot size at the mirrors and the minimum spot size in the cavity as a
function of the mirror distance L.

Resonator Mode Characteristics

The stable modes of the resonator reproduce themselves after one round-trip,
i.e.

q1 =
Aq1 +B

Cq1 +D
(2.282)

The inverse q-parameter, which is directly related to the phase front curva-
ture and the spot size of the beam, is determined byµ

1

q

¶2
+

A−D

B

µ
1

q

¶
+
1−AD

B2
= 0. (2.283)

The solution is µ
1

q

¶
1/2

= −A−D

2B
± j

2 |B|

q
(A+D)2 − 1 (2.284)

If we apply this formula to (2.273), we find the spot size on mirror 1µ
1

q

¶
1/2

= − j

2 |B|

q
(A+D)2 − 1 = −j λ

πw21
. (2.285)

or

w41 =

µ
2λL

π

¶2
g2
g1

1

1− g1g2
(2.286)

=

µ
λR1
π

¶2
R2 − L

R1 − L

µ
L

R1 +R2 − L

¶
. (2.287)
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By symmetry, we find the spot size on mirror 3 by switching index 1 and 2:

w42 =

µ
2λL

π

¶2
g1
g2

1

1− g1g2
(2.288)

=

µ
λR2
π

¶2
R1 − L

R2 − L

µ
L

R1 +R2 − L

¶
. (2.289)

The intracavity focus can be found by transforming the focused Gaussian
beam with the propagation matrix

M =

µ
1 z1
0 1

¶µ
1 0
−1
2f1

1

¶
=

µ
1− z1

2f1
z1

−1
2f1

1

¶
, (2.290)

to its new focus by properly choosing z1, see Figure 2.74. A short calculation
results in

z1 = L
g2 (g1 − 1)

2g1g2 − g1 − g2
(2.291)

=
L(L−R2)

2L−R1 −R2
, (2.292)

and, again, by symmetry

z2 = L
g1 (g2 − 1)

2g1g2 − g1 − g2
(2.293)

=
L(L−R1)

2L−R1 −R2
= L− z1. (2.294)

The spot size in the intracavity focus is

w4o =

µ
λL

π

¶2
g1g2 (1− g1g2)

(2g1g2 − g1 − g2)2
(2.295)

=

µ
λ

π

¶2
L(R1 − L)(R2 − L)(R1 +R2 − L)

(R1 +R2 − 2L)2
. (2.296)

All these quantities for the two-mirror resonator are shown in Figure 2.79.
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Figure 2.79: From top to bottom: Cavity parameters, g1, g2, S, w0, w1, w2,
z1 and z2 for the two-mirror resonator with R1 = 10 cm and R2 = 11 cm.



114 CHAPTER 2. CLASSICAL ELECTROMAGNETISM AND OPTICS

Hermite-Gaussian-Beams (TEMpq-Beams)

It turns out that the Gaussian Beams are not the only solution to the parax-
ial wave equation (2.219). The stable modes of the resonator reproduce
themselves after one round-trip,

eEl,m(x, y, z) = Al,m

∙
w0
w(z)

¸
Gl

"√
2x

w(z)

#
Gm

∙√
2y

w(z)

¸
· (2.297)

exp

∙
−jk0

µ
x2 + y2

2R(z)

¶
+ j(l +m+ 1)ζ(z)

¸
where

Gl [u] = Hl [u] exp

∙
−u

2

2

¸
, for l = 0, 1, 2, ... (2.298)

are the Hermite-Gaussians with the Hermite-Polynomials

H0 [u] = 1,

H1 [u] = 2u,

H2 [u] = 4u2 − 1, (2.299)

H3 [u] = 8u3 − 12u,

and ζ(z) is the Guoy-Phase-Shift according to Eq.(2.241). The lower order
Hermite Gaussians are depicted in Figure 2.80

Figure 2.80: Hermite-Gauissians Gl(u) for l = 0, 1, 2 and 3.

and the intensity profile of the first higher order resonator modes are
shown in Figure 2.81.
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Figure 2.81: Intensity profile of TEMlm-beams, [6], p. 103.

Besides the different mode profiles, the higher order modes experience
greater phase advances during propogation, because they are made up of
k-vectors with larger transverse components.

Axial Mode Structure

As we have seen for the Fabry-Perot resonator, the longitudinal modes are
characterized by a roundtrip phase that is a multiple of 2π. Back then, we
did not consider transverse modes. Thus in a resonator with finite transverse
beam size, we obtain an extended family of resonances, with distinguish-
able field patterns. The resonance frequencies ωpmn are determined by the
roundtrip phase condition

φpmn = 2pπ, for p = 0,±1,±2, ... (2.300)
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For the linear resonator according to Figure 2.74, the roundtrip phase of a
Hermite-Gaussian Tpmn-beam is

φpmn = 2kL− 2(m+ n+ 1) (ζ(z2)− ζ(z1)) , (2.301)

where ζ(z2)− ζ(z1) is the additional Guoy-Phase-Shift, when the beam goes
through the focus once on its way from mirror 1 to mirror 2. Then the
resonance frequences are

ωpmn =
c

L
[πp+ (m+ n+ 1) (ζ(z2)− ζ(z1))] . (2.302)

If the Guoy-Phase-Shift is not a rational number times π, then all resonance
frequencies are non degenerate. However, for the special case where the
two mirrors have identical radius of curvature R and are spaced a distance
L = R apart, which is called a confocal resonator, the Guoy-Phase-shift is
ζ(z2)− ζ(z1) = π/2, with resonance frequencies

ωpmn =
c

L

h
πp+ (m+ n+ 1)

π

2

i
. (2.303)

In that case all even, i.e. m + n, transverse modes are degenerate to the
longitudinal or fundamental modes, see Figure 2.82.

Figure 2.82: Resonance frequencies of the confocal Fabry-Perot resonator,
[6], p. 128.

The odd modes are half way inbetween the longitudinal modes. Note, in
contrast to the plan parallel Fabry Perot all mode frequencies are shifted by
π/2 due to the Guoy-Phase-Shift.
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2.7 Waveguides and Integrated Optics

As with electronics, miniaturization and integration of optics is desired to
reduce cost while increasing functionality and reliability. One essential el-
ement is the guiding of the optical radiation in waveguides for integrated
optical devices and optical fibers for long distance transmission. Waveguides
can be as short as a few millimeters. Guiding of light with exceptionally low
loss in fiber (0.1dB/km) can be achieved by using total internal reflection.
Figure 2.83 shows different optical waveguides with a high index core mate-
rial and low index cladding. The light will be guided in the high index core.
Similar to the Gaussian beam the guided mode is made up of mostly paraxial
plane waves that hit the high/low-index interface at grazing incidence and
therefore undergo total internal reflections. The concomittant lensing effect
overcomes the diffraction of the beam that would happen in free space and
leads to stationary mode profiles fof the radiation.
Depending on the index profile and geometry one distinguishes between

different waveguide types. Figure 2.83 (a) is a planar slab waveguide, which
guides light only in one direction. This case is analyzed in more detail,
as it has simple analytical solutions that show all phenomena associated
with waveguiding such as cutoff, dispersion, single and multimode operation,
coupling of modes and more, which are used later in devices and to achieve
certain device properties. The other two cases show complete waveguiding
in the transverse direction; (b) planar strip waveguide and (c) optical fiber.

Saleh 239

Figure 2.83: Dark shaded area constitute the high index regions. (a) planar
slab waveguide; (b) strip waveguide; (c) optical fiber [6], p. 239.

In integrated optics many components are fabricated on a single sub-




