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4.6 Wave Mechanics

In this section, we generalize the concepts we have learned in the previous
sections. The goal here is to give a broader description of quantummechanics
in terms of wave functions that are solutions to the Schroedinger Equation.
In classical mechanics the particle state is determined by its position

and momentum and the state evolution is determined by Newton’s law. In
quantum mechanics the particle state is completely described by its wave
function and the state evolution is determined by the Schroedinger equation.
The wave function as a complete description of the particle enables us to

compute expected values of physical quantities of the particle when a cor-
responding measurement is performed. The measurement results are real
numbers, like the energy, o4 position or momentum the particle has in this
state. The physically measureable quantities are called observables. In clas-
sical mechanics these observables or real variables like x for position, p for
momentum or functions thereof, like the energy, which is called the Hamil-
tonian H(p, x) = p2

2m
+ V (x) in classical mechanics. For simplicity, we state

the results only for one-dimensional systems but it is straight forward to ex-
tend these results to multi-dimensional sytems. In quantum mechanics these
observables become operators:

x : position operator (4.133)

p =
~
j
∂

∂x
: momentum operator (4.134)

H(p, x) = − ~
2

2m

∂2

∂x2
+ V (x) : Hamiltonian operator (4.135)

If we carry out measurements of these observables, the result is a real number
in each measurement and after many measurements on identical systems we
can make a statistics of these measurements and the statistics is completely
described by the moments of the observable.

4.6.1 Position Statistics

The statistical interpretation of quantum mechanics enables us to compute
the expected value of the position operator or any of its moments according
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to

hxi =

Z ∞

−∞
Ψ∗ (x, t) x Ψ (x, t) dx (4.136)

hxmi =

Z ∞

−∞
Ψ∗ (x, t) xm Ψ (x, t) dx (4.137)

The expectation value of functions of operators can always be evaluated by
defining the operator by its Taylor expansion

hf(x)i =

Z ∞

−∞
Ψ∗ (x, t) f(x) Ψ (x, t) dx (4.138)

=

* ∞X
n=0

1

n!
f (n)(0) xn

+

=
∞X
n=0

1

n!
f (n)(0)

¿Z ∞

−∞
Ψ∗ (x, t) xn Ψ (x, t) dx

À

4.6.2 Momentum Statistics

The momentum statistics is then

hpi =
Z ∞

−∞
Ψ∗ (x, t)

~
j
∂

∂x
Ψ (x, t) dx (4.139)

which can be written in terms of the wave function in the wave number space,
which we define now for symmetry reasons as the Fourier transform of the
wave function where the 2π is symmetrically distributed between Fourier and
inverse Fourier transform

φ (k, t) =
1√
2π

Z ∞

−∞
Ψ (x, t) e−jkx dx, (4.140)

Ψ (x, t) =
1√
2π

Z ∞

−∞
φ (k, t) ejkx dk. (4.141)

Using the differentiation theorem of the Fourier transform and the generalized
Parseval relationZ ∞

−∞
φ∗1 (k) φ2 (k) dk =

Z ∞

−∞
Ψ∗1 (x)Ψ2 (x) dx (4.142)
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we find

hpi =

Z ∞

−∞
φ∗ (k, t) ~k φ (k, t) dk (4.143)

=

Z ∞

−∞
~k |φ (k, t)|2 dk. (4.144)

The introduction of the symmetrically defined expectation value of an oper-
ator according Eq.(4.136), where x can stand for any operator can be carried
out using the wave function in the position space or the wave number space
using the corresponding represenation of the wave function and of the oper-
ator.

4.6.3 Energy Statistics

The analysis for the measurement of position or moment carries over to every
observable in an analogous way. Thus the expectation value of the energy is

hH(x, p)i =

Z ∞

−∞
Ψ∗ (x, t) H(x, p) Ψ (x, t) dx (4.145)

=

Z ∞

−∞
Ψ∗ (x, t)

µ
− 1

2m~2
∂2

∂x2
+ V (x)

¶
Ψ (x, t) dx.(4.146)

If the system is in an energy eigenstate, i.e.

Ψ (x, t) = ψn (x) ejωnt (4.147)

with
H(x, p) ψn (x) = En ψn (x) , (4.148)

we obtain

hH(x, p)i =
Z ∞

−∞
Ψ∗ (x, t) En Ψ (x, t) dx = En. (4.149)

If the system is in a superposition of energy eigenstates

Ψ (x, t) =
∞X
n=0

cnψn(x)e
jωnt. (4.150)

we obtain

hH(x, p)i =
∞X
n=0

En |cn|2 . (4.151)
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4.6.4 Arbitrary Observable

There may also occur observables that are not simple to translate from the
classical to the quantum domain, such as the product

pcl · xcl = xcl · pcl (4.152)

Classically it does not matter which variable comes first. However, if we
tranfer this expression into quantum mechanics, the corresponding operator
depends on the odering, for example

pqm · xqmΨ (x, t) =
~
j
∂

∂x
(xΨ (x, t)) = (4.153)

=
~
j
Ψ (x, t) +

~
j
x
∂

∂x
Ψ (x, t) , (4.154)

=

µ
~
j
+ xqm · pqm

¶
Ψ (x, t) . (4.155)

The decision of which expression represents the correct quantum mechanical
operator or eventually even a linear combination of the possible expressions,
has to be based on a close examination of the actual measurement apparatus
that would measure the corresponding observable. Finally, the expression
also has to deliver results that are in agreement with experimental findings.
If we have an operator that is a function of x and p and we have decided

on a unique expression in terms of a power expansion in x and p

g(x, p)→ gop(x,
~
j
∂

∂x
) (4.156)

then we can compute its expected value either in the space domain or the
wave number domain

hgopi =

Z ∞

−∞
Ψ∗ (x, t) gop(x,

~
j
∂

∂x
) Ψ (x, t) dx (4.157)

=

Z ∞

−∞
φ∗ (k, t) gop(j

∂

∂k
, ~k) φ (k, t) dk (4.158)

That is this operator can be represented either in real space or in k-space as
gop(x,

~
j
∂
∂x
) or gop(j ∂

∂k
, ~k).
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4.6.5 Eigenfunctions and Eigenvalues of Operators

A differential operator has in general eigenfunctions and corresponding eigen-
values

gop(x,
~
j
∂

∂x
) ψn (x) = gnψn (x) , (4.159)

where gn is the eigenvalue to the eigenfunction ψn (x) . An example for a
differential operator is the Hamiltonian operator describing a partical moving
in a potential

Hop = −
1

2m~2
∂2

∂x2
+ V (x) (4.160)

the corresponding eigenvalue equation is the stationary Schroedinger Equa-
tion

Hopψn (x) = Enψn (x) . (4.161)

Thus the energy levels of a quantum system are the eigenvalues of the corre-
sponding Hamiltonian operator.
The operator for whichZ

ψ∗n (x) (Hopψm (x)) dx =

Z
(Hopψn (x))

∗ ψm (x) dx, (4.162)

for arbitrary wave functions ψn and ψm is called a hermitian operation. From
this equation we find immediately that the expected values of a hermitian
operator are real, which also has the consequence that the eigenvalues of
hermitian operators are real. This is important since operators that represent
observables must have real expected values and real eigenvalues since these
are results of physical measurements, which are real. Thus observables are
represented by hermitian operators. This is easy to proove. Let’s assume we
have found two eigenfunctions and the corresponding eigen values

gopψm = gmψm, (4.163)

gopψn = gnψn. (4.164)

Then Z
ψ∗ngopψm dx = gm

Z
ψ∗nψm. (4.165)
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By taking advantage of the fact that the operator is hermitian we can also
write Z

ψ∗ngopψm dx =

Z
(gopψn)

∗ ψm dx = g∗n

Z
ψ∗nψm dx (4.166)

The right sides of Eqs.(4.165) and (4.166) must be equal

(gm − g∗n)

Z
ψ∗nψm dx = 0 (4.167)

If n = m the integral can not vanish and Eq.(4.167) enforces gn = g∗n, i.e.
the corresponding eigenvalues are real. If n 6= m and the corresponding
eigenvalues are not degenerate, i.e. different eigenfunctions have different
eigenvalues, then Eq.(4.167) enforces that the eigenfunctions are orthogonal
to each other Z

ψ∗nψm dx = 0, for n 6= m. (4.168)

Thus, if there is no degneracy, the eigenfunctions of a hermitian operator are
orthogonal to each other. If there is degeneracy, one can always choose an or-
thogonal set of eigenfunctions. If the eigenfunctions are properly normalizedR
ψ∗nψn dx = 1, then the eigenfunctions build an orthonormal systemZ

ψ∗nψm dx = δnm, (4.169)

and are complete, i.e. any arbitrary function f (x) can be expressed as a
superposition of the orthonormal basis functions ψn (x)

f (x) =
∞X
n=0

cnψn (x) . (4.170)

Thus we can freely change the basis in which we describe a certain physical
problem. To account fully for this fact, we no longer wish to use wave me-
chanics, ie. express the wave function as a function in position space or in
k-space. Instead we will utilize a vector in an abstract function space, i.e. a
Hilbert space. In this way, we can formulate a physical problem, without us-
ing a fixed representation for the state of the system (wave function) and the
corresponding operator representations. This description enables us to make
full use of the mathematical structure of Hilbert spaces and the algebraic
properties of operators.
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