5.8.3 Minimum Uncertainty States or Coherent States

From the matrix elements calculated in the last section, we find that the
energy or quantum number eigenstates |n) have vanishing expected values
for position and momentum. This also follows from the x-representation
Y, () = (x|n) studied in section 4.4.2

(n|Xn) =0, (n|Pln) =0, (5.168)

and the fluctuations in position and momentum are then simply

1 1
(n|X?|n) =n+ 5 (n|P?|n) =n+ 3 (5.169)

The minimum uncertainty product for the fluctuations

1
AX = \/<n| X2 |n) — (n| X |n)® =n + 5 (5.170)
1
AP = \/(n|P2[n) — (n| P [n)® —nts (5.171)
is then )
AX AP =n+s . (5.172)

Only the ground state n = 0 is a minimum uncertainty wave packet, since it
satisfies the eigenvalue equation

al0) = 0, (5.173)

where .
a=— (X+jP), 5.174
\/5( iP) ( )
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see problem set 8. In fact we can show that every eigenstate to the annihi-
lation operator

ala) = ala), for aeC (5.175)

is a minimum uncertainty state. We obtain for expected values of position
or momentum in these states

(alala) = «a, (a]a™ |a) = aF, (5.176)
(a|atala) = |af*, (alaa® |a) = (|af* +1) , (5.177)
_ L a+a*) (o Pla) = 3 a —a

(| X]a) = 7 (@ +a7) ,{a|Pla) NG ( ), (5.178)

and for its squares

(alatala) = |of,  (alaa®|a) = (la]*+1), (5.179)
(a|a®la) = o (a]at?|a) = a*?, (5.180)
1 1

(o] X?|a) = 5 (& +2a*a+ o™ +1) =(a| X la)? + o (5.181)

1 1
(a|P?|a) = 5 (—a® + 20— o +1) = (| Py * + 5 (5.182)

Thus the uncertainty product is at its minimum
1

AX - AP = 3 vV «aeC. (5.183)

In fact one can show that the statistics of a position or momentum measure-
ment for a harmonic oscillator in this state follows a Gaussian satistics with
the average and variance given by Eqs.(5.178), (5.181) and (5.182). This can
be represented pictorially in a phase space diagram as shown in Figure 5.1
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Figure 5.1: Representation of a minimum uncertainty state of the harmonic
oscillator as a phase space distribution.

5.8.4 Heisenberg Picture

The Heisenberg equations of motion for a linear system like the harmonic
oscillator are linear differential equations for the operators, which can be
easily solved. From Egs.(5.124) we find

= hwoaH s (5185)
with the solution
ag(t) = e “lag . (5.186)

Therefore, the expectation values for the creation, annihilation, position and
momentum operators are identical to those of Egs.(5.176) to (5.182); we only
need to subsitute o — ae 0. We may again pictorially represent the time
evolution of these states as a probability distribution in phase space, see
Figure 5.2.
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Figure 5.2: Time evolution of a coherent state in phase space.

5.9 The Kopenhagen Interpretation of Quan-

tum Mechanics

5.9.1 Description of the State of a System

At a given time ¢ the state of a system is described by a normalized vector
|W(t)) in the Hilbert space, H. The Hilbert space is a linear vector space.
Therefore, any linear combination of vectors is again a possible state of the
system. Thus superpositions of states are possible and with it come interfer-

ences.

5.9.2 Description of Physical Quantities

Measurable physical quantities, observables, are described by hermitian op-

erators A = AT,
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5.9.3 The Measurement of Observables

An observable has a spectral representation in terms of eigenvectors and
eigenvalues, which can be discrete or continuous, here we discuss the discrete
case

The eigenvectors are orthogonal to each other and the eigenvalues are real

Upon a measurement of the observable A of the system in state |¥(t)) the
outcome can only be one of the eigenvalues A, of the observable and the
probability for that event to occur is

Pn = [{An] T(@))*. (5.189)

If the eigenvalue spectrum of the operator A is degenerate, the probabilities
of the probabilities of the different states to the same eigenvector need to be
added.

After the measurement the system is in the eigenstate |A,,) corresponding
to the eigenvalue A, found in the measurement, which is called the reduc-
tion of state[4]. This unphysical reduction of state is only necessary as a
shortcut for the description of the measurement process and the fact that
the system becomes entangled with the state of the macroscopic measure-
ment equipment. This entanglement leads to a necessary decoherence of the
superposition state of the measured system, which is equivalent to assuming
a reduced state.
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