5.8.3 Minimum Uncertainty States or Coherent States

From the matrix elements calculated in the last section, we find that the energy or quantum number eigenstates $|n\rangle$ have vanishing expected values for position and momentum. This also follows from the x -representation $\psi_{n}(x)=\langle x \mid n\rangle$ studied in section 4.4.2

$$
\begin{equation*}
\langle n| \mathbf{X}|n\rangle=0, \quad\langle n| \mathbf{P}|n\rangle=0 \tag{5.168}
\end{equation*}
$$

and the fluctuations in position and momentum are then simply

$$
\begin{equation*}
\langle n| \mathbf{X}^{2}|n\rangle=n+\frac{1}{2}, \quad\langle n| \mathbf{P}^{2}|n\rangle=n+\frac{1}{2} \tag{5.169}
\end{equation*}
$$

The minimum uncertainty product for the fluctuations

$$
\begin{align*}
\Delta X & =\sqrt{\langle n| \mathbf{X}^{2}|n\rangle-\langle n| \mathbf{X}|n\rangle^{2}}=n+\frac{1}{2} \tag{5.170}\\
\Delta P & =\sqrt{\langle n| \mathbf{P}^{2}|n\rangle-\langle n| \mathbf{P}|n\rangle^{2}}=n+\frac{1}{2} \tag{5.171}
\end{align*}
$$

is then

$$
\begin{equation*}
\Delta X \cdot \Delta P=n+\frac{1}{2} \tag{5.172}
\end{equation*}
$$

Only the ground state $n=0$ is a minimum uncertainty wave packet, since it satisfies the eigenvalue equation

$$
\begin{equation*}
\mathbf{a}|0\rangle=0 \tag{5.173}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{a}=\frac{1}{\sqrt{2}}(\mathbf{X}+\mathrm{j} \mathbf{P}) \tag{5.174}
\end{equation*}
$$

see problem set 8. In fact we can show that every eigenstate to the annihilation operator

$$
\begin{equation*}
\mathbf{a}|\alpha\rangle=\alpha|\alpha\rangle, \text { for } \alpha \epsilon \mathbb{C} \tag{5.175}
\end{equation*}
$$

is a minimum uncertainty state. We obtain for expected values of position or momentum in these states

$$
\begin{align*}
\langle\alpha| \mathbf{a}|\alpha\rangle & =\alpha, \quad\langle\alpha| \mathbf{a}^{+}|\alpha\rangle=\alpha^{*} \tag{5.176}\\
\langle\alpha| \mathbf{a}^{+} \mathbf{a}|\alpha\rangle & =|\alpha|^{2}, \quad\langle\alpha| \mathbf{a a}^{+}|\alpha\rangle=\left(|\alpha|^{2}+1\right), \tag{5.177}\\
\langle\alpha| \mathbf{X}|\alpha\rangle & =\frac{1}{\sqrt{2}}\left(\alpha+\alpha^{*}\right),\langle\alpha| \mathbf{P}|\alpha\rangle=\frac{\mathrm{j}}{\sqrt{2}}\left(\alpha-\alpha^{*}\right), \tag{5.178}
\end{align*}
$$

and for its squares

$$
\begin{align*}
\langle\alpha| \mathbf{a}^{+} \mathbf{a}|\alpha\rangle & =|\alpha|^{2}, \quad\langle\alpha| \mathbf{a a}^{+}|\alpha\rangle=\left(|\alpha|^{2}+1\right) \tag{5.179}\\
\langle\alpha| \mathbf{a}^{2}|\alpha\rangle & =\alpha^{2}, \quad\langle\alpha| \mathbf{a}^{+2}|\alpha\rangle=\alpha^{* 2} \tag{5.180}\\
\langle\alpha| \mathbf{X}^{2}|\alpha\rangle & =\frac{1}{2}\left(\alpha^{2}+2 \alpha^{*} \alpha+\alpha^{* 2}+1\right)=\langle\alpha| \mathbf{X}|\alpha\rangle^{2}+\frac{1}{2} \tag{5.181}\\
\langle\alpha| \mathbf{P}^{2}|\alpha\rangle & =\frac{1}{2}\left(-\alpha^{2}+2 \alpha^{*} \alpha-\alpha^{* 2}+1\right)=\langle\alpha| \mathbf{P}|\alpha\rangle^{2}+\frac{1}{2} . \tag{5.182}
\end{align*}
$$

Thus the uncertainty product is at its minimum

$$
\begin{equation*}
\Delta X \cdot \Delta P=\frac{1}{2} \forall \alpha \in \mathbb{C} . \tag{5.183}
\end{equation*}
$$

In fact one can show that the statistics of a position or momentum measurement for a harmonic oscillator in this state follows a Gaussian satistics with the average and variance given by Eqs.(5.178), (5.181) and (5.182). This can be represented pictorially in a phase space diagram as shown in Figure 5.1

Figure 5.1: Representation of a minimum uncertainty state of the harmonic oscillator as a phase space distribution.

5.8.4 Heisenberg Picture

The Heisenberg equations of motion for a linear system like the harmonic oscillator are linear differential equations for the operators, which can be easily solved. From Eqs.(5.124) we find

$$
\begin{align*}
\mathrm{j} \hbar \frac{\partial}{\partial t} \mathbf{a}_{H}(t) & =\left[\mathbf{a}_{H}, \mathbf{H}\right] \tag{5.184}\\
& =\hbar \omega_{0} \mathbf{a}_{H} \tag{5.185}
\end{align*}
$$

with the solution

$$
\begin{equation*}
\mathbf{a}_{H}(t)=e^{-\mathrm{j} \omega_{0} t} \mathbf{a}_{S} \tag{5.186}
\end{equation*}
$$

Therefore, the expectation values for the creation, annihilation, position and momentum operators are identical to those of Eqs.(5.176) to (5.182); we only need to subsitute $\alpha \rightarrow \alpha e^{-\mathrm{j} \omega_{0} t}$. We may again pictorially represent the time evolution of these states as a probability distribution in phase space, see Figure 5.2.

Figure 5.2: Time evolution of a coherent state in phase space.

5.9 The Kopenhagen Interpretation of Quantum Mechanics

5.9.1 Description of the State of a System

At a given time t the state of a system is described by a normalized vector $|\Psi(t)\rangle$ in the Hilbert space, H. The Hilbert space is a linear vector space. Therefore, any linear combination of vectors is again a possible state of the system. Thus superpositions of states are possible and with it come interferences.

5.9.2 Description of Physical Quantities

Measurable physical quantities, observables, are described by hermitian operators $\mathbf{A}=\mathbf{A}^{+}$.

5.9.3 The Measurement of Observables

An observable has a spectral representation in terms of eigenvectors and eigenvalues, which can be discrete or continuous, here we discuss the discrete case

$$
\begin{equation*}
\mathbf{A}=\sum_{n} A_{n}\left|A_{n}\right\rangle\left\langle A_{n}\right| \tag{5.187}
\end{equation*}
$$

The eigenvectors are orthogonal to each other and the eigenvalues are real

$$
\begin{equation*}
\left\langle A_{n} \mid A_{n^{\prime}}\right\rangle=\delta_{n, n^{\prime}} . \tag{5.188}
\end{equation*}
$$

Upon a measurement of the observable \mathbf{A} of the system in state $|\Psi(t)\rangle$ the outcome can only be one of the eigenvalues A_{n} of the observable and the probability for that event to occur is

$$
\begin{equation*}
p_{n}=\left|\left\langle A_{n} \mid \Psi(t)\right\rangle\right|^{2} \tag{5.189}
\end{equation*}
$$

If the eigenvalue spectrum of the operator \mathbf{A} is degenerate, the probabilities of the probabilities of the different states to the same eigenvector need to be added.

After the measurement the system is in the eigenstate $\left|A_{n}\right\rangle$ corresponding to the eigenvalue A_{n} found in the measurement, which is called the reduction of state[4]. This unphysical reduction of state is only necessary as a shortcut for the description of the measurement process and the fact that the system becomes entangled with the state of the macroscopic measurement equipment. This entanglement leads to a necessary decoherence of the superposition state of the measured system, which is equivalent to assuming a reduced state.

Bibliography

[1] Introduction to Quantum Mechanics, Griffiths, David J., Prentice Hall, 1995.
[2] Functional Analysis, G. Bachman and L. Naricci, Academic Press, 1966.
[3] Classical Mechanics, H. Goldstein, Addison and Wesley series in physics, 1959.
[4] Quantum Mechanics I, C. Cohen-Tannoudji, B. Diu, F. Laloe, John Wiley and Sons, Inc., 1978.

