
5.8.3 Minimum Uncertainty States or Coherent States

From the matrix elements calculated in the last section, we find that the
energy or quantum number eigenstates |ni have vanishing expected values
for position and momentum. This also follows from the x-representation
ψn(x) = hx |ni studied in section 4.4.2

hn|X |ni = 0 , hn|P |ni = 0 , (5.168)

and the fluctuations in position and momentum are then simply

hn|X2 |ni = n+
1

2
, hn|P2 |ni = n+

1

2
. (5.169)

The minimum uncertainty product for the fluctuations

∆X =

q
hn|X2 |ni− hn|X |ni2 = n+

1

2
, (5.170)

∆P =

q
hn|P2 |ni− hn|P |ni2 = n+

1

2
. (5.171)

is then

∆X ·∆P = n+
1

2
. (5.172)

Only the ground state n = 0 is a minimum uncertainty wave packet, since it
satisfies the eigenvalue equation

a |0i = 0, (5.173)

where

a =
1√
2
(X+ jP) , (5.174)



264 CHAPTER 5. THE DIRAC FORMALISM AND HILBERT SPACES

see problem set 8. In fact we can show that every eigenstate to the annihi-
lation operator

a |αi = α |αi , for α�C (5.175)

is a minimum uncertainty state. We obtain for expected values of position
or momentum in these states

hα| a |αi = α , hα|a+ |αi = α∗, (5.176)

hα|a+a |αi = |α|2 , hα| aa+ |αi =
¡
|α|2 + 1

¢
, (5.177)

hα|X |αi =
1√
2
(α + α∗) , hα|P |αi = j√

2
(α − α∗) , (5.178)

and for its squares

hα|a+a |αi = |α|2 , hα| aa+ |αi =
¡
|α|2 + 1

¢
, (5.179)

hα| a2 |αi = α2, hα| a+2 |αi = α∗2 , (5.180)

hα|X2 |αi =
1

2

¡
α2 + 2α∗α+ α∗2 + 1

¢
= hα|X |αi2 + 1

2
, (5.181)

hα|P2 |αi =
1

2

¡
−α2 + 2α∗α− α∗2 + 1

¢
= hα|P |αi 2 + 1

2
. (5.182)

Thus the uncertainty product is at its minimum

∆X ·∆P =
1

2
∀ α�C. (5.183)

In fact one can show that the statistics of a position or momentum measure-
ment for a harmonic oscillator in this state follows a Gaussian satistics with
the average and variance given by Eqs.(5.178), (5.181) and (5.182). This can
be represented pictorially in a phase space diagram as shown in Figure 5.1
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Figure 5.1: Representation of a minimum uncertainty state of the harmonic
oscillator as a phase space distribution.

5.8.4 Heisenberg Picture

The Heisenberg equations of motion for a linear system like the harmonic
oscillator are linear differential equations for the operators, which can be
easily solved. From Eqs.(5.124) we find

j~ ∂
∂t
aH(t) = [aH ,H] (5.184)

= ~ω0aH , (5.185)

with the solution

aH(t) = e−jω0taS . (5.186)

Therefore, the expectation values for the creation, annihilation, position and
momentum operators are identical to those of Eqs.(5.176) to (5.182); we only
need to subsitute α→ αe−jω0t . We may again pictorially represent the time
evolution of these states as a probability distribution in phase space, see
Figure 5.2.
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Figure 5.2: Time evolution of a coherent state in phase space.

5.9 The Kopenhagen Interpretation of Quan-
tum Mechanics

5.9.1 Description of the State of a System

At a given time t the state of a system is described by a normalized vector
|Ψ(t)i in the Hilbert space, H. The Hilbert space is a linear vector space.
Therefore, any linear combination of vectors is again a possible state of the
system. Thus superpositions of states are possible and with it come interfer-
ences.

5.9.2 Description of Physical Quantities

Measurable physical quantities, observables, are described by hermitian op-
erators A = A+.
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5.9.3 The Measurement of Observables

An observable has a spectral representation in terms of eigenvectors and
eigenvalues, which can be discrete or continuous, here we discuss the discrete
case

A =
X
n

An |Ani hAn| , (5.187)

The eigenvectors are orthogonal to each other and the eigenvalues are real

hAn| An0i = δn,n0 . (5.188)

Upon a measurement of the observable A of the system in state |Ψ(t)i the
outcome can only be one of the eigenvalues An of the observable and the
probability for that event to occur is

pn = | hAn| Ψ(t)i|2 . (5.189)

If the eigenvalue spectrum of the operator A is degenerate, the probabilities
of the probabilities of the different states to the same eigenvector need to be
added.
After the measurement the system is in the eigenstate |Ani corresponding

to the eigenvalue An found in the measurement, which is called the reduc-
tion of state[4]. This unphysical reduction of state is only necessary as a
shortcut for the description of the measurement process and the fact that
the system becomes entangled with the state of the macroscopic measure-
ment equipment. This entanglement leads to a necessary decoherence of the
superposition state of the measured system, which is equivalent to assuming
a reduced state.
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