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2.2 Electromagnetic Waves and Interfaces

Many microwave and optical devices are based on the characteristics of elec-
tromagnetic waves undergoing reflection or transmission at interfaces be-
tween media with different electric or magnetic properties characterized by
and μ, see Fig. 2.17. Without restriction we can assume that the interface
is the (x-y-plane) and the plane of incidence is the (x-z-plane). An arbitrary
incident plane wave can always be decomposed into two components. One
component has its electric field parallel to the interface between the media,
i.e. it is polarized parallel to the interface and it is called the transverse elec-
tric (TE)-wave or also s-polarized wave. The other component is polarized
in the plane of incidence and its magnetic field is in the plane of the interface
between the media. This wave is called the TM-wave or also p-polarized
wave. The most general case of an incident monochromatic TEM-wave is a
linear superposition of a TE and a TM-wave.
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Figure 2.17: a) Reflection of a TE-wave at an interface, b) Reflection of
aTM-wave at an interface

The fields for both cases are summarized in table 2.5
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TE-wave TM-wave

Ei =Ei e
j(ωt−ki·r)ey Ei = −Ei e

j(ωt−ki·r)ei

Hi =Hi e
j(ωt−ki·r)hi Hi =Hi e

j(ωt−ki·r)ey

Er =Er e
j(ωt−kr·r)ey Er =Er e

j(ωt−kr·r)
r er

Hr =Hr e
j(ωt−kr·r)hr Hr =Er e

j(ωt−kr·r)ey

Et =Et e
j(ωt−kt·r)ey Et =Et e

j(ωt−kt·r)et
Ht =Ht e

j(ωt−kt·r)ht Ht =Ht e
j(ωt−kt·r)ey

Table 2.5: Electric and magnetic fields for TE- and TM-waves.

with wave vectors of the waves given by

ki = kr = k0
√

1μ1,

kt = k0
√

2μ2,

ki,t = ki,t (sin θi,t ex + cos θi,t ez) ,

kr = ki (sin θr ex − cos θr ez) ,

and unit vectors given by

hi,t = − cos θi,t ex + sin θi,t ez,
hr = cos θr ex + sin θr ez,

ei,t = −hi,t = cos θi,t ex − sin θi,t ez,

er = −hr = − cos θr ex − sin θr ez.

2.2.1 Boundary Conditions and Snell’s law

From 6.013, we know that Stoke’s and Gauss’ Law for the electric and mag-
netic fields require constraints on some of the field components at media
boundaries. In the absence of surface currents and charges, the tangential
electric and magnetic fields as well as the normal dielectric and magnetic
fluxes have to be continuous when going from medium 1 into medium 2 for
all times at each point along the surface, i.e. z = 0

E/Hi,x/ye
j(ωt−ki,xx) +E/Hr,x/ye

j(ωt−kr,xx) = E/Hi,x/ye
j(ωt−kt,xx). (2.103)

This equation can only be fulfilled at all times if and only if the x-component
of the k-vectors for the reflected and transmitted wave are equal to (match)
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the corresponding component of the incident wave

ki,x = kr,x = kt,x (2.104)

This phase matching condition is shown in Fig. 2.18 for the case
√

2μ2 >√
1μ1 or kt > ki.
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Figure 2.18: Phase matching condition for reflected and transmitted wave

The phase matching condition Eq(2.104) results in θr = θi = θ1 and
Snell’s law for the angle θt = θ2 of the transmitted wave

sin θt =

√
1μ1√
2μ2

sin θi (2.105)

or for the case of non magnetic media with μ1 = μ2 = μ0

sin θt =
n1
n2
sin θi (2.106)
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2.2.2 Measuring Refractive Index with Minimum De-
viation

Snell’s law can be used for measuring the refractive index of materials. Con-
sider a prism prepared from a material with unknown refractive index n(λ),
see Fig. 2.19 (a).

Figure 2.19: (a) Beam propagating through a prism. (b) For the case of
minimum deviation [3] p. 65.

The prism is mounted on a rotation stage as shown in Fig. 2.20. The
angle of incidence α is then varied with a fixed incident beam path and
the transmitted light is observed on a screen. If one starts of with normal
incidence on the first prism surface one notices that after turning the prism
one goes through a minium for the deflection angle of the beam. This becomes
obvious from Fig. 2.19 (b). There is an angle of incidence α where the beam
path through the prism is symmetric. If the input angle is varied around this
point, it would be identical to exchange the input and output beams. From
that we conclude that the deviation δ must go through an extremum at the
symmetry point, see Figure 2.21. It can be shown (Recitations), that the
refractive index is then determined by

n =
sin α(δmin)+δmin

2

sin α(δmin)
2

. (2.107)

If the measurement is repeated for various wavelength of the incident radi-
ation the complete wavelength dependent refractive index is characterized,
see for example, Fig. 2.22.
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Figure 2.20: Refraction of a Prism with n=1.731 for different angles of in-
cidence alpha. The angle of incidence is stepwise increased by rotating the
prism clockwise. The angle of transmission first increases. After the angle
for minimum deviation is reached the transmission angle starts to decrease
[3] p67.
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Figure 2.21: Deviation versus incident angel [1]

Figure 2.22: Refractive index as a function of wavelength for various media
transmissive in the visible [1], p42.
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2.2.3 Fresnel Reflection

After understanding the direction of the reflected and transmitted light, for-
mulas for how much light is reflected and transmitted are derived by eval-
uating the boundary conditions for the TE and TM-wave. According to
Eqs.(2.103) and (2.104) we obtain for the continuity of the tangential E and
H fields:

TE-wave (s-pol.) TM-wave (p-pol.)
Ei+Er = Et Ei cos θi−Er cos θr =Et cos θt
Hi cos θi−Hr cos θr =Ht cos θt Hi +Hr = Ht

(2.108)

Introducing the characteristic impedances in both half spaces Z1/2 =
q

μ0μ1/2

0 1/2
,

and the impedances that relate the tangential electric and magnetic field
components ZTE/TM

1/2 in both half spaces the boundary conditions can be
rewritten in terms of the electric or magnetic field components.

TE-wave (s-pol.) TM-wave (p-pol.)

ZTE
1/2 =

Ei/t

Hi/t cos θi/t
=

Z1/2
cos θ1/2

ZTM
1/2 =

Ei/t cos θi/t
Hi/t

= Z1/2 cos θ1/2

Ei+Er = Et H i−Hr =
ZTM2
ZTM1

Ht

Ei−Er =
ZTE1
ZTE2

Et H i +Hr = Ht

(2.109)

Amplitude Reflection and Transmission coefficients

From these equations we can easily solve for the reflected and transmitted
wave amplitudes in terms of the incident wave amplitudes. By dividing
both equations by the incident wave amplitudes we obtain for the amplitude
reflection and transmission coeffcients. Note, that reflection and transmission
coefficients are defined in terms of the electric fields for the TE-wave and in
terms of the magnetic fields for the TM-wave.

TE-wave (s-pol.) TM-wave (p-pol.)

rTE = Er

Ei
; tTE = Et

Ei
rTM = Hr

Hi
; tTM = Ht

Hi

1 + rTE = tTE 1− rTM =
ZTM2
ZTM1

tTM

1 − rTE = ZTE1
ZTE2

tTE 1 + rTM = tTM

(2.110)
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or in both cases the amplitude transmission and reflection coefficients are

tTE/TM =
2

1 +
Z
TE/TM
1/2

Z
TE/TM
2/1

=
2Z

TE/TM
2/1

Z
TE/TM
1 + Z

TE/TM
2

(2.111)

rTE/TM =
Z
TE/TM
2/1 − Z

TE/TM
1/2

Z
TE/TM
1 + Z

TE/TM
2

(2.112)

Despite the simplicity of these formulas, they describe already an enormous
wealth of phenomena. To get some insight, consider the case of purely di-
electric and lossless media characterized by its real refractive indices n1 and
n2. Then Eqs.(2.111) and (2.112) simplify for the TE and TM case to

TE-wave (s-pol.) TM-wave (p-pol.)

ZTE
1/2 =

Z1/2
cos θ1/2

= Z0
n1/2 cos θ1/2

ZTM
1/2 = Z1/2 cos θ1/2 =

Z0
n1/2

cos θ1/2

rTE = n1 cos θ1−n2 cos θ2
n1 cos θ1+n2 cos θ2

rTM =
n2

cos θ2
− n1
cos θ1

n2
cos θ2

+
n1

cos θ1

tTE = 2n1 cos θ1
n1 cos θ1+n2 cos θ2

tTM =
2

n2
cos θ2

n2
cos θ2

+
n1

cos θ1

(2.113)

Figure 2.23 shows the evaluation of Eqs.(2.113) for the case of a reflection at
the interface of air and glass with n2 > n1 and (n1 = 1, n2 = 1.5).
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Figure 2.23: The amplitude coefficients of reflection and transmission as a
function of incident angle. These correspond to external reflection n2 > n1
at an air-glas interface (n1 = 1, n2 = 1.5).
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For TE-polarized light the reflected light changes sign with respect to the
incident light (reflection at the optically more dense medium). This is not
so for TM-polarized light under close to normal incidence. It occurs only
for angles larger than θB, which is called the Brewster angle. So for TM-
polarized light the amplitude reflection coefficient is zero at the Brewster
angle. This phenomena will be discussed in more detail later.
This behavior changes drastically if we consider the opposite arrange-

ment of media, i.e. we consider the glass-air interface with n1 > n2, see
Figure 2.24. Then the TM-polarized light experiences a π-phase shift upon
reflection close to normal incidence. For increasing angle of incidence this
reflection coefficient goes through zero at the Brewster angle θ

0

B different
from before. However, for large enough angle of incidence the reflection coef-
ficient reaches magnitude 1 and stays there. This phenomenon is called total
internal reflection and the angle where this occurs first is the critical angle
for total internal reflection, θtot. Total internal reflection will be discussed in
more detail later.
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Figure 2.24: The amplitude coefficients of reflection and transmission as a
function of incident angle. These correspond to internal reflection n1 > n2
at a glas-air interface (n1 = 1.5, n2 = 1).

Power reflection and transmission coefficients

Often we are not interested in the amplitude but rather in the optical power
reflected or transmitted in a beam of finite size, see Figure 2.25.
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Figure 2.25: Reflection and transmission of an incident beam of finite size
[1].

Note, that to get the power in a beam of finite size, we need to integrated
the corresponding Poynting vector over the beam area, which means multi-
plication by the beam crosssectional area for a homogenous beam. Since the
angle of incidence and reflection are equal, θi = θr = θ1 this beam crosssec-
tional area drops out in reflection

RTE/TM =
I
TE/TM
r A cos θi

I
TE/TM
i A cos θr

=
¯̄
rTE/TM

¯̄2
=

¯̄̄̄
¯ZTE/TM

2 − Z
TE/TM
1

Z
TE/TM
1 + Z

TE/TM
2

¯̄̄̄
¯
2

(2.114)

However, due to the different angles for the incident and the transmitted
beam θt = θ2 6= θ1, we arrive at

T TE/TM =
I
TE/TM
t A cos θt

I
TE/TM
i A cos θr

(2.115)

=
cos θ2
cos θ1

Re

(
1

Z2/1

)
Re

(
1

Z1/2

)−1 ¯̄
tTE/TM

¯̄2
.
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Using in the case of TE-polarization
Z1/2
cos θ1/2

= ZTE
1/2 and analogously for TM-

polarization Z1/2 cos θ1/2 = ZTM
1/2 , we obtain

T TE/TM = Re

(
1

Z
TE/TM
1/2

)−1
Re

⎧⎪⎨⎪⎩ 4Z
TE/TM
2/1¯̄̄

Z
TE/TM
1 + Z

TE/TM
2

¯̄̄2
⎫⎪⎬⎪⎭ (2.116)

Note, for the case where the characteristic impedances are complex this can
not be further simplified. If the characteristic impedances are real, i.e. the
media are lossless, the transmission coefficient simplifies to

T TE/TM =
4Z

TE/TM
1/2 Z

TE/TM
2/1³

Z
TE/TM
1 + Z

TE/TM
2

´2
.

(2.117)

To summarize for lossless media the power reflection and transmission coef-
ficients are

TE-wave (s-pol.) TM-wave (p-pol.)

ZTE
1/2 =

Z1/2
cos θ1/2

= Z0
n1/2 cos θ1/2

ZTM
1/2 = Z1/2 cos θ1/2 =

Z0
n1/2

cos θ1/2

RTE =
¯̄̄
n2 cos θ2−n1 cos θ1
n1 cos θ1+n2 cos θ2

¯̄̄2
RTM =

¯̄̄̄
n2

cos θ2
− n1
cos θ1

n2
cos θ2

+
n1

cos θ1

¯̄̄̄2
T TE = 4n1 cos θ1n2 cos θ2

|n1 cos θ1+n2 cos θ2|2
T TM =

4
n2

cos θ2

n1
cos θ1¯̄̄

n2
cos θ2

+
n1

cos θ1

¯̄̄2
T TE +RTE = 1 T TM +RTM = 1

(2.118)

A few phenomena that occur upon reflection at surfaces between different
media are especially noteworthy and need a more indepth discussion because
they enhance or enable the construction of many optical components and
devices.

2.2.4 Brewster’s Angle

As Figures 2.23 and 2.24 already show, for light polarized parallel to the
plane of incidence, p-polarized light, the reflection coefficient vanishes at a
given angle θB, called the Brewster angle. Using Snell’s Law Eq.(2.106),

n2
n1
=
sin θ1
sin θ2

, (2.119)
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we can rewrite the reflection and transmission coefficients in Eq.(2.118) only
in terms of the angles. For example, we find for the reflection coefficient

RTM =

¯̄̄̄
¯ n2n1 − cos θ2

cos θ1
n2
n1
+ cos θ2

cos θ1

¯̄̄̄
¯
2

=

¯̄̄̄
¯ sin θ1sin θ2

− cos θ2
cos θ1

sin θ1
sin θ2

+ cos θ2
cos θ1

¯̄̄̄
¯
2

(2.120)

=

¯̄̄̄
sin 2θ1 − sin 2θ2
sin 2θ1 + sin 2θ2

¯̄̄̄2
(2.121)

where we used in the last step in addition the relation sin 2α = 2 sinα cosα.
Thus by forcing RTM = 0, the Brewster angle is reached for

sin 2θ1,B − sin 2θ2,B = 0 (2.122)

or
2θ1,B = π − 2θ2,B or θ1,B + θ2,B =

π

2
(2.123)

This relation is illustrated in Figure 2.26. The reflected and transmitted
beams are orthogonal to each other, so that the dipoles induced in the
medium by the transmitted beam, shown as arrows in Fig. 2.26, can not
radiate into the direction of the reflected beam. This is the physical origin
of the zero in the reflection coefficient, only possible for a p-polarized or
TM-wave.
The relation (2.123) can be used to express the Brewster angle as a func-

tion of the refractive indices, because if we substitute (2.123) into Snell’s law
we obtain

sin θ1
sin θ2

=
n2
n1

sin θ1,B

sin
¡
π
2
− θ1,B

¢ =
sin θ1,B
cos θ1,B

= tan θ1,B,

or
tan θ1,B =

n2
n1

. (2.124)

Using the Brewster angle condition one can insert an optical component with
a refractive index n 6= 1 into a TM-polarized beam in air without having
reflections, see Figure 2.27. Note, this is not possible for a TE-polarized
beam.
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Figure 2.26: Conditions for reflection of a TM-Wave at Brewster’s angle.
The reflected and transmitted beams are orthogonal to each other, so that
the dipoles excited in the medium by the transmitted beam can not radiate
into the direction of the reflected beam.

Figure 2.27: A plate under Brewster’s angle does not reflect TM-light. The
plate can be used as a window to introduce gas filled tubes into a laser beam
without insertion loss (ideally), [6] p. 209.
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2.2.5 Total Internal Reflection

Another striking phenomenon, see Figure 2.24, occurs for the case where
the beam hits the surface from the side of the optically denser medium, i.e.
n1 > n2. There is obviously a critical angle of incidence, beyond which all
light is reflected. How can that occur? This is easy to understand from the
phase matching diagram at the surface, see Figure 2.18, which is redrawn for
this case in Figure 2.28.

x
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θi θr

θtot

z

n n2 > 1

k2

k1

Figure 2.28: Phase matching diagram for total internal reflection.

There is no real wavenumber in medium 2 possible as soon as the angle of
incidence becomes larger than the critical angle for total internal reflection

θi > θtot (2.125)

with
sin θtot =

n2
n1

. (2.126)

Figure 2.29 shows the angle of refraction and incidence for the two cases of
external and internal reflection, when the angle of incidence approaches the
critical angle.
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Figure 2.29: Relation between angle of refraction and incidence for external
refraction and internal refraction ([6], p. 11).

Figure 2.30: Relation between angle of refraction and incidence for external
refraction and internal refraction ([1], p. 81).

Total internal reflection enables broadband reflectors. Figure 2.30 shows
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again what happens when the critical angle of reflection is surpassed. Fig-
ure 2.31 shows how total internal reflection can be used to guide light via
reflection at a prism or by multiple reflections in a waveguide.

Figure 2.31: (a) Total internal reflection, (b) internal reflection in a prism,
(c) Rays are guided by total internal reflection from the internal surface of
an optical fiber ([6] p. 11).

Figure 2.32 shows the realization of a retro reflector, which always returns
a parallel beam independent of the orientation of the prism (in fact the prism
can be a real 3D-corner so that the beam is reflected parallel independent
from the precise orientation of the corner cube). A surface patterned by little
corner cubes constitute a "cats eye" used on traffic signs.

Figure 2.32: Total internal reflection in a retro reflector.

More on reflecting prisms and its use can be found in [1], pages 131-136.
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Evanescent Waves

What is the field in medium 2 when total internal reflection occurs? Is it
identical to zero? It turns out phase matching can still occur if the propaga-
tion constant in z-direction becomes imaginary, k2z = −jκ2z, because then we
can fulfill the wave equation in medium 2. This is equivalent to the dispersion
relation

k22x + k22z = k22,

or with k2x = k1x = k1 sin θ1, we obtain for the imaginary wavenumber

κ2z =
q
k21 sin

2 θ1 − k22, (2.127)

= k1
p
sin2 θ1 − sin2 θtot. (2.128)

The electric field in medium 2 is then, for the example for a TE-wave, given
by

Et = Et ey e
j(ωt−kt·r), (2.129)

Et ey e
j(ωt−k2,xx)e−κ2zz. (2.130)

Thus the wave penetrates into medium 2 exponentially with a 1/e-depth δ,
given by

δ =
1

κ2z
=

1

k1
p
sin2 θ1 − sin2 θtot

(2.131)

Figure 2.33 shows the penetration depth as a function of angle of incidence
for a silica/air interface and a silicon/air interface. The figure demonstrates
that light from inside a semiconductor material with a relatively high index
around n=3.5 is mostly captured in the semiconductor material (Problem of
light extraction from light emitting diodes (LEDs)), see problem set 2.
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Figure 2.33: Penetration depth for total internal reflection at a silica/air and
a silicon/air interface for λ = 0.633nm.

As the magnitude of the reflection coefficient is 1 for total internal re-
flection, the power flowing into medium 2 must vanish, i.e. the transmission
is zero. Note, that the transmission and reflection coefficients in Eq.(2.113)
can be used beyond the critical angle for total internal reflection. We only
have to be aware that the electric field in medium 2 has an imaginary depen-
dence in the exponent for the z-direction, i.e. k2z = k2 cos θ2 = −jκ2z. Thus
cos θ2 in all formulas for the reflection and transmission coefficients has to be
replaced by the imaginary number

cos θ2 =
k2z
k2
= −jk1

k2

p
sin2 θ1 − sin2 θtot (2.132)

= −jn1
n2

p
sin2 θ1 − sin2 θtot

= −j

sµ
sin θ1
sin θtot

¶2
− 1.
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Then the reflection coefficients in Eq.(2.113) change to all-pass functions

TE-wave (s-pol.) TM-wave (p-pol.)

rTE = n1 cos θ1−n2 cos θ2
n1 cos θ1+n2 cos θ2

rTM =
n2

cos θ2
− n1
cos θ1

n2
cos θ2

+
n1

cos θ1

rTE =
cos θ1+j

n2
n1

r³
sin θ1
sin θtot

´2
−1

cos θ1−jn2n1

r³
sin θ1
sin θtot

´2
−1

rTM =
cos θ1+j

n1
n2

r³
sin θ1
sin θtot

´2
−1

cos θ1−jn1n2

r³
sin θ1
sin θtot

´2
−1

tan φTE

2
= 1

cos θ1

n2
n1

r³
sin θ1
sin θtot

´2
− 1 tan φTM

2
= 1

cos θ1

n1
n2

r³
sin θ1
sin θtot

´2
− 1
(2.133)

Thus the magnitude of the reflection coefficient is 1. However, there is
a non-vanishing phase shift for the light field upon total internal reflection,
denoted as φTE and φTM in the table above. Figure 2.34 shows these phase
shifts for the glass/air interface and for both polarizations.
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Figure 2.34: Phase shifts for TE- and TM- wave upon reflection from a
silica/air interface, with n1 = 1.45 and n2 = 1.

Goos-Haenchen-Shift

So far, we looked only at plane waves undergoing reflection at surface due to
total internal reflection. If a beam of finite transverse size is reflected from
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such a surface it turns out that it gets displaced by a distance ∆z, see Figure
2.35 (a), called Goos-Haenchen-Shift.

Figure 2.35: (a) Goos-Haenchen Shift and related beam displacement upon
reflection of a beam with finite size; (b) Accumulation of phase shifts in a
waveguide.

Detailed calculations show (problem set 2), that the displacement is given
by

∆z = 2δTE/TM tan θ1, (2.134)

as if the beam was reflected at a virtual layer with depth δTE/TM into medium
2. It turns out, that for TE-waves

δTE = δ, (2.135)

where δ is the penetration depth according to Eq.(2.131) for evanescent
waves. But for TM-waves

δTM =
δ∙

1 +
³
n1
n2

´2¸
sin2 θ1 − 1

(2.136)
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These shifts accumulate when the beam is propagating in a waveguide, see
Figure 2.35 (b) and is important to understand the dispersion relations of
waveguide modes. The Goos-Haenchen shift can be observed by reflection at
a prism partially coated with a silver film, see Figure 2.36. The part reflected
from the silver film is shifted with respect to the beam reflected due to total
internal reflection, as shown in the figure.

Figure 2.36: Experimental proof of the Goos-Haenchen shift by total in-
ternal reflection at a prism, that is partially coated with silver, where the
penetration of light can be neglected. [3] p. 486.

Frustrated total internal reflection

Another proof for the penetration of light into medium 2 in the case of
total internal reflection can be achieved by putting two prisms, where total
internal reflection occurs back to back, see Figure 2.37. Then part of the
light, depending on the distance between the two interfaces, is converted
back into a propagating wave that can leave the second prism. This effect is
called frustrated internal reflection and it can be used as a beam splitter as
shown in Figure 2.37.



62 CHAPTER 2. CLASSICAL ELECTROMAGNETISM AND OPTICS

Figure 2.37: Frustrated total internal reflection. Part of the light is picked
up by the second surface and converted into a propagating wave.




