

6.976
High Speed Communication Circuits and Systems
Lecture 3
S-Parameters and Impedance Transformers

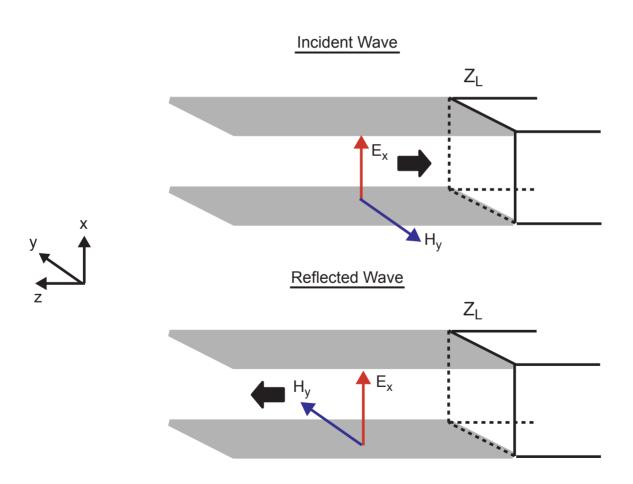
Michael Perrott

Massachusetts Institute of Technology

Copyright © 2003 by Michael H. Perrott

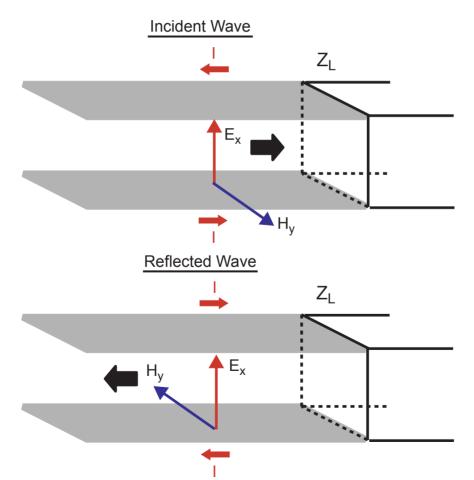
What Happens When the Wave Hits a Boundary?

Reflections can occur



What Happens When the Wave Hits a Boundary?

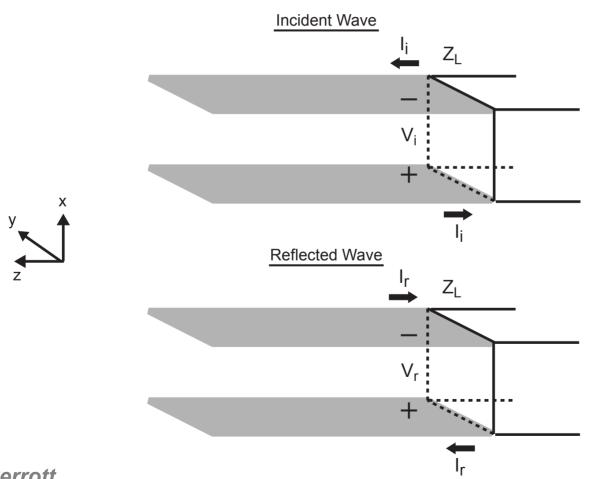
- At boundary
 - Orientation of H-field flips with respect to E-field
 - Current reverses direction with respect to voltage



M.H. Perrott

What Happens At The Load Location?

Voltage and currents at load are ratioed according to the load impedance



Voltage at Load

$$V_i + V_r$$

Current at Load

$$I_i - I_r$$

Ratio at Load

$$\frac{V_i + V_r}{I_i - I_r} = Z_L$$

Relate to Characteristic Impedance

From previous slide

$$\frac{V_i + V_r}{I_i - I_r} = \frac{V_i}{I_i} \left(\frac{1 + V_r/V_i}{1 - I_r/I_i} \right) = Z_L$$

 Voltage and current ratio in transmission line set by it characteristic impedance

$$\frac{V_i}{I_i} = \frac{V_r}{I_r} = Z_o \quad \Rightarrow \quad \frac{I_r}{I_i} = \frac{V_r}{V_i}$$

Substituting:

$$Z_o\left(\frac{1+V_r/V_i}{1-V_r/V_i}\right) = Z_L$$

Define Reflection Coefficient

- Definition: $\Gamma_L = \frac{V_r}{V_i}$
 - No reflection if $\Gamma_L = 0$
- Relation to load and characteristic impedances

$$Z_o\left(\frac{1+\Gamma_L}{1-\Gamma_L}\right) = Z_L$$

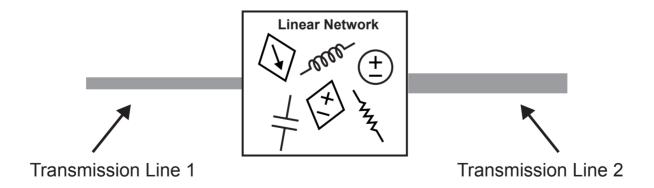
Alternate expression

$$\Gamma_L = \frac{Z_L - Z_o}{Z_L + Z_o}$$

■ No reflection if $Z_L = Z_o$

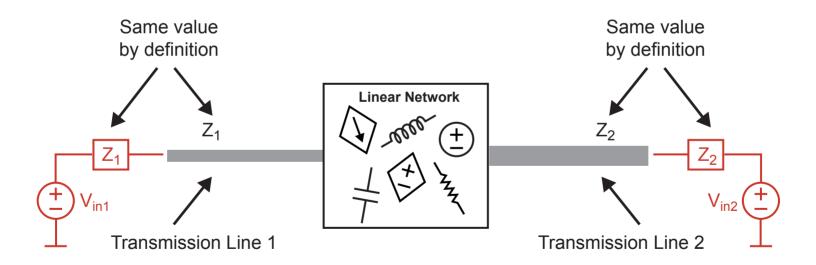
Parameterization of High Speed Circuits/Passives

- Circuits or passive structures are often connected to transmission lines at high frequencies
 - How do you describe their behavior?



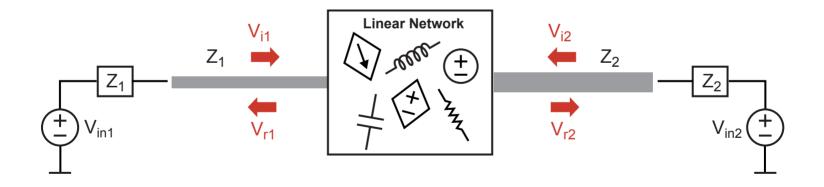
Calculate Response to Input Voltage Sources

Assume source impedances match their respective transmission lines



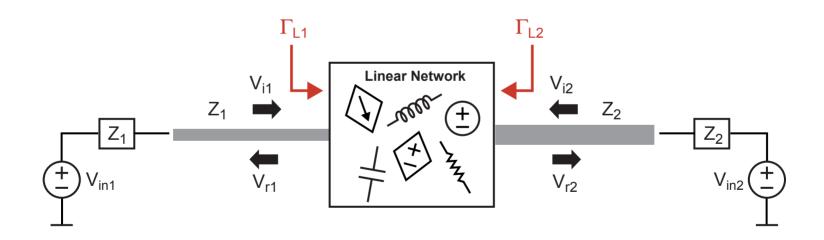
Calculate Response to Input Voltage Sources

- Sources create incident waves on their respective transmission line
- Circuit/passive network causes
 - Reflections on same transmission line
 - Feedthrough to other transmission line



Calculate Response to Input Voltage Sources

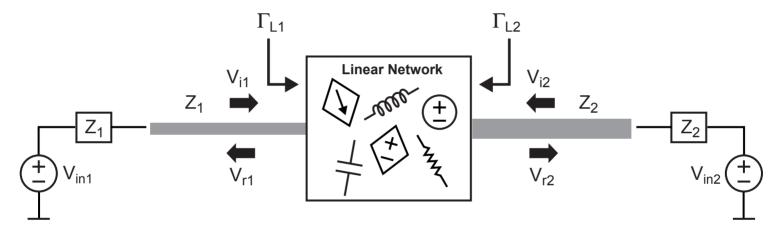
- Reflections on same transmission line are parameterized by Γ_{L}
 - Note that Γ_L is generally different on each side of the circuit/passive network



How do we parameterize feedthrough to the other transmission line?

S-Parameters - Definition

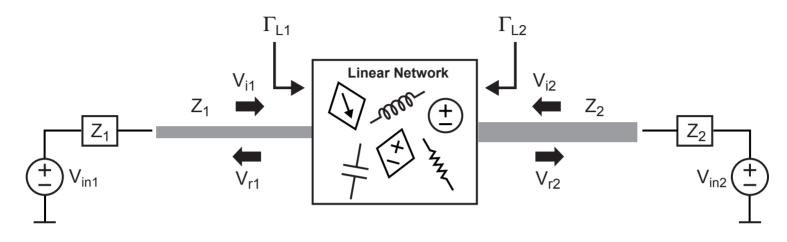
- Model circuit/passive network using 2-port techniques
 - Similar idea to Thevenin/Norton modeling



Defining equations:

$$\frac{V_{r1}}{\sqrt{Z_1}} = S_{11} \frac{V_{i1}}{\sqrt{Z_1}} + S_{12} \frac{V_{i2}}{\sqrt{Z_2}}$$
$$\frac{V_{r2}}{\sqrt{Z_2}} = S_{21} \frac{V_{i1}}{\sqrt{Z_1}} + S_{22} \frac{V_{i2}}{\sqrt{Z_2}}$$

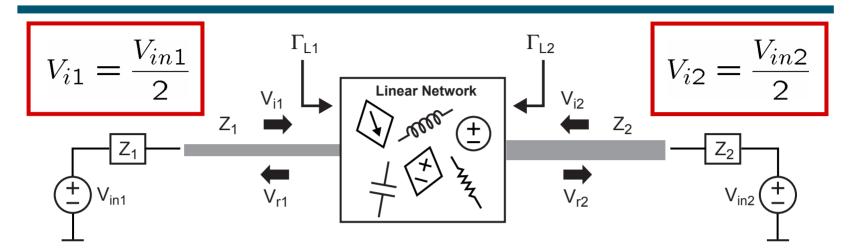
S-Parameters – Calculation/Measurement



$$\frac{V_{r1}}{\sqrt{Z_1}} = S_{11} \frac{V_{i1}}{\sqrt{Z_1}} + S_{12} \frac{V_{i2}}{\sqrt{Z_2}} \qquad \frac{V_{r2}}{\sqrt{Z_2}} = S_{21} \frac{V_{i1}}{\sqrt{Z_1}} + S_{22} \frac{V_{i2}}{\sqrt{Z_2}}$$

$$\frac{V_{r2}}{\sqrt{Z_2}} = S_{21} \frac{V_{i1}}{\sqrt{Z_1}} + S_{22} \frac{V_{i2}}{\sqrt{Z_2}}$$

Note: Alternate Form for S_{21} and S_{12}

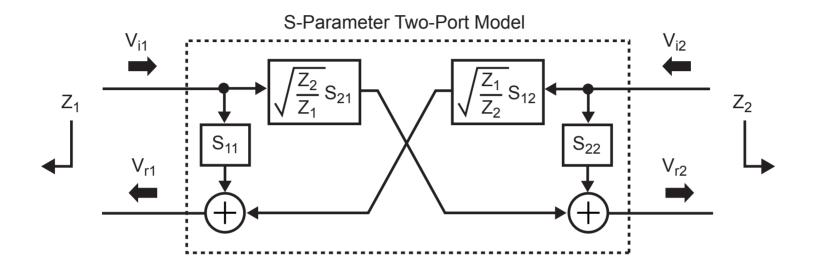


$$set V_{in1} = 0$$

$$\Rightarrow S_{22} = \frac{V_{r2}}{V_{i2}} = \Gamma_{L2}$$

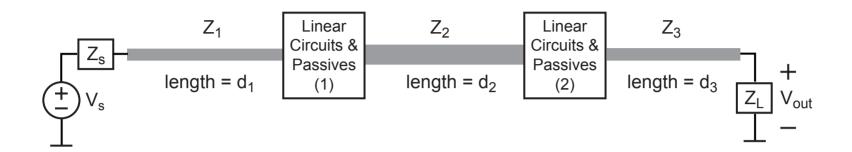
$$\Rightarrow S_{12} = 2\sqrt{\frac{Z_2}{Z_1}} \left(\frac{V_{r1}}{V_{in2}}\right)$$

Block Diagram of S-Parameter 2-Port Model



- Key issue two-port is parameterized with respect to the left and right side load impedances (Z₁ and Z₂)
 - Need to recalculate S_{11} , S_{21} , etc. if Z_1 or Z_2 changes
 - Typical assumption is that $Z_1 = Z_2 = 50$ Ohms

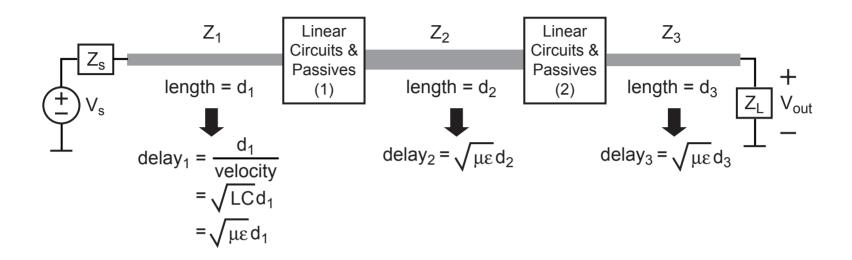
Macro-modeling for Distributed, Linear Networks



- Key parameters for a transmission line
 - Characteristic impedance (only impacts S-parameter calculations)
 - **Delay** (function of length and μ , ϵ)
 - Loss (ignore for now)
- Key parameters for circuits/passives
 - S-parameters

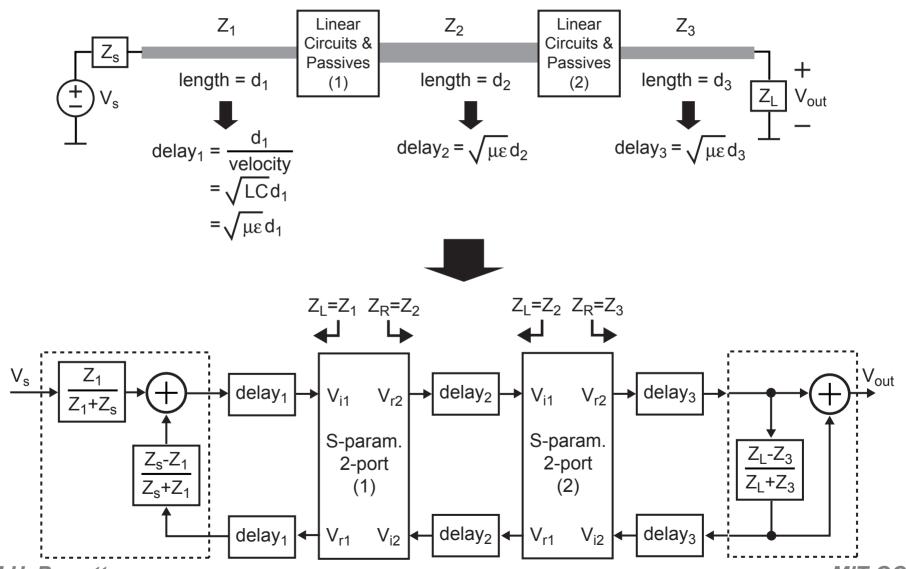
We would like an overall macro-model for simulation

Macro-modeling for Distributed, Linear Networks



- Model transmission line as a delay element
 - If lossy, could also add an attenuation factor (which is a function of its length)
- Model circuits/passives with S-parameter 2-ports
- Model source and load with custom blocks

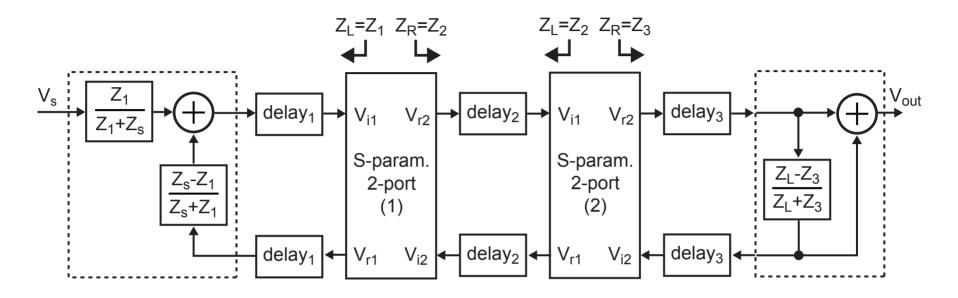
Macro-modeling for Distributed, Linear Networks



M.H. Perrott

MIT OCW

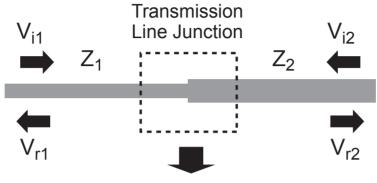
Note for CppSim Simulations



- CppSim does block-by-block computation
 - Feedback introduces artificial delays in simulation
- Prevent artificial delays by
 - Ordering blocks according to input-to-output signal flow
 - Creating an additional signal in CppSim modules to pass previous sample values

Note: both are already done for you in Homework #1

S-Parameter Calculations - Example 1



Derive S-Parameter 2-Port

Set V_{i2} = 0

$$V_{r1} = \Gamma_1 V_{i1} = \frac{Z_2 - Z_1}{Z_2 + Z_1} V_{i1}$$

$$V_2 = V_{i1} + V_{i1} = (1 + \Gamma_1)V_{i1}$$

$V_{r2} = V_{i1} + V_{r1} = (1 + \Gamma_1)V_{i1}$ $V_{r1} = V_{i2} + V_{r2} = (1 + \Gamma_2)V_{i2}$

Set V_{i1} = 0

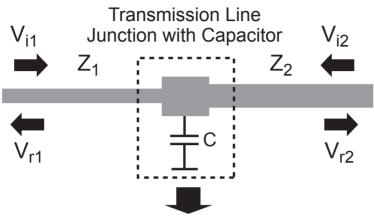
$$V_{r2} = \Gamma_2 V_{i2} = \frac{Z_1 - Z_2}{Z_1 + Z_2} V_{i1}$$

$$V_{1} = V_{12} + V_{23} = (1 + \Gamma_2) V_{13}$$

$$\Rightarrow S_{11} = \Gamma_1 \qquad \Rightarrow S_{22} = \Gamma_2$$

$$\Rightarrow S_{21} = \sqrt{\frac{Z_1}{Z_2}} (1 + \Gamma_1) \qquad \Rightarrow S_{12} = \sqrt{\frac{Z_2}{Z_1}} (1 + \Gamma_2)$$

S-Parameter Calculations – Example 2



Derive S-Parameter 2-Port

Same as before:

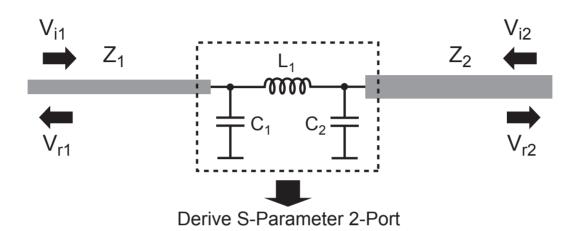
$$\Rightarrow S_{11} = \Gamma_1 \qquad \Rightarrow S_{22} = \Gamma_2$$

$$\Rightarrow S_{21} = \sqrt{\frac{Z_1}{Z_2}} (1 + \Gamma_1) \qquad \Rightarrow S_{12} = \sqrt{\frac{Z_2}{Z_1}} (1 + \Gamma_2)$$

But now:

$$\Gamma_1 = \frac{Z_2||(1/sC) - Z_1|}{Z_2||(1/sC) + Z_1|}$$
 $\Gamma_2 = \frac{Z_1||(1/sC) - Z_2|}{Z_1||(1/sC) + Z_2|}$

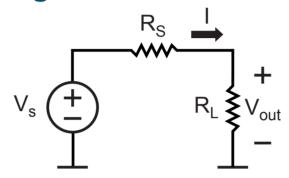
S-Parameter Calculations – Example 3



- The S-parameter calculations are now more involved
 - Network now has more than one node
- This is a homework problem

Matching for Voltage versus Power Transfer

Consider the voltage divider network



For maximum voltage transfer

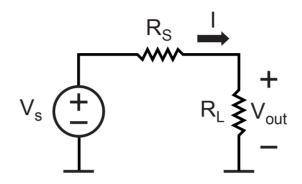
$$R_L \rightarrow \infty \Rightarrow V_{out} \rightarrow V_s$$

For maximum power transfer

$$R_L = R_S \Rightarrow P_{out} = \frac{|V_{out}|^2}{R_L} = \frac{|V_s|^2}{4R_S}$$

Which one do we want?

Note: Maximum Power Transfer Derivation



Formulation

$$P_{out} = I^2 R_L = \left(\frac{V_s}{R_S + R_L}\right)^2 R_L = \frac{R_L}{(R_S + R_L)^2} V_s^2$$

Take the derivative and set it to zero

$$\frac{dP_{out}}{dR_L} = R_L(-2)(R_S + R_L)^{-3} + (R_S + R_L)^{-2} = 0$$

$$\Rightarrow 2R_L = R_S + R_L \Rightarrow R_L = R_S$$

Voltage Versus Power

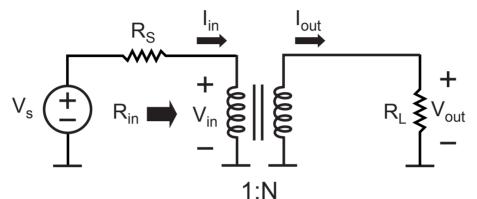
- For most communication circuits, voltage (or current) is the key signal for detection
 - Phase information is important
 - Power is ambiguous with respect to phase information

- For high speed circuits with transmission lines, achieving maximum power transfer is important
 - Maximum power transfer coincides with having zero reflections (i.e., $\Gamma_L = 0$)

Can we ever win on both issues?

Broadband Impedance Transformers

Consider placing an ideal transformer between source and load



Transformer basics (passive, zero loss)

1)
$$V_{out} = NV_{in}$$
 2) Power In = Power Out $\Rightarrow V_{in}I_{in} = V_{out}I_{out}$ From (1) and (2): $V_{in}I_{in} = NV_{in}I_{out} \Rightarrow I_{out} = \frac{I_{in}}{N}$

Transformer input impedance

$$R_{in} = \frac{V_{in}}{I_{in}} = \frac{V_{out}/N}{NI_{out}} = \frac{1}{N^2}R_L$$

What Value of N Maximizes Voltage Transfer?

Derive formula for V_{out} versus V_{in} for given N value

$$V_{out} = NV_{in} = N\frac{R_{in}}{R_s + R_{in}}V_s = N\frac{R_L/N^2}{R_s + R_L/N^2}V_s$$

= $N\frac{R_L}{R_L + N^2R_s}V_s$

Take the derivative and set it to zero

$$\frac{dV_{out}}{dN} = NR_L(-1)(R_L + N^2 R_S)^{-2} 2NR_s + R_L(R_L + N^2 R_S)^{-1} = 0$$

$$\Rightarrow -2N^2 R_s (R_L + N^2 R_S)^{-2} + (R_L + N^2 R_S)^{-1} = 0$$

$$\Rightarrow -2N^2 R_s = R_L + N^2 R_S \Rightarrow N^2 = \frac{R_L}{R_s}$$

What is the Input Impedance for Max Voltage Transfer?

We know from basic transformer theory that input impedance into transformer is

$$R_{in} = \frac{1}{N^2} R_L$$

We just learned that, to maximize voltage transfer, we must set the transformer turns ratio to

$$N^2 = \frac{R_L}{R_s}$$

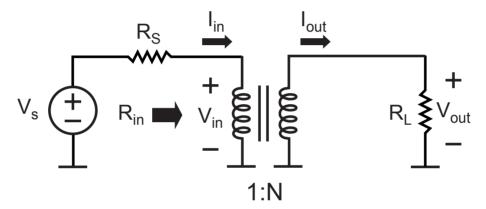
Put them together

$$R_{in} = \frac{1}{N^2} R_L = \frac{1}{R_L/R_s} R_L = R_s !!$$

So, N should be set for max power transfer into transformer to achieve the maximum voltage transfer at the load!

Benefit of Impedance Matching with Transformers

 Transformers allow maximum voltage and power transfer relationship to coincide



Turns ratio for max power/voltage transfer

$$N^2 = \frac{R_L}{R_s}$$

Resulting voltage gain (can exceed one!)

$$V_{out} = NV_{in} = N\left(\frac{1}{2}V_s\right) = \sqrt{\frac{R_L}{R_s}}\left(\frac{1}{2}V_s\right)$$

The Catch

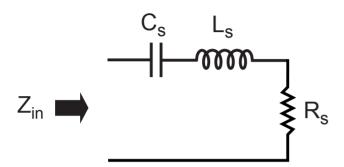
- It's hard to realize a transformer with good performance over a wide frequency range
 - Magnetic materials have limited frequency response
 - Inductors have self-resonant frequencies, losses, and mediocre coupling to other inductors without magnetic material

For wireless applications, we only need transformers that operate over a small frequency range

Can we take advantage of this?

Consider Resonant Circuits (Chap. 4 of Lee's Book)

Series Resonant Circuit

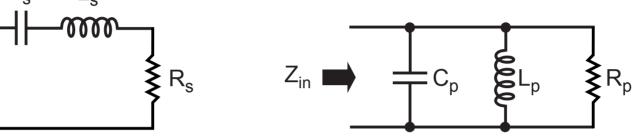


$$Z_{in} = \frac{1}{jwC_s} + jwL_s + R_s \qquad Z_{in} = \frac{1}{jwC_p} ||jwL_p||R_p$$

$$= R_s \text{ for } w = \frac{1}{\sqrt{L_sC_s}} = w_o \qquad = R_p \text{ for } w = \frac{1}{\sqrt{L_sC_s}}$$

$$Q = \frac{w_oL_s}{R_s} = \frac{1}{w_sC_sR_s} \qquad Q = \frac{R_p}{w_sC_sR_s} = w_oC_pR_s$$

Parallel Resonant Circuit

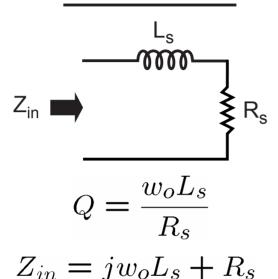


$$Z_{in} = \frac{1}{jwC_s} + jwL_s + R_s$$
 $Z_{in} = \frac{1}{jwC_p} ||jwL_p||R_p$
 $= R_s \text{ for } w = \frac{1}{\sqrt{L_sC_s}} = w_o$ $= R_p \text{ for } w = \frac{1}{\sqrt{L_pC_p}} = w_o$
 $Q = \frac{w_oL_s}{R_s} = \frac{1}{w_oC_sR_s}$ $Q = \frac{R_p}{w_oL_p} = w_oC_pR_p$

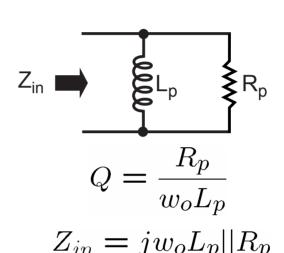
Key insight: resonance allows Z_{in} to be purely real despite the presence of reactive elements

Comparison of Series and Parallel RL Circuits

Series RL Circuit



Parallel RL Circuit

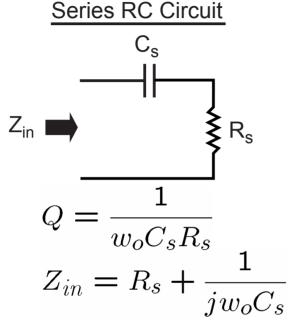


- Equate real and imaginary parts of the left and right expressions (so that Z_{in} is the same for both)
 - Also equate Q values

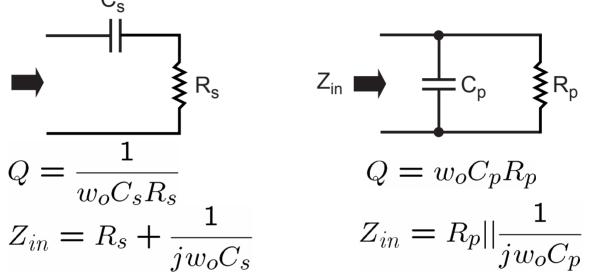
$$R_p = R_s(Q^2 + 1) \approx R_s Q^2 \text{ (for } Q \gg 1)$$

$$L_p = L_s \left(\frac{Q^2 + 1}{Q^2}\right) \approx L_s \text{ (for } Q \gg 1)$$

Comparison of Series and Parallel RC Circuits



Parallel RC Circuit



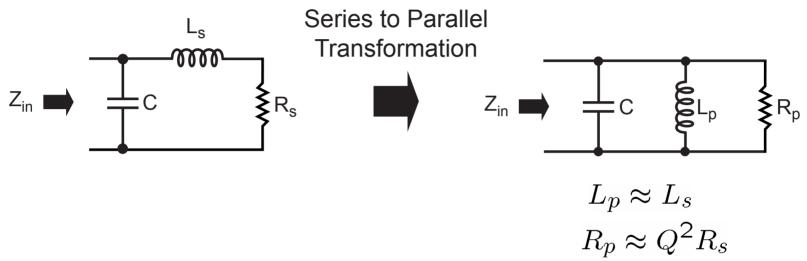
- Equate real and imaginary parts of the left and right expressions (so that Z_{in} is the same for both)
 - Also equate Q values

$$R_p = R_s(Q^2 + 1) \approx R_s Q^2 \text{ (for } Q \gg 1)$$

$$C_p = C_s \left(\frac{Q^2}{Q^2 + 1}\right) \approx C_s \text{ (for } Q \gg 1)$$

A Narrowband Transformer: The L Match

Assume Q >> 1



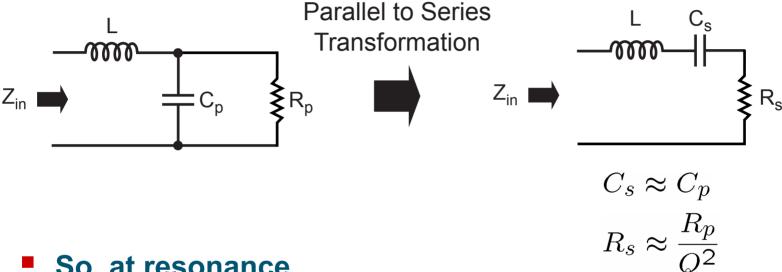
So, at resonance

$$Z_{in} = R_p \approx Q^2 R_s$$
 (purely real)

Transformer steps up impedance!

Alternate Implementation of L Match

Assume Q >> 1



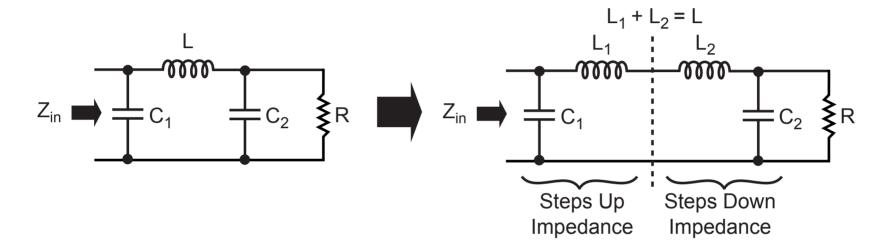
So, at resonance

$$Z_{in} = R_s \approx \frac{R_p}{Q^2}$$
 (purely real)

Transformer steps down impedance!

The π Match

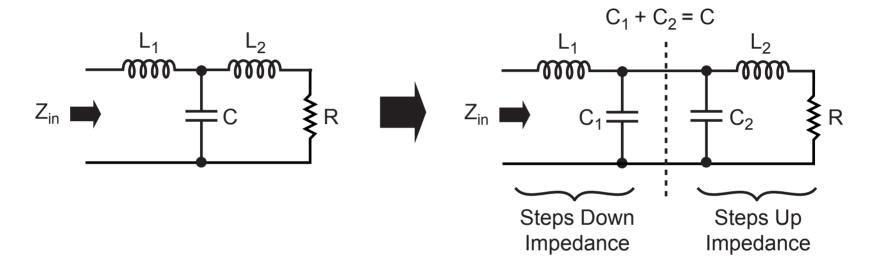
Combines two L sections



 Provides an extra degree of freedom for choosing component values for a desired transformation ratio

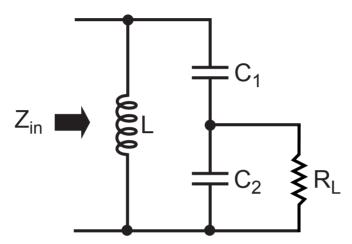
The T Match

Also combines two L sections



Again, benefit is in providing an extra degree of freedom in choosing component values

Tapped Capacitor as a Transformer



To first order:

$$\frac{R_{in}}{R_L} \approx \left(\frac{C_1 + C_2}{C_1}\right)^2$$

- Useful in VCO design
- See Chapter 4 of Tom Lee's book for analysis