MITOPENCOURSEWARE MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.976
 High Speed Communication Circuits and Systems
 Lecture 4
 Generalized Reflection Coefficient, Smith Chart, Integrated Passive Components

Michael Perrott

Massachusetts Institute of Technology

Copyright © 2003 by Michael H. Perrott

Determine Voltage and Current At Different Positions

- Incident and reflected waves must be added together

Determine Voltage and Current At Different Positions

$$
\begin{aligned}
V(z, t) & =V_{+} e^{j w t} e^{j k z}+V_{-} e^{j w t} e^{-j k z} \\
I(z, t) & =I_{+} e^{j w t} e^{j k z}-I_{-} e^{j w t} e^{-j k z}
\end{aligned}
$$

Define Generalized Reflection Coefficient

$$
\begin{gathered}
V(z, t)=V_{+} e^{j w t} e^{j k z}+V_{-} e^{j w t} e^{-j k z} \\
I(z, t)=I_{+} e^{j w t} e^{j k z}-I_{-} e^{j w t} e^{-j k z} \\
V(z, t)=V_{+} e^{j w t} e^{j k z}\left(1+\frac{V_{-}}{V_{+}} e^{-2 j k z}\right) \\
V(z, t)=V_{+} e^{j w t} e^{j k z}\left(1+\Gamma_{L} e^{-2 j k z}\right) \\
V(z, t)=V_{+} e^{j w t} e^{j k z}\left(1+\Gamma^{2}(z)\right)
\end{gathered}
$$

Similarly:

$$
I(z, t)=I_{+} e^{j w t} e^{j k z}(1-\Gamma(z))
$$

$$
\Rightarrow \Gamma(z)=\Gamma_{L} e^{-2 j k z}
$$

A Closer Look at $\Gamma(\mathrm{z})$

- Recall Γ_{L} is

$$
\Gamma(z)=\Gamma_{L} e^{-2 j k z}
$$

$\Gamma_{L}=\frac{Z_{L}-Z_{o}}{Z_{L}+Z_{o}}$
Note: $\left|\Gamma_{L}\right| \leq 1$
for $\operatorname{Re}\left\{Z_{L} / Z_{o}\right\} \geq 0$

- We can view $\Gamma(z)$ as a complex number that rotates clockwise as z (distance from the load) increases

Calculate $\left|V_{\text {max }}\right|$ and $\left|V_{\text {min }}\right|$ Across The Transmission Line

- We found that

$$
V(z, t)=V_{+} e^{j w t} e^{j k z}(1+\Gamma(z))
$$

- So that the max and min of $V(z, t)$ are calculated as

$$
\begin{aligned}
& \Rightarrow \quad V_{\max }=\max |V(z, t)|=\left|V_{+}\right| \max |1+\Gamma(z)| \\
& \Rightarrow \quad V_{\min }=\min |V(z, t)|=\left|V_{+}\right| \min |1+\Gamma(z)|
\end{aligned}
$$

- We can calculate this geometrically!

A Geometric View of |1 + $\Gamma(\mathrm{z}) \mid$

Reflections Cause Amplitude to Vary Across Line

- Equation: $\quad V(z, t)=V_{+} e^{j w t} e^{j k z}|1+\Gamma(z)| e^{j L(1+\Gamma(z))}$
- Graphical representation:

Voltage Standing Wave Ratio (VSWR)

- Definition

$$
\operatorname{VSWR}=\frac{V_{\text {max }}}{V_{\text {min }}}=\frac{\left|V_{+}\right|\left(1+\left|\Gamma_{L}\right|\right)}{\left|V_{+}\right|\left(1-\left|\Gamma_{L}\right|\right)}=\frac{1+\left|\Gamma_{L}\right|}{1-\left|\Gamma_{L}\right|}
$$

- For passive load (and line)

$$
\left\lvert\, \begin{aligned}
\Gamma_{L} \mid \leq 1 & \Rightarrow 1 \\
\left|\Gamma_{L}\right|=0 & \left|\Gamma_{L}\right|=1
\end{aligned}\right.
$$

- We can infer the magnitude of the reflection coefficient based on VSWR

$$
\left|\Gamma_{L}\right|=\frac{V S W R-1}{\operatorname{VSWR}+1}
$$

Reflections Influence Impedance Across The Line

- From Slide $4 \quad V(z, t)=V_{+} e^{j w t} e^{j k z}(1+\Gamma(z))$

$$
I(z, t)=I_{+} e^{j w t} e^{j k z}(1-\Gamma(z))
$$

$$
\Rightarrow Z(z, t)=\frac{V_{+}(1+\Gamma(z))}{I_{+}(1-\Gamma(z))}=Z_{o} \frac{1+\Gamma(z)}{1-\Gamma(z)}
$$

- Note: not a function of time! (only of distance from load)
- Alternatively

$$
Z(z)=Z_{o} \frac{1+\Gamma_{L} e^{-2 j k z}}{1-\Gamma_{L} e^{-2 j k z}}
$$

- From Lecture 2: $\quad \lambda=\frac{T}{\sqrt{\mu \epsilon}}=\frac{w T}{w \sqrt{\mu \epsilon}}=\frac{2 \pi f T}{k}=\frac{2 \pi}{k}$

$$
Z(z)=Z_{o} \frac{1+\Gamma_{L} e^{-j(4 \pi / \lambda) z}}{1-\Gamma_{L} e^{-j(4 \pi / \lambda) z}}
$$

Example: Z($\lambda / 4$) with Shorted Load

- Calculate reflection coefficient

$$
\Gamma_{L}=\frac{Z_{L}-Z_{o}}{Z_{L}+Z_{o}}=\frac{0-Z_{o}}{0+Z_{o}}=-1
$$

- Calculate generalized reflection coefficient

$$
\Gamma(\lambda / 4)=\Gamma_{L} e^{-j(4 \pi / \lambda)(\lambda / 4)}=\Gamma_{L} e^{-j \pi}=-\Gamma_{L}=1
$$

- Calculate impedance $Z(\lambda / 4)=Z_{o} \frac{1+\Gamma(z)}{1-\Gamma(z)}=\infty$!

Generalize Relationship Between Z($\lambda / 4$) and Z(0)

- General formulation

$$
Z(z)=Z_{o} \frac{1+\Gamma_{L} e^{-j(4 \pi / \lambda) z}}{1-\Gamma_{L} e^{-j(4 \pi / \lambda) z}}
$$

- At load (z=0)

$$
Z_{L}=Z(0)=Z_{o} \frac{1+\Gamma_{L}}{1-\Gamma_{L}}
$$

- At quarter wavelength away ($z=\lambda / 4$)

$$
Z(\lambda / 4)=Z_{o} \frac{1-\Gamma_{L}}{1+\Gamma_{L}}=\frac{Z_{o}^{2}}{Z_{L}}
$$

- Impedance is inverted!
- Shorts turn into opens
- Capacitors turn into inductors

Now Look At Z(4) (Impedance Close to Load)

- Impedance formula (Δ very small)

$$
Z(\Delta)=Z_{o} \frac{1+\Gamma_{L} e^{-2 j k \Delta}}{1-\Gamma_{L} e^{-2 j k \Delta}}
$$

- A useful approximation: $e^{-j x} \approx 1-j x$ for $x \ll 1$

$$
\Rightarrow e^{-2 j k \Delta} \approx 1-2 j k \Delta
$$

- Recall from Lecture 2: $\quad k=w \sqrt{L C}, \quad Z_{o}=\sqrt{\frac{L}{C}}$
- Overall approximation:

$$
Z(\Delta) \approx\left(\sqrt{\frac{L}{C}}\right) \frac{1+\Gamma_{L}(1-2 j w \sqrt{L C} \Delta)}{1-\Gamma_{L}(1-2 j w \sqrt{L C} \Delta)}
$$

Example: Look At Z(4) With Load Shorted

- Reflection coefficient: $\Gamma_{L}=\frac{Z_{L}-Z_{o}}{Z_{L}+Z_{o}}=\frac{0-Z_{o}}{0+Z_{o}}=-1$
- Resulting impedance looks inductive!

$$
Z(\Delta) \approx\left(\sqrt{\frac{L}{C}}\right) \frac{1-(1-2 j w \sqrt{L C} \Delta)}{1+(1-2 j w \sqrt{L C} \Delta)} \approx j w L \Delta
$$

Example: Look At Z(4) With Load Open

- Reflection coefficient:

$$
\Gamma_{L}=\frac{Z_{L}-Z_{o}}{Z_{L}+Z_{o}}=\frac{\infty-Z_{o}}{\infty+Z_{o}}=1
$$

- Resulting impedance looks capacitive!

$$
Z(\Delta) \approx\left(\sqrt{\frac{L}{C}}\right) \frac{1+(1-2 j w \sqrt{L C} \Delta)}{1-(1-2 j w \sqrt{L C} \Delta)} \approx \frac{1}{j w C \Delta}
$$

Consider an Ideal LC Tank Circuit

$$
Z_{i n}(w)=\frac{1}{j w C} \| j w L=\frac{j w L}{1-w^{2} L C}
$$

- Calculate input impedance about resonance

$$
\begin{aligned}
& \text { Consider } w=w_{o}+\Delta w, \text { where } w_{o}=\frac{1}{\sqrt{L C}} \\
& Z_{i n}(\Delta w)=\frac{j\left(w_{o}+\Delta w\right) L}{1-\left(w_{o}+\Delta w\right)^{2} L C} \\
&=\frac{j\left(w_{o}+\Delta w\right) L}{\frac{1-w_{o}^{2} L C}{=0}-2 \Delta w\left(w_{o} L C\right)-\frac{\Delta w^{2} L C}{\text { negligible }}} \\
& \Rightarrow Z_{i n}(\Delta w) \approx \frac{j\left(w_{o}+\Delta w\right) L}{-2 \Delta w\left(w_{o} L C\right)} \approx \frac{j w_{o} L}{-2 \Delta w\left(w_{o} L C\right)}=-\frac{j}{2} \sqrt{\frac{L}{C}}\left(\frac{w_{o}}{\Delta w}\right)
\end{aligned}
$$

Transmission Line Version: Z $\left(\lambda_{0} / 4\right)$ with Shorted Load

- As previously calculated

$$
\Gamma_{L}=\frac{Z_{L}-Z_{o}}{Z_{L}+Z_{o}}=\frac{0-Z_{o}}{0+Z_{o}}=-1
$$

- Impedance calculation

$$
Z(z)=Z_{o} \frac{1+\Gamma(z)}{1-\Gamma(z)}, \text { where } \Gamma(z)=\Gamma_{L} e^{-j(4 \pi / \lambda) z}
$$

- Relate λ to frequency $\lambda=\frac{1}{f \sqrt{\mu \epsilon}}=\frac{1}{\left(f_{o}+\Delta f\right) \sqrt{\mu \epsilon}}$

Calculate Z(Δ f) - Step 1

- Wavelength as a function of $\Delta \mathbf{f}$

$$
\lambda=\frac{1}{\left(f_{o}+\Delta f\right) \sqrt{\mu \epsilon}}=\frac{1}{f_{o \sqrt{\mu \epsilon}\left(1+\Delta f / f_{o}\right)}}=\frac{\lambda_{o}}{1+\Delta f / f_{o}}
$$

- Generalized reflection coefficient

$$
\begin{gathered}
\Gamma\left(\lambda_{o} / 4\right)=\Gamma_{L} e^{-j(4 \pi / \lambda) \lambda_{o} / 4}=\Gamma_{L} e^{-j \pi \lambda_{o} / \lambda}=\Gamma_{L} e^{-j \pi \lambda_{o} / \lambda} \\
\Rightarrow \Gamma\left(\lambda_{o} / 4\right)=\Gamma_{L} e^{-j \pi\left(1+\Delta f / f_{o}\right)}=-\Gamma_{L} e^{-j \pi \Delta f / f_{o}}
\end{gathered}
$$

Calculate Z(Δ f) - Step 2

- Impedance calculation

$$
Z\left(\lambda_{o} / 4\right)=Z_{o} \frac{1-\Gamma_{L} e^{-j \pi \Delta f / f_{o}}}{1+\Gamma_{L} e^{-j \pi \Delta f / f_{o}}}=Z_{o} \frac{1+e^{-j \pi \Delta f / f_{o}}}{1-e^{-j \pi \Delta f / f_{o}}}
$$

- Recall $e^{-j \pi \Delta f / f_{o}} \approx 1-j \pi \Delta f / f_{o}$

$$
\Rightarrow Z(z) \approx Z_{o} \frac{1+1-j \pi \Delta f / f_{o}}{1-1+j \pi \Delta f / f_{o}} \approx Z_{o} \frac{2}{j \pi \Delta f / f_{o}}=-j \frac{2}{\pi} \sqrt{\frac{L}{C}}\left(\frac{w_{o}}{\Delta w}\right)
$$

- Looks like LC tank circuit about frequency w_{o} !

Smith Chart

- Define normalized impedance

$$
Z_{n}=\frac{Z_{L}}{Z_{o}}
$$

- Mapping from normalized impedance to Γ
is one-to-one

$$
Z_{n}=\frac{1+\Gamma_{L}}{1-\Gamma_{L}}
$$

- Consider working in coordinate system based on Γ
- Key relationship between \mathbf{Z}_{n} and Γ

$$
\operatorname{Re}\left\{Z_{n}\right\}+j \operatorname{Im}\left\{Z_{n}\right\}=\frac{1+\operatorname{Re}\left\{\Gamma_{L}\right\}+j \operatorname{Im}\left\{\Gamma_{L}\right\}}{1-\left(\operatorname{Re}\left\{\Gamma_{L}\right\}+j \operatorname{Im}\left\{\Gamma_{L}\right\}\right)}
$$

- Equate real and imaginary parts to get Smith Chart

Real Impedance in Г Coordinates (Equate Real Parts)

$$
\left(\operatorname{Re}\left\{\Gamma_{L}\right\}-\frac{\operatorname{Re}\left\{Z_{n}\right\}}{1+\operatorname{Re}\left\{Z_{n}\right\}}\right)^{2}+\left(\operatorname{Im}\left\{\Gamma_{L}\right\}\right)^{2}=\left(\frac{1}{1+\operatorname{Re}\left\{Z_{n}\right\}}\right)^{2}
$$

Imag. Impedance in Г Coordinates (Equate Imag. Parts)

What Happens When We Invert the Impedance?

- Fundamental formulas

$$
Z_{n}=\frac{1+\Gamma_{L}}{1-\Gamma_{L}} \Rightarrow \Gamma_{L}=\frac{Z_{n}-1}{Z_{n}+1}
$$

- Impact of inverting the impedance

$$
Z_{n} \rightarrow 1 / Z_{n} \Rightarrow \Gamma_{L} \rightarrow-\Gamma_{L}
$$

- Derivation:

$$
\frac{1 / Z_{n}-1}{1 / Z_{n}+1}=\frac{1-Z_{n}}{1+Z_{n}}=-\left(\frac{Z_{n}-1}{Z_{n}+1}\right)
$$

- We can invert complex impedances in Γ plane by simply changing the sign of Γ !
- How can we best exploit this?

The Smith Chart as a Calculator for Matching Networks

- Consider constructing both impedance and admittance curves on Smith chart

$$
Z_{n} \rightarrow 1 / Z_{n} \Rightarrow \Gamma_{L} \rightarrow-\Gamma_{L}
$$

- Conductance curves derived from resistance curves
- Susceptance curves derived from reactance curves
- For series circuits, work with impedance
- Impedances add for series circuits
- For parallel circuits, work with admittance
- Admittances add for parallel circuits

Resistance and Conductance on the Smith Chart

Reactance and Susceptance on the Smith Chart

Overall Smith Chart

Example - Match RC Network to 50 Ohms at 2.5 GHz

- Circuit

- Step 1: Calculate $Z_{\text {Ln }}$

$$
\begin{aligned}
Z_{L n} & =\frac{Z_{L}}{Z_{o}}=\frac{R_{L} \|(1 / j w C)}{50}=\frac{1}{50\left(1 / R_{L}+j w C\right)} \\
& =\frac{1}{50\left(1 / 200+j 2 \pi(2.5 e 9) 10^{-12}\right)}=\frac{1}{0.25+j .7854}
\end{aligned}
$$

- Step 2: Plot $Z_{\text {Ln }}$ on Smith Chart (use admittance, Y_{Ln})

Plot Starting Impedance (Admittance) on Smith Chart

(Note: $Z_{\text {Ln }}=0.37-j 1.16$)

Develop Matching "Game Plan" Based on Smith Chart

- By inspection, we see that the following matching network can bring us to $Z_{i n}=50$ Ohms (center of Smith chart)

- Use the Smith chart to come up with component values
- Inductance L_{m} shifts impedance up along reactance curve
- Capacitance C_{m} shifts impedance down along susceptance curve

Add Reactance of Inductor L_{m}

Inductor Value Calculation Using Smith Chart

- From Smith chart, we found that the desired normalized inductor reactance is

$$
\frac{j w L_{m}}{Z_{o}}=\frac{j w L_{m}}{50}=j 1.64
$$

- Required inductor value is therefore

$$
\Rightarrow \quad L_{m}=\frac{50(1.64)}{2 \pi 2.5 e 9}=5.2 n H
$$

Add Susceptance of Capacitor C_{m} (Achieves Match!)

Capacitor Value Calculation Using Smith Chart

- From Smith chart, we found that the desired normalized capacitor susceptance is

$$
Z_{o j w C_{m}}=50 j w C_{m}=j 1.31
$$

- Required capacitor value is therefore

$$
\Rightarrow \quad C_{m}=\frac{1.31}{50(2 \pi 2.5 e 9)}=1.67 p F
$$

Just For Fun

- Play the "matching game" at
http://contact.tm.agilent.com/Agilent/tmo/an-95-1/classes/imatch.html
- Allows you to graphically tune several matching networks
- Note: game is set up to match source to load impedance rather than match the load to the source impedance
- Same results, just different viewpoint

Passives

Polysilicon Resistors

- Use unsilicided polysilicon to create resistor

- Key parameters
- Resistance (usually 100-200 Ohms per square)
- Parasitic capacitance (usually small)
- Appropriate for high speed amplifiers
- Linearity (quite linear compared to other options)
- Accuracy (usually can be set within $\pm 15 \%$)

MOS Resistors

- Bias a MOS device in its triode region

- High resistance values can be achieved in a small area (MegaOhms within tens of square microns)
- Resistance is quite nonlinear
- Appropriate for small swing circuits

High Density Capacitors (Biasing, Decoupling)

- MOS devices offer the highest capacitance per unit area
- Limited to a one terminal device
- Voltage must be high enough to invert the channel

- Key parameters
- Capacitance value
- Raw cap value from MOS device is $6.1 \mathrm{fF} / \mu \mathrm{m}^{2}$ for 0.24 u CMOS
- Q (i.e., amount of series resistance)
- Maximized with minimum L (tradeoff with area efficiency)
- See pages 39-40 of Tom Lee's book

High Q Capacitors (Signal Path)

- Lateral metal capacitors offer high Q and reasonably large capacitance per unit area
- Stack many levels of metal on top of each other (best layers are the top ones), via them at maximum density

- Accuracy often better than $\pm 10 \%$
- Parasitic side cap is symmetric, less than 10% of cap value
- Example: $\mathrm{C}_{\mathrm{T}}=1.5 \mathrm{fF} / \mu \mathrm{m}^{2}$ for $0.24 \mu \mathrm{~m}$ process with 7 metals, $L_{\text {min }}=W_{\text {min }}=0.24 \mu \mathrm{~m}, \mathrm{t}_{\text {metal }}=0.53 \mu \mathrm{~m}$
- See "Capacity Limits and Matching Properties of Integrated

Spiral Inductors

- Create integrated inductor using spiral shape on top level metals (may also want a patterned ground shield)

- Key parameters are Q (<10), L (1-10 nH), self resonant freq.
- Usually implemented in top metal layers to minimize series resistance, coupling to substrate
- Design using Mohan et. al, "Simple, Accurate Expressions for Planar Spiral Inductances, JSSC, Oct, 1999, pp 1419-1424
- Verify inductor parameters (L, Q, etc.) using ASITIC http://formosa.eecs.berkeley.edu/~niknejad/asitic.html

Bondwire Inductors

- Used to bond from the package to die
- Can be used to advantage

- Key parameters
- Inductance ($\approx 1 \mathrm{nH} / \mathrm{mm}$ - usually achieve 1-5 nH)
- Q (much higher than spiral inductors - typically >40)

Integrated Transformers

- Utilize magnetic coupling between adjoining wires

- Key parameters
- L (self inductance for primary and secondary windings)
- k (coupling coefficient between primary and secondary)

Note: $k=\frac{M}{\sqrt{L_{1} L_{2}}}$ where $M=$ mutual inductance

- Design - ASITIC, other CAD packages

High Speed Transformer Example - A T-Coil Network

- A T-coil consists of a center-tapped inductor with mutual coupling between each inductor half

- Used for bandwidth enhancement
- See S. Galal, B. Ravazi, "10 Gb/s Limiting Amplifier and Laser/Modulator Driver in 0.18u CMOS", ISSCC 2003, pp 188-189 and "Broadband ESD Protection ...", pp. 182-183

