RF Power Amplifiers

May 7, 2003

Outline

- PA Introduction
- Power transfer characteristics
- Intrinsic PA metrics
- Linear and Non-linear amplifiers
- PA Architectures
- Single-Stage Linear PA
- Load-line theory
- Transistors size
- Input and Output Matching
- So why is this so hard?

High-efficiency PAs

- Class A, AB, B and C amplifiers

Outline (cont.)

- Real-World Design Example
- Selecting architecture, number of stages
- Designing stages
- Tuning: inter-stage match and output

System specifications

- Ruggedness: load mis-match and VSWR
- Linearity: spectral mask (ACPR), switching transients
- Noise in receive band
- Power Control

PA Transfer characteristics

Defining linearity:

PA Transfer characteristics

Defining linearity:

PA Introduction: Intrinsic PA Metrics

$-P_{1 d B}$: Output power at which linear gain has compressed by 1dB (measure of linear power handling)
$P_{\text {max }}$: Maximum output power (saturated power)
Gain: Generally taken to mean transducer gain
Power delivered to load
Power available from source
-PAE: Power-added Efficiency

$$
\frac{\text { Power to load - Power from source }}{\text { Power from supply }}
$$

Linear and Non-linear PAs

" "Linear PA" generally refers to a PA which operates at constant gain, needs to preserve amplitude information

- Not necessarily class A (will discuss later ...) Peak efficiencies often only 40 to 45 \%
- Useful for modulation schemes with amplitude modulation (QPSK, 8-PSK, QAM)

Linear and Non-linear PAs

"Non-linear PA" generally refers to a PA designed to operate with constant $P_{\text {IN }}$, output power varies by changing gain

- Operation in saturated mode leads to high peak efficiencies > 50\%; "backed-off" efficiencies drop quickly
- Useful for constant-envelope modulation schemes (GMSK)

PA Architectures

PA Architectures

Typical 2-stage RF PA design

PA Architectures

PA Architectures

Typical 2-stage RF PA design

PA Architectures

PA Architectures

- "Gain stage" is one transistor with passive elements
- "Active" components often limited to 2 or $\mathbf{3}$ transistors (gain stages) in signal path
- Transistor design very important!
- Many parallel transistors - often look like mini-circuits themselves

Passive components just as important as transistors!

- Circuits must be tunable to account for uncertainties in determining values a priori (i.e. simulations stink - especially large-signal, RF simulations)
- Q and parasitic elements of passives important

Single-Stage Linear PA

Load-line theory: the maximum power that a given transistor can deliver is determined by the power supply voltage and the maximum current of the transistor

Single-Stage Linear PA

- Transistor size chosen to deliver required output power

$$
\mathrm{P}_{\text {out }} \approx \mathrm{I}_{\text {MAX }} \cdot V_{\text {POS }} / 4
$$

Single-Stage, Linear PA

- Design output match to transform 50Ω load to $R_{L, o p t}$ at transistor output; then design input match for gain (complex conjugate)
$\mathrm{V}_{\mathrm{POS}}$

Seems simple, so why is this so hard?

- Determining $\mathrm{I}_{\text {max }}$ is not so easy
- For BJTs, one reference suggested that "the best way of estimating its value is to build an optimized class A amplifier and observe the dc supply current."1
- Somewhat easier for depletion-mode GaAs FETs - I ${ }_{\text {mAX }}$ often corresponds to $\mathrm{V}_{\mathrm{Gs}}=0 \mathrm{~V}$
- Values don't scale linearly with transistor size
- Optimal load resistance only a theoretical number
- Transmission line effects, parasitic L's and C's significant at RF
- Common practice is to vary the load of an actual transistor to determine the peak output power: the load-pull measurement
(Noticing a distinct pattern of "empirical" design emerging?)
${ }^{1}$ RF Power Amplifiers for Wireless Communications, Steve Cripps, Artech House, Boston, 1999.

Seems simple, so why is this so hard?

- Now consider the problem for multiple stages ... double the trouble
- Typical single-stage gain only 10 - 15 dB
- Inter-stage match now required to match input impedance of $\mathbf{2}^{\text {nd }}$ stage to desired output impedance of $1^{\text {st }}$ stage.
\bullet Problems with matching circuits:
- Large matching ratios \rightarrow high Q circuits for simple L matches
- Multi-segment matches use valuable real estate, add cost
- Transistor itself maters - a lot!
- Many parallel transistor
- Ballasting, balancing and layout extremely important

High-efficiency PAs

- Input signal swing turns on transistor - conduction for only part of sinusoidal period

High-Efficiency PAs

Class A:

Class AB:

Class B:

Class C: $\alpha<\pi$

Conduction Angle:

$$
\alpha=2 \pi
$$

$$
\pi<\alpha<2 \pi
$$

$$
\alpha=\pi
$$

High-Efficiency PAs

- Assume output match will filter out non-linearities caused by discontinuous conduction:

High-Efficiency PAs

- If all harmonics filtered out, then voltage output at load is a pure sinusoid, despite discontinuous conduction

- Energy stored in reactive elements delivers current to the load during transistor off-portion of cycle

High-Efficiency PAs

- Now consider peak efficiencies

Calculate fundamental component of current*

$$
\begin{aligned}
& \mathrm{I}_{d c}=(1 / 2 \pi) \int_{-\alpha / 2}^{\alpha / 2} \mathrm{I}_{Q}+\mathrm{I}_{p k} \cos (\omega t) d \omega t \\
& \mathrm{I}_{n}=(1 / \pi) \int_{-\alpha / 2}^{\alpha / 2} \mathrm{I}_{p k} \cos (\omega t) \cos (n \omega t) d \omega t
\end{aligned}
$$

[^0]
High-Efficiency PAs

From phasor plot: $\quad \cos (\alpha / 2)=-\mathrm{I}_{Q} / \mathrm{I}_{p k}=-\mathrm{I}_{Q} /\left(\mathrm{I}_{M A X}-\mathrm{I}_{Q}\right)$ Put it all together and do the math, you get:

$$
\begin{gathered}
\mathrm{I}_{d c}=\frac{\mathrm{I}_{M A X}}{2 \pi} \frac{2 \sin (\alpha / 2)-\alpha \cos (\alpha / 2)}{1-\cos (\alpha / 2)} \\
\mathrm{I}_{1,0-p}=\frac{\mathrm{I}_{M A X}}{2 \pi} \frac{\alpha-\sin \alpha}{1-\cos (\alpha / 2)}
\end{gathered}
$$

Assume $\mathrm{V}_{\mathrm{oUT}}$ the same for all classes:

$$
\mathrm{V}_{1,0-p}=\mathrm{V}_{\mathrm{POS}}
$$

High-Efficiency PAs

*Summary of PA "ideal" peak efficiencies
Class A: $\frac{\mathrm{P}_{1}}{\mathrm{P}_{d c}}=\frac{\left(\mathrm{I}_{M A X} / 2\right) / \sqrt{ } 2 \cdot \mathrm{~V}_{P O S} / \sqrt{ } 2}{\left(\mathrm{I}_{M A X} / 2\right) \cdot \mathrm{V}_{P O S}}=50 \%$
Class B: $\frac{\mathrm{P}_{1}}{\mathrm{P}_{d c}}=\frac{\left(\mathrm{I}_{M A X} / 2\right) / \sqrt{ } 2 \cdot \mathrm{~V}_{P O S} / \sqrt{ } 2}{\left(\mathrm{I}_{M A X} / \pi\right) \cdot \mathrm{V}_{P O S}}=78 \%$
Class C: Ideally can go to 100%, but P_{1} drops steadily beyond $\alpha=\pi$, goes to 0 at 100% !

High-Efficiency PAs

\rightarrow What happened to our load line?

- For class B fundamental $R_{L, \text { opt }}=V_{\text {POS }} /\left(I_{\text {mAX }} / 2\right)$ - Didn't change

Class B is here! $\quad V_{D S}$ or $V_{C E}(V)$

High-Efficiency PAs

What happened to our load line?

- For class B fundamental $R_{L, \text { opt }}=\mathrm{V}_{\mathrm{POS}} /\left(\mathrm{I}_{\mathrm{mAX}} / 2\right)$ - Didn't change

High-Efficiency PAs

Now consider "linearity"

- Clearly the current waveforms are far from linear

BUT ...

- Overall $P_{\text {out }}$ vs. $P_{\text {IN }}$ transfer function can still be quite linear, especially for true Class B where output current waveform is symmetrical with respect to input waveform

Because conduction angle is constant, $P_{\text {out }}$ changes proportional to $P_{\text {IN }}$

Real-World Design Example

IDEAL: Design each stage independently

- Determine required gain - number of stages
- Determine $\mathrm{P}_{\text {out }}$ for each stage
- Determine $R_{L, o p t}$ for each stage
- Determine input impedance for each stage
- Design matching networks for inter-stage, load and input
- REALITY:
- $I_{\text {max }}$ doesn't scale nicely with transistor size. Without good $I_{\text {maX }}$ numbers, can't determine $R_{L, o p t}$. Need to do load-pull.
- Even load pull measurements have limited accuracy for very large transistors
- Designs are very empirically driven!

Real-World Design Example

GSM 900 MHz, GaAs HBT PA Design

- $\mathrm{P}_{\text {OUT }}=33 \mathrm{dBm}$ (linear) $=2 \mathrm{~W}$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=3.5 \mathrm{~V} \\
& \mathrm{R}_{\mathrm{LOAD}}=\mathrm{V}_{\mathrm{CC}} / 2^{*} \mathrm{P}_{\mathrm{OUT}}=3 \Omega \\
& \mathrm{I}_{\mathrm{MAX}}=2^{*} \mathrm{~V}_{\mathrm{CC}} / \mathrm{R}_{\text {LOAD }}=2.33 \mathrm{~A}
\end{aligned}
$$

(Note: expect saturated power to be $\sim 35 \mathrm{dBm}$)
Input power: constant-envelope $\mathbf{+ 5}$ dBm
Gain $=P_{\text {OUT }}-P_{\text {IN }}=27 \mathrm{~dB}$.
Expect roughly 10 dB per stage

3 STAGE DESIGN

Real-World Design Example

Stage 1: Gain = $10 \mathrm{~dB} \rightarrow \mathrm{P}_{\text {OUT }}=15 \mathrm{dBm}$

- $\mathrm{R}_{\mathrm{L} 1}=\mathrm{V}_{\mathrm{cc}}{ }^{2} / \mathbf{2}^{*} \mathrm{P}_{\mathrm{OUT}}=194 \Omega$
- $I_{\text {MAX }}=2^{*} V_{\text {CC }} / R_{\text {LOAD }}=36 \mathrm{~mA}$
- Chose class A: $I_{D C}=I_{M A X} / 2=18 \mathrm{~mA}$
(18 mA insignificant compared to 2.33 A)
\rightarrow Stage 2: Gain = $10 \mathrm{~dB} \rightarrow \mathrm{P}_{\text {OUT }}=25 \mathrm{dBm}$
- $R_{\mathrm{L} 2}=19.4 \Omega$
- $\mathrm{I}_{\text {MAX }}=360 \mathrm{~mA}$
- Still probably class A (maybe $A B$): $I_{D C}=I_{\text {MAX }} / 2=180 \mathrm{~mA}$

Stage 3: Gain $=7 \mathrm{~dB} \rightarrow \mathrm{P}_{\text {OUT }}=33 \mathrm{dBm}$

- $\mathrm{R}_{\mathrm{L} 2}=3 \Omega, \mathrm{I}_{\mathrm{MAX}}=2.33 \mathrm{~A}$
- Class B: $\mathrm{I}_{\mathrm{DC}}=\mathrm{I}_{\mathrm{MAX}} / \pi=742 \mathrm{~mA}$

Real-World Design Example

A note on "Gain"

Taking a very simplistic view of common emitter stages:

- $g_{m 1}=I_{C} / V_{T h}=18 \mathrm{~mA} / 0.025 \mathrm{~V}=0.696 \mathrm{~S}$
- $g_{m 1} R_{L 1}=0.696 \cdot 194=135 \rightarrow$ NOT $10 \mathrm{~dB}!$

BUT ...

- $r_{e 1}=1 / g_{m 1}=1.44 \Omega$
- $r_{e 2}=1 / g_{\mathrm{m} 2}=0.144 \Omega$
- $r_{e 3}=1 / g_{m 3}=0.035 \Omega$

1. Remember it's power gain, not voltage gain. Can lose voltage at input match.
2. It's pretty tough not to get significant degeneration!

Real-World Design Example

- Efficiency calculations:
- $\mathrm{I}_{\mathrm{DC} 1}=18 \mathrm{~mA}, \mathrm{I}_{\mathrm{DC} 2}=180 \mathrm{~mA}, \mathrm{I}_{\mathrm{DC} 3}=742 \mathrm{~mA}$
- Total DC Current: 940 mA

$$
\frac{\mathrm{P}_{1}}{\mathrm{P}_{d c}}=\frac{\left(\mathrm{I}_{M A X} / 2\right) / \sqrt{ } 2 \cdot \mathrm{~V}_{P O S} / \sqrt{ } 2}{\mathrm{I}_{D C} \cdot \mathrm{~V}_{P O S}}=62 \%
$$

- Realistically may get as high as 55\%

Real-World Design Example: Load-Pull

- After initial "guesses" at transistor sizes, load-pull to determine actual target load for matching circuits

Real-World Design Example: Load-pull

Notes on load-pulling:

- Most accurate on probe station, but insertion loss of probes prevents it from being useful for large transistors ("Insertion loss" is RF code word for resistance)
- Bonded devices on evaluation board must be carefully deembedded
\checkmark Even using electronic tuners, accuracy is poor for very large transistor (i.e. for loads in the $2-5 \Omega$ range)

Real-World Design Example: The Circuit

Real-World Design Example: The Circuit

Real-World Design Example

Real-World Design Example

Real-World Design Example: Tuning

\star Example of inter-stage match, $1^{\text {st }}$ to $2^{\text {nd }}$ stage

$$
\left.\begin{array}{c}
R_{\mathrm{L} 1}=194 \Omega(?) \\
\mathrm{Z}_{\mathrm{IN} 2}=30-\mathrm{j} 10(?)
\end{array}\right\} \begin{gathered}
\text { Both are really } \\
\text { just guesses }
\end{gathered}
$$

Real-World Design Example: Tuning

- Example of inter-stage match, $2^{\text {nd }}$ to $3^{\text {rd }}$ stage

$$
\begin{aligned}
& R_{\mathrm{L} 2}=19.4 \Omega \\
& \mathrm{Z}_{\mathrm{IN} 3}=2-\mathrm{j} 2
\end{aligned}
$$

* Go to Winsmith: test2

System Specifications

- Ruggedness
- 50Ω load is for antenna in free space. Place antenna on a metal plate and can easily get VSWR of 4:1
- Typical PA specs are: don't oscillate at up to 4:1, survive up to 10:1 (!)

System Specifications

Linearity

- For linear PAs, Adjacent Channel Power Ratio (ACPR) is very important
raised cosine filter

System Specifications

Linearity

- For linear PAs, Adjacent Channel Power Ratio (ACPR) is very important

System Specifications

Linearity

- For linear PAs, Adjacent Channel Power Ratio (ACPR) is very important

System Specifications

Linearity

- For linear PAs, Adjacent Channel Power Ratio (ACPR) is very important

System Specifications

- Linearity
- For non-linear PA in TDMA systems, harmonic spurs and switching transients are most common measure of linearity

System Specifications

- Noise in receive band:
- Obvious spec. in systems where Tx and Rx are operating at the same time (FDD)

System Specifications

- Noise in receive band:
- Obvious spec. in systems where Tx and Rx are operating at the same time (FDD)
- Not so obvious spec in TDD system. Problem primarily of mixing by the PA $\left(2 \omega_{2}-\omega_{1}\right.$ or $\left.\omega_{2}-\omega_{1}\right)$

Power Control

- For linear PA, expected to operate at constant gain. Power control is therefore a function of P_{IN}.
- Role of bias circuitry is to maintain constant gain over P_{IN}, temperature (PTAT?).

Power Control

\star For non-linear PA, expected to operate at constant $\mathrm{P}_{\text {IN }}$. Power control is achieved by varying gain.

[^0]: * There are many texts which cover reduced-conduction angle calculations. See for example Principles Of Power Electronics, Kassakian, Schelcht and Verghese, Ch. 3.

