

The World Leader in High-Performance Signal Processing Solutions

RF Power Amplifiers

May 7, 2003

Outline

~~

RFÅ IF

PA Introduction

- Power transfer characteristics
- Intrinsic PA metrics
- Linear and Non-linear amplifiers
- PA Architectures
- Single-Stage Linear PA
 - Load-line theory
 - Transistors size
 - Input and Output Matching
 - So why is this so hard?
- High-efficiency PAs
 - Class A, AB, B and C amplifiers

Outline (cont.)

Real-World Design Example

- Selecting architecture, number of stages
- Designing stages
- Tuning: inter-stage match and output

System specifications

- Ruggedness: load mis-match and VSWR
- Linearity: spectral mask (ACPR), switching transients
- Noise in receive band

Power Control

RFÅ IF

PA Transfer characteristics

Defining linearity:

RFAIF

PA Transfer characteristics

Defining linearity:

RFAIF

PA Introduction: Intrinsic PA Metrics

- P_{1dB}: Output power at which linear gain has compressed by 1dB (measure of linear power handling)
- P_{MAX}: Maximum output power (saturated power)
- Gain: Generally taken to mean transducer gain

Power delivered to load

Power available from source

• PAE: Power-added Efficiency

Power to load – Power from source

Power from supply

Linear and Non-linear PAs

 "Linear PA" generally refers to a PA which operates at constant gain, needs to preserve amplitude information

- Not necessarily class A (will discuss later ...) Peak efficiencies often only 40 to 45 %
- Useful for modulation schemes with amplitude modulation (QPSK, 8-PSK, QAM)

RFA IF

Linear and Non-linear PAs

 "Non-linear PA" generally refers to a PA designed to operate with constant P_{IN}, output power varies by changing gain

Operation in saturated mode leads to high peak efficiencies
> 50%; "backed-off" efficiencies drop quickly

Useful for constant-envelope modulation schemes (GMSK)

RFA IF

RF

RFAIF

- "Gain stage" is one transistor with passive elements
- "Active" components often limited to 2 or 3 transistors (gain stages) in signal path
- Transistor design very important!
 - Many parallel transistors often look like mini-circuits themselves
- Passive components just as important as transistors!
 - Circuits must be tunable to account for uncertainties in determining values a priori (i.e. simulations stink – especially large-signal, RF simulations)
 - Q and parasitic elements of passives important

Single-Stage Linear PA

 Load-line theory: the maximum power that a given transistor can deliver is determined by the power supply voltage and the maximum current of the transistor

Single-Stage Linear PA

Transistor size chosen to deliver required output power

$$P_{OUT} \approx I_{MAX} \cdot V_{POS} / 4$$

Single-Stage, Linear PA

 Design output match to transform 50Ω load to R_{L,opt} at transistor output; then design input match for gain (complex conjugate)
V_{POS}

Seems simple, so why is this so hard?

Determining I_{MAX} is not so easy

- For BJTs, one reference suggested that "the best way of estimating its value is to build an optimized class A amplifier and observe the dc supply current."¹
- Somewhat easier for depletion-mode GaAs FETs I_{MAX} often corresponds to V_{GS} = 0V
- Values don't scale linearly with transistor size
- Optimal load resistance only a theoretical number
 - Transmission line effects, parasitic L's and C's significant at RF
 - Common practice is to vary the load of an actual transistor to determine the peak output power: the load-pull measurement (Noticing a distinct pattern of "empirical" design emerging?)

¹ RF Power Amplifiers for Wireless Communications, Steve Cripps, Artech House, Boston, 1999.

5

RF IF

Seems simple, so why is this so hard?

- Now consider the problem for multiple stages ... double the trouble
 - Typical single-stage gain only 10 15 dB
 - Inter-stage match now required to match input impedance of 2nd stage to desired output impedance of 1st stage.
- Problems with matching circuits:
 - Large matching ratios \rightarrow high Q circuits for simple L matches
 - Multi-segment matches use valuable real estate, add cost
- Transistor itself maters a lot!
 - Many parallel transistor
 - Ballasting, balancing and layout extremely important

my have

RFÅ IF

 Input signal swing turns on transistor – conduction for only part of sinusoidal period

 Assume output match will filter out non-linearities caused by discontinuous conduction:

 If all harmonics filtered out, then voltage output at load is a pure sinusoid, despite discontinuous conduction

 Energy stored in reactive elements delivers current to the load during transistor off-portion of cycle

Now consider peak efficiencies

Calculate fundamental component of current*

$$I_{dc} = (1/2\pi) \int_{-\alpha/2}^{\alpha/2} I_{Q} + I_{pk} \cos(\omega t) \, d\omega t$$
$$I_{n} = (1/\pi) \int_{-\alpha/2}^{\alpha/2} I_{pk} \cos(\omega t) \cos(n\omega t) \, d\omega t$$

* There are many texts which cover reduced-conduction angle calculations. See for example *Principles Of Power Electronics,* Kassakian, Schelcht and Verghese, Ch. 3.

From phasor plot: $\cos(\alpha/2) = -I_Q / I_{pk} = -I_Q / (I_{MAX} - I_Q)$ Put it all together and do the math, you get:

$$I_{dc} = \frac{I_{MAX}}{2\pi} \frac{2\sin(\alpha/2) - \alpha\cos(\alpha/2)}{1 - \cos(\alpha/2)}$$
$$I_{1,0-p} = \frac{I_{MAX}}{2\pi} \frac{\alpha - \sin\alpha}{1 - \cos(\alpha/2)}$$

Assume V_{OUT} the same for all classes:

$$\mathbf{V}_{1,0\text{-}p} = \mathbf{V}_{\text{POS}}$$

Summary of PA "ideal" peak efficiencies

Class A:
$$\frac{P_{1}}{P_{dc}} = \frac{(I_{MAX}/2)/\sqrt{2} \cdot V_{POS}/\sqrt{2}}{(I_{MAX}/2) \cdot V_{POS}} = 50 \%$$

Class B: $\frac{P_{1}}{P_{dc}} = \frac{(I_{MAX}/2)/\sqrt{2} \cdot V_{POS}/\sqrt{2}}{(I_{MAX}/\pi) \cdot V_{POS}} = 78 \%$

Class C: Ideally can go to 100%, but P₁ drops steadily beyond $\alpha = \pi$, goes to 0 at 100%!

What happened to our load line?

For class B fundamental R_{L,opt} = V_{POS}/(I_{MAX}/2) – Didn't change

What happened to our load line?

For class B fundamental R_{L,opt} = V_{POS}/(I_{MAX}/2) – Didn't change

In quasi-static picture, resistance presented to transistor output cut in half. But average resistance is the same for class A

- Now consider "linearity"
 - Clearly the current waveforms are far from linear

BUT ...

 Overall P_{OUT} vs. P_{IN} transfer function can still be quite linear, especially for true Class B where output current waveform is symmetrical with respect to input waveform

Because conduction angle is constant, $\mathsf{P}_{\mathsf{OUT}}$ changes proportional to P_{IN}

- IDEAL: Design each stage independently
 - Determine required gain number of stages
 - Determine P_{OUT} for each stage
 - Determine R_{L,opt} for each stage
 - Determine input impedance for each stage
 - Design matching networks for inter-stage, load and input
- REALITY:
 - I_{MAX} doesn't scale nicely with transistor size. Without good I_{MAX} numbers, can't determine R_{L,opt}. Need to do load-pull.
 - Even load pull measurements have limited accuracy for very large transistors
 - Designs are very empirically driven!

RF 🖁 IF

GSM 900 MHz, GaAs HBT PA Design

3 STAGE DESIGN

my m

RFAIF

• Stage 1: Gain = 10 dB \rightarrow P_{OUT} = 15 dBm • R_{L1} = V_{CC}² / 2*P_{OUT} = 194 Ω • I_{MAX} = 2*V_{CC} /R_{LOAD} = 36 mA • Chose class A: I_{DC} = I_{MAX}/2 = 18 mA (18 mA insignificant compared to 2.33 A) • Stage 2: Gain = 10 dB \rightarrow P_{OUT} = 25 dBm • R_{L2} = 19.4 Ω • I_{MAX} = 360 mA

- Still probably class A (maybe AB): I_{DC} = I_{MAX}/2 = 180 mA
- Stage 3: Gain = 7 dB \rightarrow P_{OUT} = 33 dBm

• Class B:
$$I_{DC} = I_{MAX}/\pi = 742 \text{ mA}$$

RFAIF

A note on "Gain"

• Taking a very simplistic view of common emitter stages:

- $g_{m1} = I_C / V_{Th} = 18 \text{ mA} / 0.025 \text{ V} = 0.696 \text{ S}$
- $g_{m1}R_{L1} = 0.696 \cdot 194 = 135 \rightarrow NOT 10 dB!$

BUT ...

my have

RF IF

- $r_{e1} = 1/g_{m1} = 1.44 \Omega$
- $r_{e2} = 1/g_{m2} = 0.144 \Omega$
- $r_{e3} = 1/g_{m3} = 0.035 \Omega$
- 1. Remember it's power gain, not voltage gain. Can lose voltage at input match.
- 2. It's pretty tough not to get significant degeneration!

• Efficiency calculations:

- I_{DC1} = 18 mA, I_{DC2} = 180 mA, I_{DC3} = 742 mA
- Total DC Current: 940 mA

$$\frac{P_{I}}{P_{dc}} = \frac{(I_{MAX}/2)/\sqrt{2} \cdot V_{POS}/\sqrt{2}}{I_{DC} \cdot V_{POS}} = 62\%$$

Realistically may get as high as 55%

my have

Real-World Design Example: Load-Pull

 After initial "guesses" at transistor sizes, load-pull to determine actual target load for matching circuits

RF 🖁 IF

Real-World Design Example: Load-pull

Notes on load-pulling:

- Most accurate on probe station, but insertion loss of probes prevents it from being useful for large transistors
 - ("Insertion loss" is RF code word for resistance)
 - Bonded devices on evaluation board must be carefully deembedded
- Even using electronic tuners, accuracy is poor for very large transistor (i.e. for loads in the 2 – 5 Ω range)

Real-World Design Example: The Circuit

Real-World Design Example: The Circuit

Real-World Design Example

Real-World Design Example

Real-World Design Example: Tuning

Real-World Design Example: Tuning

Ruggedness

- 50 Ω load is for antenna in free space. Place antenna on a metal plate and can easily get VSWR of 4:1
- Typical PA specs are: don't oscillate at up to 4:1, survive up to 10:1 (!)

- Linearity
 - For linear PAs, Adjacent Channel Power Ratio (ACPR) is very important

- Linearity
 - For linear PAs, Adjacent Channel Power Ratio (ACPR) is very important

- Linearity
 - For linear PAs, Adjacent Channel Power Ratio (ACPR) is very important

- Linearity
 - For linear PAs, Adjacent Channel Power Ratio (ACPR) is very important

- Linearity
 - For non-linear PA in TDMA systems, harmonic spurs and switching transients are most common measure of linearity

- Noise in receive band:
 - Obvious spec. in systems where Tx and Rx are operating at the same time (FDD)

- Noise in receive band:
 - Obvious spec. in systems where Tx and Rx are operating at the same time (FDD)
 - Not so obvious spec in TDD system. Problem primarily of mixing by the PA ($2\omega_2 \omega_1$ or $\omega_2 \omega_1$)

Power Control

- For linear PA, expected to operate at constant gain. Power control is therefore a function of P_{IN}.
- Role of bias circuitry is to maintain constant gain over P_{IN}, temperature (PTAT?).

Power Control

For non-linear PA, expected to operate at constant P_{IN}.
Power control is achieved by varying gain.

