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Recall Constant Envelope Modulation from Lecture 19

Popular for cell phones and cordless phones due to 
the reduced linearity requirements on the power amp
- Allows a more efficient power amp design

Transmitter power is reduced

Baseband to RF Modulation Power Amp

Transmitter
Output

Baseband
Input

Constant-Envelope Modulation

Transmit
Filter
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Frequency Shift Keying

Sends information encoded in instantaneous frequency
- Can build simple transmitters and receivers

Pagers use this modulation method
Issue – want to obtain high spectral efficiency
- Need to choose an appropriate transmit filter
- Need to choose an appropriate value of ∆f
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Transmit Filter Selection

Recall from Lecture 19 that output spectrum is related 
in a nonlinear manner to transmit filter
- Raised cosine filter is not necessarily the best choice

We’ll come back to this issue
- Focus instead on choosing ∆f
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A More Detailed Model

By inspection of figure

The choice of ∆f is now parameterized by h and Td- h is called the modulation index, Td is symbol period
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MSK Modulation

Choose h such that the phase rotates ± 90o each 
symbol period
- Based on previous slide, we need h = 1/2
- Note:  1-bit of information per symbol period

Bit rate = symbol rate

I

Q
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A More Convenient Model for Analysis

Same as previous model, but we represent data as 
impulses convolved with a rectangular pulse
- Note that h = 1/2 for MSK
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Impact of Sending a Single Data Impulse

To achieve MSK modulation, resulting phase shift 
must be ± 90o (i.e., π/4)
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Include Influence of Transmit Filter

For MSK modulation

- Where * denotes convolution
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Gaussian Minimum Shift Keying

Definition
- Minimum shift keying in which the transmit filter is chosen 

to have a Gaussian shape (in time and frequency) with 
bandwidth = B Hz

Key parameters
- Modulation index:  as previously discussed

h = 1/2
- BTd product:  ratio of transmit filter bandwidth to data rate

For GSM phones:   BTd = 0.3  
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Project 2

Simulate a GMSK transmitter and receiver
What you’ll learn
- How GMSK works at the system level
- Behavioral level simulation of a communication system
- Generation of eye diagrams and spectral plots
- Analysis and simulation of discrete-time version of loop 

filter and other signals
Note:   you’ll also be exposed a little to GFSK 
modulation
- Popular for cordless phones
- Similar as GMSK, but frequency is the important variable 

rather than phase
Typical GFSK specs:  h = 0.5 ± 0.05, BTd = 0.5
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High Speed Data Links

A challenging component is the clock and data 
recovery circuit (CDR)
- Two primary functions

Extract the clock corresponding to the input data signal
Resample the input data
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PLL Based Clock and Data Recovery

Use a phase locked loop to tune the frequency and 
phase of a VCO to match that of the input data
Performance issues
- Jitter
- Acquisition time
- Bit error rate (at given input levels)

Let’s focus on specifications for OC-192
- i.e., 10 Gbit/s SONET
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Jitter Generation

Definition
- The amount of jitter at the output of the CDR when no 

jitter (i.e., negligible jitter) is present on the data input
SONET requires
- < 10 mUI rms jitter
- < 100 mUI peak-to-peak jitter

Note:  UI is unit interval, and is defined as the period 
of the clk signal (i.e., 100 ps for 10 Gbit/s data rates)
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Jitter Tolerance

Definition
- The maximum amount of jitter allowed on the input while 

still achieving low bit error rates (< 10e-12)
SONET specifies jitter tolerance according to the 
frequency of the jitter
- Low frequency jitter can be large since it is tracked by PLL
- High frequency jitter (above the PLL bandwidth) cannot be 

as high (PLL can’t track it out)
Limited by setup and hold times of PD retiming register
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Example Jitter Tolerance Mask

CDR tested for tolerance compliance by adding sine wave 
jitter at various frequencies (with amplitude greater than 
mask) to the data input and observing bit error rate
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Jitter Transfer

Definition
- The amount of jitter attenuation that the CDR provides 

from input to output
SONET specifies jitter transfer by placing limits on its 
transfer function behavior from input to output
- Peaking behavior:  low frequency portion of CDR transfer 

function must be less than 0.1 dB
- Attenuation behavior:  high frequency portion of CDR 

transfer function must not exceed a mask limit
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Example Jitter Transfer Mask

CDR tested for compliance by adding sine wave jitter 
at various frequencies and observing the resulting 
jitter at the CDR output
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Summary of CDR Performance Specifications

Jitter
- Jitter generation
- Jitter tolerance
- Jitter transfer (and peaking)

Acquisition time
- Must be less than 10 ms for many SONET systems

Bit error rates
- Must be less than 10e-12 for many SONET systems
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Phase Detectors in Clock and Data Recovery Circuits

Key issue
- Must accommodate “missing” transition edges in input 

data sequence
Two styles of detection
- Linear – PLL can analyzed in a similar manner as 

frequency synthesizers
- Nonlinear – PLL operates as a bang-bang control 

system (hard to rigorously analyze in many cases)
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Popular CDR Phase Detectors

Linear
- Hogge detector produces an error signal that is 

proportional to the instantaneous phase error
Nonlinear
- Alexander (Bang-bang) detector produces an error signal 

that corresponds to the sign of the instantaneous phase 
error
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A Closer Look at the Hogge Detector

Error output, e(t), consists of two pulses with 
opposite polarity- Positive polarity pulse has an area that is proportional 

to the phase error between the data and clk- Negative polarity pulse has a fixed area corresponding 
to half of the clk period- Overall area is zero when data edge is aligned to falling 
clk edge
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Example CDR Settling Characteristic with Hogge PD

CDR tracks out phase error with an exponential 
transition response
Jitter occuring at steady state is due to VCO and 
non-idealities of phase detector
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Modeling of CDR with Hogge Detector

Similar to frequency synthesizer model except
- No divider
- Phase detector gain depends on the transition density 

of the input data
The issue of transition density
- Phase error information of the input data signal is only 

seen when it transitions
VCO can wander in the absence of transitions

- Open loop gain (and therefore the closed loop 
bandwidth) is decreased at low transition densities
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A Common Loop Filter Implementation

Use a lead/lag filter to implement a type II loop
- Integrator in H(s) forces the steady-state phase error to 

zero (important to minimize jitter)
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Open Loop Response and Closed Loop Pole/Zeros

Key issue:  an undesired pole/zero pair occurs due to 
stabilizing zero in the lead/lag filter 
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Corresponding Closed Loop Frequency Response

Undesired pole/zero pair causes peaking in the closed 
loop frequency response
SONET demands that peaking must be less than 0.1 dB
- For classical lead/lag filter approach, this must be achieved 

by having a very low-valued zero
Requires a large loop filter capacitor
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An Interesting Observation

Calculation of closed loop transfer function

Key observation
- Zeros in feedback loop do not appear as zeros in the 

overall closed loop transfer function!
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Method of Achieving Zero Peaking

We can implement a stabilizing zero in the PLL feedback 
path by using a variable delay element
- Loop filter can now be implemented as a simple integrator

Issue:  delay must support a large range
See T.H. Lee and J.F. Bulzacchelli, “A 155-MHz Clock 
Recovery Delay- and Phase-Locked Loop”, JSSC, Dec 
1992
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Model of CDR with Delay Element

Delay “gain”, Kd, is set by delay implementation
Note that H(s) can be implemented as a simple 
capacitor
- H(s) = 1/(sC)
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Derivation of Zero Produced by Delay Element

Zero set by ratio of delay gain to VCO gain
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Alternate Implementation

Can delay data rather than clk
- Same analysis as before
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The Issue of Data Dependent Jitter

For classical or Bulzacchelli CDR
- Type II PLL dynamics are employed so that steady state 

phase detector error is zero
Issue:  phase detector output influences VCO phase 
through a double integrator operation
- The classical Hogge detector ends up creating data 

dependent jitter at the VCO output
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Culprit Behind Data Dependent Jitter for Hogge PD

The double integral of the e(t) pulse sequence is 
nonzero (i.e., has DC content)
- Since the data transition activity is random, a low 

frequency noise source is created
Low frequency noise not attenuated by PLL dynamics
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One Possible Fix

Modify Hogge so that the double integral of the e(t) 
pulse sequence is zero
- Low frequency noise is now removed

See L. Devito et. al., “A 52 MHz and 155 MHz Clock-
recovery PLL”, ISSCC, Feb, 1991
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A Closer Look at the Bang-Bang Detector

Error output consists of pulses of fixed area that are 
either positive or negative depending on phase error
Pulses occur at data edges
- Data edges detected when sampled data sequence is 

different than its previous value
Above example illustrates the impact of having the 
data edge lagging the clock edge
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A Closer Look at the Bang-Bang Detector (continued)

Above example illustrates the impact of having the 
data edge leading the clk edge
- Error pulses have opposite sign from lagging edge case
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Example CDR Settling Characteristic with Bang-Bang PD

Bang-bang CDR response is slew rate limited- Much faster than linear CDR, in general
Steady-state jitter often dominated by bang-bang 
behavior (jitter set by error step size and limit cycles)
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The Issue of Limit Cycles

Bang-bang loops exhibit limit cycles during steady-
state operation
- Above diagram shows resulting waveforms when data 

transitions on every cycle
- Signal patterns more complicated for data that randomly 

transitions
For lowest jitter:  want to minimize period of limit cycles
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The Impact of Delays in a Bang-Bang Loop

Delays increase the period of limit cycles, thereby 
increasing jitter
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Practical Implementation Issues for Bang-Bang Loops 

Minimize limit cycle periods
- Use phase detector with minimal delay to error output
- Implement a high bandwidth feedforward path in loop 

filter
One possibility is to realize feedforward path in VCO

See B. Lai and R.C Walker, “A Monolithic 622 Mb/s Clock 
Extraction Data Retiming Circuit”, ISSCC, Feb 1991

Avoid dead zones in phase detector
- Cause VCO phase to wonder within the dead zone, 

thereby increasing jitter
Use simulation to examine system behavior
- Nonlinear dynamics can be non-intuitive
- For first order analysis, see R.C. Walter et. al., “A Two-

Chip 1.5-GBd Serial Link Interface”, JSSC, Dec 1992
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Delay-Locked Loops

In some applications you have a reference clock that 
is perfectly matched in frequency to data sequence
- Phase mismatch is present due to different propagation 

delays between clock and data on the PC board
A delay-locked loop limits adjustment to phase (as 
opposed to phase and frequency)
- Faster, and much simpler to design than PLL structure
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Some References on CDR’s and Delay-Locked Loops

Gu-Yeon Wei will discuss DLL’s in his guest lecture
Tom Lee has a nice paper
- See T. Lee et. al., “A 2.5 V CMOS Delay-Locked Loop for an 

18 Mbit, 500 Megabyte/s DRAM”, JSSC, Dec 1994
Check out papers from Mark Horowitz’s group at Stanford
- Oversampling data recovery approach

See C-K K. Yang et. al., “A 0.5-um CMOS 4.0-Gbit/s Serial 
Link Transceiver with Data Recovery using Oversampling”, 
JSSC, May 1998

- Multi-level signaling
See Ramin Farjad-Rad et. al., “A 0.3-um CMOS 8-Gb/s 4-
PAM Serial Link Transceiver”, JSSC, May 2000

- Bi-directional signaling
See E. Yeung, “A 2.4 Gb/s/pin simultaneous bidirectional 

parallel link …”, JSSC, Nov 2000
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