MITOPENCOURSEWARE MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.976

High Speed Communication Circuits and Systems Lecture 21 MSK Modulation and Clock and Data Recovery Circuits

> Michael Perrott Massachusetts Institute of Technology

Copyright © 2003 by Michael H. Perrott

Recall Constant Envelope Modulation from Lecture 19

- Popular for cell phones and cordless phones due to the reduced linearity requirements on the power amp
 - Allows a more efficient power amp design
 - Transmitter power is reduced

Frequency Shift Keying

- Sends information encoded in instantaneous frequency
 - Can build simple transmitters and receivers
 - Pagers use this modulation method
- Issue want to obtain high spectral efficiency
 - Need to choose an appropriate transmit filter
 - Need to choose an appropriate value of ∆f

Transmit Filter Selection

- Recall from Lecture 19 that output spectrum is related in a nonlinear manner to transmit filter
 - Raised cosine filter is not necessarily the best choice
- We'll come back to this issue
 - Focus instead on choosing ∆f

A More Detailed Model

The choice of ∆f is now parameterized by h and T_d
h is called the modulation index, T_d is symbol period

M.H. Perrott

MSK Modulation

Choose h such that the phase rotates ± 90° each symbol period

- Based on previous slide, we need h = 1/2
- Note: 1-bit of information per symbol period
 - Bit rate = symbol rate

A More Convenient Model for Analysis

Same as previous model, but we represent data as impulses convolved with a rectangular pulse

Note that h = 1/2 for MSK

Impact of Sending a Single Data Impulse

• To achieve MSK modulation, resulting phase shift must be \pm 90° (i.e., $\pi/4$)

Include Influence of Transmit Filter

Where * denotes convolution

Gaussian Minimum Shift Keying

Definition

Minimum shift keying in which the transmit filter is chosen to have a Gaussian shape (in time and frequency) with bandwidth = B Hz

$$p(t) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2}\left(\frac{t}{\sigma}\right)^2}$$

where :
$$\sigma = \frac{.833T_d}{(BT_d)2\pi}$$

Key parameters

- Modulation index: as previously discussed
 - h = 1/2
- **BT_d product: ratio of transmit filter bandwidth to data rate**
 - For GSM phones: $BT_d = 0.3$

Project 2

- Simulate a GMSK transmitter and receiver
- What you'll learn
 - How GMSK works at the system level
 - Behavioral level simulation of a communication system
 - Generation of eye diagrams and spectral plots
 - Analysis and simulation of discrete-time version of loop filter and other signals
- Note: you'll also be exposed a little to GFSK modulation
 - Popular for cordless phones
 - Similar as GMSK, but frequency is the important variable rather than phase
 - Typical GFSK specs: $h = 0.5 \pm 0.05$, $BT_d = 0.5$

High Speed Data Links

- A challenging component is the clock and data recovery circuit (CDR)
 - Two primary functions
 - Extract the clock corresponding to the input data signal
 - Resample the input data

PLL Based Clock and Data Recovery

- Use a phase locked loop to tune the frequency and phase of a VCO to match that of the input data
- Performance issues
 - Jitter
 - Acquisition time
 - Bit error rate (at given input levels)
- Let's focus on specifications for OC-192
 - i.e., 10 Gbit/s SONET

Jitter Generation

- Definition
 - The amount of jitter at the output of the CDR when no jitter (i.e., negligible jitter) is present on the data input
- SONET requires
 - < 10 mUI rms jitter</pre>
 - < 100 mUI peak-to-peak jitter</p>
- Note: UI is unit interval, and is defined as the period of the clk signal (i.e., 100 ps for 10 Gbit/s data rates)

Jitter Tolerance

- Definition
 - The maximum amount of jitter allowed on the input while still achieving low bit error rates (< 10e-12)
- SONET specifies jitter tolerance according to the frequency of the jitter
 - Low frequency jitter can be large since it is tracked by PLL
 - High frequency jitter (above the PLL bandwidth) cannot be as high (PLL can't track it out)
 - Limited by setup and hold times of PD retiming register

Example Jitter Tolerance Mask

CDR tested for tolerance compliance by adding sine wave jitter at various frequencies (with amplitude greater than mask) to the data input and observing bit error rate MIT OCW

Jitter Transfer

- Definition
 - The amount of jitter attenuation that the CDR provides from input to output
- SONET specifies jitter transfer by placing limits on its transfer function behavior from input to output
 - Peaking behavior: low frequency portion of CDR transfer function must be less than 0.1 dB
 - Attenuation behavior: high frequency portion of CDR transfer function must not exceed a mask limit

Example Jitter Transfer Mask

CDR tested for compliance by adding sine wave jitter at various frequencies and observing the resulting jitter at the CDR output

M.H. Perrott

Summary of CDR Performance Specifications

- Jitter
 - Jitter generation
 - Jitter tolerance
 - Jitter transfer (and peaking)
- Acquisition time
 - Must be less than 10 ms for many SONET systems
- Bit error rates
 - Must be less than 10e-12 for many SONET systems

Phase Detectors in Clock and Data Recovery Circuits

- Key issue
 - Must accommodate "missing" transition edges in input data sequence
- Two styles of detection
 - Linear PLL can analyzed in a similar manner as frequency synthesizers
 - Nonlinear PLL operates as a bang-bang control system (hard to rigorously analyze in many cases)

Popular CDR Phase Detectors

- Linear
 - Hogge detector produces an error signal that is proportional to the instantaneous phase error
- Nonlinear
 - Alexander (Bang-bang) detector produces an error signal that corresponds to the sign of the instantaneous phase error

A Closer Look at the Hogge Detector

- Error output, e(t), consists of two pulses with opposite polarity
 - Positive polarity pulse has an area that is proportional to the phase error between the data and clk
 - Negative polarity pulse has a fixed area corresponding to half of the clk period
 - Overall area is zero when data edge is aligned to falling clk edge

Example CDR Settling Characteristic with Hogge PD

- CDR tracks out phase error with an exponential transition response
- Jitter occuring at steady state is due to VCO and non-idealities of phase detector

M.H. Perrott

Modeling of CDR with Hogge Detector

- Similar to frequency synthesizer model except
 - No divider
 - Phase detector gain depends on the transition density of the input data
- The issue of transition density
 - Phase error information of the input data signal is only seen when it transitions
 - VCO can wander in the absence of transitions
 - Open loop gain (and therefore the closed loop bandwidth) is decreased at low transition densities

A Common Loop Filter Implementation

Use a lead/lag filter to implement a type II loop

 Integrator in H(s) forces the steady-state phase error to zero (important to minimize jitter)

M.H. Perrott

Open Loop Response and Closed Loop Pole/Zeros

Key issue: an undesired pole/zero pair occurs due to stabilizing zero in the lead/lag filter

M.H. Perrott

Corresponding Closed Loop Frequency Response

- Undesired pole/zero pair causes peaking in the closed loop frequency response
- SONET demands that peaking must be less than 0.1 dB
 - For classical lead/lag filter approach, this must be achieved by having a very low-valued zero
 - Requires a large loop filter capacitor

An Interesting Observation

Calculation of closed loop transfer function

$$\frac{Y(s)}{X(s)} = \frac{N_A(s)/D_A(s)}{1 + N_B(s)/D_B(s) \cdot N_A(s)/D_A(s)}$$
$$= \frac{N_A(s)D_B(s)}{D_A(s)D_B(s) + N_B(s)N_A(s)}$$

Key observation

Zeros in feedback loop do not appear as zeros in the overall closed loop transfer function!

M.H. Perrott

Method of Achieving Zero Peaking

- We can implement a stabilizing zero in the PLL feedback path by using a variable delay element
 - Loop filter can now be implemented as a simple integrator
- Issue: delay must support a large range
- See T.H. Lee and J.F. Bulzacchelli, "A 155-MHz Clock Recovery Delay- and Phase-Locked Loop", JSSC, Dec 1992

Model of CDR with Delay Element

- Delay "gain", K_d, is set by delay implementation
- Note that H(s) can be implemented as a simple capacitor

$$-$$
 H(s) = 1/(sC)

Derivation of Zero Produced by Delay Element

Zero set by ratio of delay gain to VCO gain

M.H. Perrott

Alternate Implementation

- Can delay data rather than clk
 - Same analysis as before

The Issue of Data Dependent Jitter

- For classical or Bulzacchelli CDR
 - Type II PLL dynamics are employed so that steady state phase detector error is zero
- Issue: phase detector output influences VCO phase through a double integrator operation
 - The classical Hogge detector ends up creating data dependent jitter at the VCO output

Culprit Behind Data Dependent Jitter for Hogge PD

- The double integral of the e(t) pulse sequence is nonzero (i.e., has DC content)
 - Since the data transition activity is random, a low frequency noise source is created

Low frequency noise not attenuated by PLL dynamics

```
MIT OCW
```

One Possible Fix

- Modify Hogge so that the double integral of the e(t) pulse sequence is zero
 - Low frequency noise is now removed
- See L. Devito et. al., "A 52 MHz and 155 MHz Clockrecovery PLL", ISSCC, Feb, 1991

M.H. Perrott

A Closer Look at the Bang-Bang Detector

- Error output consists of pulses of fixed area that are either positive or negative depending on phase error
- Pulses occur at data edges
 - Data edges detected when sampled data sequence is different than its previous value
- Above example illustrates the impact of having the data edge *lagging* the clock edge

A Closer Look at the Bang-Bang Detector (continued)

Above example illustrates the impact of having the data edge *leading* the clk edge

Error pulses have opposite sign from lagging edge case

Example CDR Settling Characteristic with Bang-Bang PD

Bang-bang CDR response is slew rate limited

Much faster than linear CDR, in general

Steady-state jitter often dominated by bang-bang behavior (jitter set by error step size and limit cycles)

```
MIT OCW
```

The Issue of Limit Cycles

- Bang-bang loops exhibit limit cycles during steadystate operation
 - Above diagram shows resulting waveforms when data transitions on every cycle
 - Signal patterns more complicated for data that randomly transitions

For lowest jitter: want to minimize period of limit cycles M.H. Perrott

The Impact of Delays in a Bang-Bang Loop

Delays increase the period of limit cycles, thereby increasing jitter

M.H. Perrott

Practical Implementation Issues for Bang-Bang Loops

- Minimize limit cycle periods
 - Use phase detector with minimal delay to error output
 - Implement a high bandwidth feedforward path in loop filter
 - One possibility is to realize feedforward path in VCO
 - See B. Lai and R.C Walker, "A Monolithic 622 Mb/s Clock Extraction Data Retiming Circuit", ISSCC, Feb 1991
- Avoid dead zones in phase detector
 - Cause VCO phase to wonder within the dead zone, thereby increasing jitter
- Use simulation to examine system behavior
 - Nonlinear dynamics can be non-intuitive
 - For first order analysis, see R.C. Walter et. al., "A Two-Chip 1.5-GBd Serial Link Interface", JSSC, Dec 1992

Delay-Locked Loops

- In some applications you have a reference clock that is perfectly matched in frequency to data sequence
 - Phase mismatch is present due to different propagation delays between clock and data on the PC board
- A delay-locked loop limits adjustment to phase (as opposed to phase and frequency)
 - Faster, and much simpler to design than PLL structure

Some References on CDR's and Delay-Locked Loops

- Gu-Yeon Wei will discuss DLL's in his guest lecture
- Tom Lee has a nice paper
 - See T. Lee et. al., "A 2.5 V CMOS Delay-Locked Loop for an 18 Mbit, 500 Megabyte/s DRAM", JSSC, Dec 1994
- Check out papers from Mark Horowitz's group at Stanford
 - Oversampling data recovery approach
 - See C-K K. Yang et. al., "A 0.5-um CMOS 4.0-Gbit/s Serial Link Transceiver with Data Recovery using Oversampling", JSSC, May 1998
 - Multi-level signaling
 - See Ramin Farjad-Rad et. al., "A 0.3-um CMOS 8-Gb/s 4-PAM Serial Link Transceiver", JSSC, May 2000
 - Bi-directional signaling
 - See E. Yeung, "A 2.4 Gb/s/pin simultaneous bidirectional parallel link ...", JSSC, Nov 2000