
6.976
High Speed Communication Circuits and Systems

Lecture 18
Design and Simulation of Frequency Synthesizers

Michael Perrott
Massachusetts Institute of Technology

Copyright © 2003 by Michael H. Perrott

M.H. Perrott MIT OCW

Outline

Closed-Loop Design of Frequency Synthesizers
- Introduction
- Background on Classical Open Loop Design Approach
- Closed Loop Design Approach
- Example and Verification
- Conclusion

Fast and Accurate Simulation of Frequency Synthesizers
- Introduction
- Difficulties of Traditional Approaches
- Proposed Method
- Example and Verification
- Conclusion

M.H. Perrott MIT OCW

Σ−∆ Fractional-N Frequency Synthesizer

PFD Charge
Pump

Nsd[m]

ref(t) out(t)e(t)

div(t)

Σ−∆
Modulator

v(t)

N[m]

Loop
Filter

Divider

VCO

Focus on this architecture since it is essentially a
“super set” of other synthesizers, including integer-N
and fractional-N
- If we can design and simulate this structure, we can also

do so for classical integer-N designs

M.H. Perrott MIT OCW

Frequency-domain Model

Φdiv[k]

Φref[k] KV

jf

v(t) Φout(t)
H(f)

1
Nnom

2π z-1

z=ej2πfT1 - z-1n[k]

T
1

Φd[k]

T
2π

e(t)

PFD

Divider

Loop
FilterC.P. VCO

α

Tristate: α=1
XOR: α=2

Icp

See Perrott et. al. JSSC,
Aug. 2002 for details

Closed loop dynamics parameterized by

M.H. Perrott MIT OCW

Review of Classical Design Approach

Given the desired closed-loop bandwidth, order, and
system type:
1. Choose an appropriate topology for H(f)

Depends on order, type
2. Choose pole/zero values for H(f) as appropriate for the

required bandwidth
3. Adjust the open-loop gain to achieve the required

bandwidth while maintaining stability
Plot gain and phase bode plots of A(f)
Use phase (or gain) margin criterion to infer
stability

M.H. Perrott MIT OCW

Example: First Order, Type I with Parasitic Poles

-90
o

-315
o

-165
o

-180
o

-240
o

20log|A(f)|

f
fp3

\A(f)

Open loop
gain

increased

0 dB

PM = 51o for B

PM = -12o for C

PM = 72o for A

Non-dominant
poles

Dominant
pole pair

A
B
C

B

A

A

B

C

C

Evaluation of
Phase Margin

Closed Loop Pole
Locations of G(f)

fp fp2

Re(s)

Im(s)

0

M.H. Perrott MIT OCW

First Order, Type I: Frequency and Step Responses

0 dB

Closed Loop Frequency Response

Frequency

A

B

C

0

1

Closed Loop Step Response

Time

2

A

B

C

M.H. Perrott MIT OCW

Constrained for applications which require precise
filter response
Complicated once parasitic poles are taken into
account
Poor control over filter shape
Inadequate for systems with third order rolloff
- Phase margin criterion based on second order systems

Closed loop design approach:
Directly design G(f) by specifying dominant pole and
zero locations on the s-plane (pole-zero diagram)

Limitations of Open Loop Design Approach

M.H. Perrott MIT OCW

Closed Loop Design Approach: Overview

G(f) completely describes the closed loop dynamics
- Design of this function is the ultimate goal

Instead of indirectly designing G(f) using plots of A(f),
solve for G(f) directly as a function of specification
parameters
Solve for A(f) that will achieve desired G(f)
Account for the impact of parasitic poles/zeros

Performance

Specifications

{type, fo, ...}

|A(f)|

\A(f)

{K, fzA, fpA, ...}

G(f)

{fz
, fp , ...}

A(f)

1+A(f)
G(f) =

Open Loop

Design

Approach

Closed Loop Design ApproachClosed Loop Design Approach

G(f)

1-1-G(f)
A(f)) =

M.H. Perrott MIT OCW

Closed Loop Design Approach: Implementation

Download PLL Design Assistant Software at
http://www-mtl.mit.edu/research/perrottgroup/tools.html
Read accompanying manual
Algorithm described by C.Y. Lau et. al. in “Fractional-N
Frequency Synthesizer Design at the Transfer Function
Level Using a Direct Closed Loop Realization
Algorithm”, Design Automation Conference, 2003

M.H. Perrott MIT OCW

Definition of Bandwidth, Order, and Shape for G(f)

Bandwidth – fo- Defined in asymptotic manner as shown
Order – n
- Defined according to the rolloff characteristic of G(f)

Shape
- Defined according to standard filter design

methodologies
Butterworth, Bessel, Chebyshev, etc.

fo f

rolloff =
-20n

dB/decadeG(f)
(dB)

0

M.H. Perrott MIT OCW

Definition of Type

Type I: one integrator in PLL open loop transfer
function
- VCO adds on integrator
- Loop filter, H(f), has no integrators

Type II: two integrators in PLL open loop transfer
function
- Loop filter, H(f), has one integrator

N

Φref(t) Φout(t)

Φdiv(t)

e(t) v(t)
H(f) Kv

jf
α
2π

1

Loop Filter
PFD

VCO

Divider

Tristate: α=1
XOR-based: α=2

M.H. Perrott MIT OCW

Loop Filter Transfer Function Vs Type and Order of G(f)

Practical PLL implementations limited to above
- Prohibitive analog complexity for higher order, type

Open loop gain, K, will be calculated by algorithm
- Loop filter gain related to open loop gain as shown above

KLP

1+s/wp

KLP

1+s/(wpQp)+(s/wp)2

KLP KLP
1+s/wz

s

KLP
1+s/wz

s(1+s/wp)

KLP(1+s/wz)

s(1+s/(wpQp)+(s/wp)2)

Type I Type II

Order 1

Order 2

Order 3

where KLP =
Nnom

KvIcpα
K

Calculated from software

H(s) Topology For Different Type and Orders of G(f)

M.H. Perrott MIT OCW

Passive Topologies to Realize a Second Order PLL

DAC is used for Type I implementation to coarsely
tune VCO
- Allows full range of VCO to be achieved

Vout

C1 R1

Iin

DAC
Idac

Vout

C1
C2

R1

Iin

Vout

Iin

R1

1+sR1C1
= Vout

Iin

1
s(C1+C2)

=
1+sR1C2

1+sR1C||

Type I, Order 2 Type II, Order 2

M.H. Perrott MIT OCW

Passive Topologies to Realize a Third Order PLL

Inductor is necessary to create a complex pole pair
- Must be implemented off-chip due to its large value

Vout

C1 R1

L1
Iin

DAC
Idac

Vout

C1
C2

R1

L1
Iin

Vout

Iin

R1

1+sR1C1+s2L1C1
=

where C||= C1C2/(C1+C2)

Vout

Iin

1

s(C1+C2)
=

1+sR1C2

1+sR1C||+s2L1C||

Type I, Order 3 Type II, Order 3

M.H. Perrott MIT OCW

Problem with Passive Loop Filter Implementations

Large voltage swing required at charge pump output
- Must support full range of VCO input

Non-ideal behavior of inductors (for third order G(f)
implementations)
- Hard to realize large inductor values
- Self resonance of inductor reduces high frequency

attenuation
Cp

L1
L1

Alternative: active loop filter implementation

M.H. Perrott MIT OCW

Guidelines for Active Loop Filter Design

Use topologies with unity
gain feedback in the
opamp
- Minimizes influence of

opamp noise

Vnoise,in

Vref

Vout

R1 R2

2

Set nominal
voltage to Vref

Vout

Level
Shift

Element

Use current
to achieve
level shift

Perform level shifting in
feedback of opamp
- Fixes voltage at charge

pump output

Prevent fast edges from directly reaching opamp inputs
- Will otherwise cause opamp to be driven into nonlinear

region of operation

M.H. Perrott MIT OCW

Active Topologies To Realize a Second Order PLL

Follows guidelines from previous slide
Charge pump output is terminated directly with a high
Q capacitor
- Smooths fast edges from charge pump before they

reach the opamp input(s)

Vout

R2

R1

DAC

Iin

Idac

C1

Vref

Vout

C1

C3

C2

R1

Iin

Iin

Vref

Vref

Vout

Iin

R1

1+sR1C1
= Vout

Iin

1+sR1(C1+C2+C3)
=

sC2(1+sR1C1)

Type I, Order 2 Type II, Order 2

M.H. Perrott MIT OCW

Follows active implementation guidelines from a few
slides ago

Vout

C1

C2

R1 R2

Iin

Vref

DAC
Idac

Vout

C1

C2

C3R1 R2

Iin

Vref

Vout

Iin

-R2

1+s(R1+R2)C2+s2R1R2C1C2
=

Vout

Iin

-1

s(C1+C2)
=

1+sR2C3

1+sC||(R1(1+C1/C3)+R2)+s2R1R2C1C||

where C||= C2C3/(C2+C3)

Type I, Order 3 Type II, Order 3

Active Topologies To Realize a Third Order PLL

M.H. Perrott MIT OCW

Example Design

Type II, 3rd order, Butterworth, fo = 300kHz, fz/fo = 0.125
- No parasitic poles

Required loop filter transfer function can be found from
table:

M.H. Perrott MIT OCW

Use PLL Design Assistant to Calculate Parameters

M.H. Perrott MIT OCW

Resulting Step Response and Pole/Zero Diagram

M.H. Perrott MIT OCW

Impact of Open Loop Parameter Variations

Open loop parameter variations can be directly entered
into tool

M.H. Perrott MIT OCW

Resulting Step Responses and Pole/Zero Diagrams

Impact of variations on the loop dynamics can be
visualized instantly and taken into account at early
stage of design

M.H. Perrott MIT OCW

Design with Parasitic Pole

K, fp and Qp are adjusted to obtain the same dominant
pole locations

Include a parasitic pole at nominal value fp = 1.2MHz

M.H. Perrott MIT OCW

Noise Estimation

Phase noise plots can be easily obtained- Jitter calculated by integrating over frequency
range

M.H. Perrott MIT OCW

Calculated Versus Simulated Phase Noise Spectrum

Simulated Phase Noise of SD Freq. Synth.

104

Frequency Offset (Hz)
105 106 107 108180

160

140

120

100

80

60

L(
f)

 (
dB

c/
H

z)

Without parasitic pole:

180

160

140

120

100

80

60
Output Phase Noise of Synthesizer

L(
f)

 (
dB

c/
H

z)

SD Noise
Detector Noise
VCO Noise
Total Noise
Simulated Noise

104

Frequency Offset (Hz)
105 106 107 108

RMS jitter = 13.791ps

M.H. Perrott MIT OCW

Calculated Versus Simulated Phase Noise Spectrum

104180

160

140

120

100

80

60
Simulated Phase Noise of SD Freq. Synth.

Frequency Offset from Carrier (Hz)

L(
f)

 (
dB

c/
H

z)

105 106 107 108

With parasitic pole at 1.2 MHz:

104
180

160

140

120

100

80

60
Output Phase Noise of Synthesizer

Frequency Offset (Hz)

L(
f)

 (
dB

c/
H

z)

SD Noise
Detector Noise
VCO Noise
Total Noise

105 106 107 108

Simulated Noise

RMS jitter = 14.057ps

M.H. Perrott MIT OCW

Noise under Open Loop Parameter Variations

Impact of open loop parameter variations on phase
noise and jitter can be visualized immediately

SD Noise
Detector Noise
VCO Noise
Total Noise

Output Phase Noise of Synthesizer

180

160

140

120

100

80

60

L(
f)

 (
dB

c/
H

z)

104

Frequency Offset (Hz)
105 106 107 108

RMS jitter = 11.678ps (min), 18.211ps (max)

M.H. Perrott MIT OCW

Conclusion

New closed loop design approach facilitates:
- Accurate control of closed loop dynamics

Bandwidth, Order, Shape, Type
- Straightforward design of higher order PLL’s
- Direct assessment of impact of parasitic poles/zeros

Techniques implemented in a GUI-based CAD tool

Beginners can quickly come up to speed in designing
PLL’s
Experienced designers can quickly evaluate the
performance of different PLL configurations

Simulation of Frequency Synthesizers

M.H. Perrott MIT OCW

Impact of Synthesizer Noise

Noise must be low to
meet transmit mask
requirement

Noise must be low to meet
receiver SNR and blocking
requirements

Channel
Select

Digital
Baseband

D/A

Channel
Select

Digital
Baseband

A/D
RF Out RF In

Wireless Transmitter Wireless Receiver

Frequency
Synthesizer

Frequency
Synthesizer

Transmitter
Channel

f

Synthesizer
Noise

Receiver
Channel

f

Synthesizer
Noise

M.H. Perrott MIT OCW

Impact of Synthesizer Dynamic Behavior

Settling time must be fast to support channel hopping
requirements

Channel
Select

Digital
Baseband

D/A

Channel
Select

Digital
Baseband

A/D
RF Out RF In

Wireless Transmitter Wireless Receiver

Frequency
Synthesizer

Frequency
Synthesizer

Transmitter
Channel

f
Receiver
Channel

f

M.H. Perrott MIT OCW

What Do We Want From a Simulator?

Accurate estimation of synthesizer performance
- Noise spectral density
- Dynamic behavior

Fast computation to allow use in IC design flow
Simple to use
- C++, Verilog, Matlab

M.H. Perrott MIT OCW

Background Information

M.H. Perrott MIT OCW

Integer-N Frequency Synthesizer

VCO produces high frequency sine wave
Divider divides down VCO frequency
PFD compares phase of ref and div
Loop filter extracts phase error information

Poor frequency resolution

PFD Charge
Pump

out(t)e(t) v(t)

N

Loop
Filter

Divider
VCO

ref(t)

div(t)

Fout = N FrefFref

M.H. Perrott MIT OCW

Fractional-N Frequency Synthesis

Divide value is dithered between integer values
Fractional divide values can be realized!

Very high frequency resolution

PFD Charge
Pump

Nsd[m]

out(t)e(t)

Dithering
Modulator

v(t)

N[m]

Loop
Filter

Divider
VCO

ref(t)

div(t)

M
M+1

Fout = M.F Fref

M.F

Fref

M.H. Perrott MIT OCW

Σ−∆ Fractional-N Frequency Synthesis

Dither using a Σ−∆ modulator
Quantization noise is shaped to high frequencies

PFD Charge
Pump

Nsd[m]

out(t)e(t)

Σ−∆
Modulator

v(t)

N[m]

Loop
Filter

Divider
VCO

ref(t)

div(t)

M
M+1

Fout = M.F Fref

f

Σ−∆
Quantization

Noise

Fref

M.H. Perrott MIT OCW

Other Noise Sources

Charge pump noise
VCO noise

PFD Charge
Pump

Nsd[m]

out(t)e(t)

Σ−∆
Modulator

v(t)

N[m]

Loop
Filter

Divider
VCO

ref(t)

div(t)

M
M+1

M.F

f

Σ−∆
Quantization

Noise

f

Charge
Pump
Noise

f

VCO
Noise

-20 dB/dec

M.H. Perrott MIT OCW

Problems with Current
Simulators

M.H. Perrott MIT OCW

Problem 1: Classical Simulators are Slow

High output frequency High sample rate
Long time constants Long time span for transients

Large number of simulation time steps required

PFD Charge
Pump

Nsd[m]

out(t)e(t)

Σ−∆
Modulator

v(t)

N[m]

Loop
Filter

Divider
VCO

ref(t)

div(t)

10-100 kHz

M
M+1

1-10 GHz

M.H. Perrott MIT OCW

Problem 2: Classical Simulators Are Inaccurate

PFD output is not bandlimited
- PFD output must be simulated in discrete-time

Phase error is inaccurately simulated
Non-periodic dithering of divider complicates matters

PFD Charge
Pump

Nsd[m]

out(t)e(t)

Σ−∆
Modulator

v(t)

N[m]

Loop
Filter

Divider
VCO

ref(t)

div(t)

M
M+1

M.H. Perrott MIT OCW

Example: Classical Constant-Time Step Method

Directly sample the PFD output according to the
simulation sample period
- Simple, fast, readily implemented in Matlab, Verilog, C++

Issue – quantization noise is introduced
- This noise overwhelms the PLL noise sources we are

trying to simulate

PFD
e(t)ref(t)

e(t)
t

e[n]
n

Sample Period = Ts(Johns and Martin,
Analog Integrated Circuit Design)

M.H. Perrott MIT OCW

Alternative: Event Driven Simulation

Set simulation time samples at PFD edges
- Sample rate can be lowered to edge rate!

PFD
e(t)ref(t)

Sample Period Non-constant

e(t)
t

e[n]
n

Tk Tk+1
(Smedt et al, CICC ’98,
Demir et al, CICC ’94,
Hinz et al, Circuits and Systems ’00)

M.H. Perrott MIT OCW

Issue: Simulation of Filter Blocks is Complicated

Filtering computation must deal with non-constant
time step
- Closed-form calculation is tedious
- Iterative computation is time-consuming

Complicates Verilog, Matlab, or C++ implementation

Sample Period Non-constant

e(t)
e(t)

t

e[n]
n

Tk Tk+1

t
Loop Filter

h(t)
v(t)

M.H. Perrott MIT OCW

Is there a better way?

M.H. Perrott MIT OCW

Proposed Approach: Use Constant Time Step

Straightforward CT to DT transformation of filter blocks
- Use bilinear transform or impulse invariance methods

Overall computation framework is fast and simple
- Simulator can be based on Verilog, Matlab, C++

e(t)

t
Loop Filter

h(t)

v(t)
e(t)

t

1

0

e[n]

n

Loop Filter

Ts v[n]
h[n] = Ts h(Tsn)

Ts

M.H. Perrott MIT OCW

Problem: Quantization Noise at PFD Output

Edge locations of PFD output are quantized
- Resolution set by time step: Ts

Reduction of Ts leads to long simulation times

e(t)

t
Loop Filter

h(t)

v(t)
e(t)

t

1

0

εTs Ts/2

e[n]

n

Loop Filter

Ts v[n]
h[n] = Ts h(Tsn)

M.H. Perrott MIT OCW

Proposed Approach: View as Series of Pulses

Area of each pulse set by edge locations
Key observations:
- Pulses look like impulses to loop filter
- Impulses are parameterized by their area and time offset

e(t)

t
Loop Filter

h(t)

v(t)

e(t)

e(t)
t

t

1

0

1

0

εTs Ts/2

area = εarea = Ts/2

e[n]

n

Loop Filter

Ts v[n]
h[n] = Ts h(Tsn)

M.H. Perrott MIT OCW

Proposed Method

Set e[n] samples according to pulse areas
- Leads to very accurate results

Mathematical analysis given in paper
- Fast computation

e(t)

t
Loop Filter

h(t)

v(t)

e(t)

e(t)
t

t

e[n]
n

1

0

1

0

1

0

εTs Ts/2

area = εarea = Ts/2

ε/Ts1/2
e[n]

n

Loop Filter

Ts v[n]
h[n] = Ts h(Tsn)

M.H. Perrott MIT OCW

Implementation Overview

Compute transition values in VCO block

PFD Charge
Pump

Nsd[n]

out[n]e[n]

Σ−∆
Modulator

v[n]

N[n]

Loop
Filter

Divider
VCO

ref[n]

div[n]

(Assume VCO output
is a square-wave
for this discussion)

M.H. Perrott MIT OCW

Calculation of Transition Values

Model VCO based on its phase

v[n]

VCO

out[n]

π

Φvco(t)

t

εk

out[n]

n

M.H. Perrott MIT OCW

Calculation of Transition Values

Determine output transition time according to phase

v[n]

VCO

out[n]

π

Φvco(t)

t

Φ[k]

Φ[k-1]

out(t)

εk

π
out[n]

n

M.H. Perrott MIT OCW

Calculation of Transition Values

Use first order interpolation to determine transition value

v[n]

VCO

out[n]

π

Φvco(t)

tεk Φ[k]-Φ[k-1]
π-Φ[k-1]

=

Φ[k]

Φ[k-1]

out(t)

out[n] n

εk

π

2 -1

out[n]

εk

n

M.H. Perrott MIT OCW

Implementation Overview

Compute transition values in VCO block
Pass transition information in Divider block

PFD Charge
Pump

Nsd[n]

out[n]e[n]

Σ−∆
Modulator

v[n]

N[n]

Loop
Filter

Divider
VCO

ref[n]

div[n]

M.H. Perrott MIT OCW

Implementation Overview

Compute transition values in VCO block
Pass transition information in Divider block
Compute transition values for PFD output

PFD Charge
Pump

Nsd[n]

out[n]e[n]

Σ−∆
Modulator

v[n]

N[n]

Loop
Filter

Divider
VCO

ref[n]

div[n]

M.H. Perrott MIT OCW

Implementation Overview

Compute transition values in VCO block
Pass transition information in Divider block
Compute transition values for PFD output
Compute Filter output

PFD Charge
Pump

Nsd[n]

out[n]e[n]

Σ−∆
Modulator

v[n]

N[n]

Loop
Filter

Divider
VCO

ref[n]

div[n]

M.H. Perrott MIT OCW

Implementation Overview

Compute transition values in VCO block
Pass transition information in Divider block
Compute transition values for PFD output
Compute Filter output

PFD Charge
Pump

Nsd[n]

out[n]e[n]

Σ−∆
Modulator

v[n]

N[n]

Loop
Filter

Divider
VCO

ref[n]

div[n]

M.H. Perrott MIT OCW

Computation of PFD Output

Goal: compute transition information in terms of
primitive blocks (registers, XOR gates, etc.)
- Allows straightforward implementation in simulator
- Accommodates a rich variety of PFD structures

ref[n]

n

n

div[n]

e[n]
n

S

RD
Q
Q

D
Q
Q

D
Q
Q

D
Q
Q

M.H. Perrott MIT OCW

Implementation of Primitives - Registers

Relevant timing information is contained in the clock
signal- Transfer transition information from the clock to the

register output- Complement output using a sign change

D
Q
Q

clk[n] n

out[n] n

n

clk
out

out

out[n]

M.H. Perrott MIT OCW

Implementation of Primitives – Logic Gates

Relevant timing information contained in the input
that causes the output to transition
- Determine which input causes the transition, then pass

its transition value to the output

a[n] n

b[n] n

n

a
b

out

out[n]

M.H. Perrott MIT OCW

Issue: Must Observe Protocol When Adding Noise

Divider and PFD blocks operate on a strict protocol for
their incoming signals
- Values other than 1 or -1 are interpreted as edges
- Example: inputting noise at divider input breaks protocol!

Add noise only at places where signal is “analog”
- PFD, charge pump, and loop filter outputs are fine

PFD Charge
Pump

Nsd[n]

out[n]e[n]

Σ−∆
Modulator

v[n]

N[n]

Loop
Filter

Divider
VCO

ref[n]

div[n]

Noise

M.H. Perrott MIT OCW

Can we speed the
simulation up further?

M.H. Perrott MIT OCW

out(t)v(t)

div(t)

N[m]

Divider
VCO

N[m]
cyclesN[m-1]

cycles

div(t)

out(t)

Time step of simulation
typically set by VCO output

Small time steps means long
simulation runs

Divider output often 100
times lower in frequency

Sample Rate Set by Highest Frequency Signal

Can we sample according to divider output?

M.H. Perrott MIT OCW

Divider Output Can Be Computed from VCO Phase

Key Idea: Model VCO and Divider using Phase

v(t)

VCO

Kv
s

Φvco(t)out(t)v(t)

div(t)

N[m]

Divider
div(t)

Divider

VCO

2πN[m]
N[m]
cyclesN[m-1]

cycles 2πN[m-1]

Φvco(t)

t

div(t)div(t)

out(t)

(Van Halen et al, Circuits and Systems ’96)

M.H. Perrott MIT OCW

Combine VCO and Divider Blocks

PFD Charge
Pump

Nsd[n]

e[n]

Σ−∆
Modulator

v[n]

N[n]

Loop
Filter

Divider
VCO

ref[n]

div[n]

2πN[m]

Φvco(t)

t

Φ[k]

Φ[k-1]

div(t)

div[n] n
εk

εk

Nπ

Transient simulations run 2 orders of magnitude faster!

Compute divider output using
first order interpolation of VCO
phase

M.H. Perrott MIT OCW

Does it really work?

M.H. Perrott MIT OCW

The CppSim Simulator

Blocks are implemented with C/C++ code
- High computation speed
- Complex block descriptions

Users enter designs in graphical form using Cadence
schematic capture
- System analysis and transistor level analysis in the

same CAD framework
Resulting signals are viewed in Matlab
- Powerful post-processing and viewing capability

Simulation package available on Athena
and freely downloadable at

http://www-mtl.mit.edu/~perrott

M.H. Perrott MIT OCW

Experimental Prototype to Verify Approach

1.8 - 1.9 GHz

0.6 µ CMOS IC

Digital Σ−∆
Modulator

PFD Out
20 MHz

64 Modulus
Divider

Loop
Filter

2
Frequency

Select

Perrott et al
JSSC, Dec 97

M.H. Perrott MIT OCW

Simulation Results - Dynamic Behavior

Simulation time: 260 thousand time steps in 5 seconds
on a 650 MHz Pentium III Laptop (custom C++ simulator)

Nsd (Input to Σ−∆ Modulator)

0 100 200 300 400 500 600 700

Synthesizer Output Frequency (MHz)

Fr
eq

ue
nc

y
(M

H
z)

Time (Micro Seconds)

97
96
95
94
93
92
91

1940
1920
1900
1880
1860
1840
1820

D
iv

id
e

Va
lu

e

M.H. Perrott MIT OCW

Noise Sources Included in Simulation

Dominant noise sources in synthesizer
- Quantization noise of Σ−∆ (produced by Σ−∆ block)
- Charge pump noise (calculated from Hspice)
- VCO noise (input-referred – calculated from measurement)

PFD
ref(t)

div(t)

Loop
Filter v(t)

1.85e-25
A2/Hz 3.25e-16

V2/Hz

1.2e-24
A2/Hz1.5 µA

1.5 µA

f

Σ−∆
Quantization

Noise

Charge
Pump
Noise

VCO
Noise

(Input-referred)

M.H. Perrott MIT OCW

Measured Synthesizer Noise Performance

Measured
VCO Noise
(open loop)

(closed loop)

Measured Overall
Synthesizer Noise

Noise Floor of
Measurement

System

M.H. Perrott MIT OCW

Simulated Synthesizer Noise Performance
L(

f)
(d

B
c/

H
z)

-60
-70
-80
-90

-100
-110
-120
-130
-140
-150

Simulated Spectrum: 1/Ts = 20*(reference frequency)

100 kHz25 kHz 1 MHz 10 MHz 25 MHz

Measured Noise
Simulated Noise

Simulated results compare quite well to measured!
Simulation time: 5 million time steps in 80 seconds

M.H. Perrott MIT OCW

Conclusion

Phase locked loop circuits can be quickly and
accurately simulated
- Accuracy achieved with area conservation principle
- Fast computation by combining VCO and Divider blocks

A variety of simulation frameworks can be used
- C++, Matlab, Verilog
- Circuit primitives are supported

Noise and dynamic performance of fractional-N
frequency synthesizers can be investigated at system level

	6.976High Speed Communication Circuits and Systems Lecture 18Design and Simulation of Frequency Synthesizers
	Outline
	S-D Fractional-N Frequency Synthesizer
	Frequency-domain Model
	Review of Classical Design Approach
	Example: First Order, Type I with Parasitic Poles
	First Order, Type I: Frequency and Step Responses
	Limitations of Open Loop Design Approach
	Closed Loop Design Approach: Overview
	Closed Loop Design Approach: Implementation
	Definition of Bandwidth, Order, and Shape for G(f)
	Definition of Type
	Loop Filter Transfer Function Vs Type and Order of G(f)
	Passive Topologies to Realize a Second Order PLL
	Passive Topologies to Realize a Third Order PLL
	Problem with Passive Loop Filter Implementations
	Guidelines for Active Loop Filter Design
	Active Topologies To Realize a Second Order PLL
	Active Topologies To Realize a Third Order PLL
	Example Design
	Use PLL Design Assistant to Calculate Parameters
	Resulting Step Response and Pole/Zero Diagram
	Impact of Open Loop Parameter Variations
	Resulting Step Responses and Pole/Zero Diagrams
	Design with Parasitic Pole
	Noise Estimation
	Calculated Versus Simulated Phase Noise Spectrum
	Calculated Versus Simulated Phase Noise Spectrum
	Noise under Open Loop Parameter Variations
	Conclusion
	Simulation of Frequency Synthesizers
	What Do We Want From a Simulator?
	Background Information
	Problems with Current Simulators
	Example: Classical Constant-Time Step Method
	Alternative: Event Driven Simulation
	Issue: Simulation of Filter Blocks is Complicated
	Is there a better way?
	Proposed Approach: Use Constant Time Step
	Problem: Quantization Noise at PFD Output
	Proposed Approach: View as Series of Pulses
	Proposed Method
	Implementation Overview
	Calculation of Transition Values
	Calculation of Transition Values
	Calculation of Transition Values
	Implementation Overview
	Implementation Overview
	Implementation Overview
	Implementation Overview
	Computation of PFD Output
	Implementation of Primitives - Registers
	Implementation of Primitives – Logic Gates
	Issue: Must Observe Protocol When Adding Noise
	Sample Rate Set by Highest Frequency Signal
	Divider Output Can Be Computed from VCO Phase
	Combine VCO and Divider Blocks
	The CppSim Simulator
	Experimental Prototype to Verify Approach
	Simulation Results - Dynamic Behavior
	Noise Sources Included in Simulation
	Measured Synthesizer Noise Performance
	Simulated Synthesizer Noise Performance
	Conclusion

