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Σ−∆ Fractional-N Frequency Synthesizer

PFD Charge
Pump

Nsd[m]

ref(t) out(t)e(t)

div(t)

Σ−∆
Modulator

v(t)

N[m]

Loop
Filter

Divider

VCO

Focus on this architecture since it is essentially a 
“super set” of other synthesizers, including integer-N 
and fractional-N
- If we can design and simulate this structure, we can also 

do so for classical integer-N designs
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Frequency-domain Model

Φdiv[k]
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jf

v(t) Φout(t)
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PFD

Divider
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FilterC.P. VCO
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Tristate: α=1
XOR: α=2

Icp

See Perrott et. al. JSSC, 
Aug. 2002 for details

Closed loop dynamics parameterized by
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Review of Classical Design Approach

Given the desired closed-loop bandwidth, order, and 
system type: 
1. Choose an appropriate topology for H(f)

Depends on order, type
2. Choose pole/zero values for H(f) as appropriate for the 

required bandwidth
3. Adjust the open-loop gain to achieve the required 

bandwidth while maintaining stability
Plot gain and phase bode plots of A(f)
Use phase (or gain) margin criterion to infer 
stability
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Example: First Order, Type I with Parasitic Poles
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First Order, Type I: Frequency and Step Responses
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Constrained for applications which require precise 
filter response
Complicated once parasitic poles are taken into 
account
Poor control over filter shape
Inadequate for systems with third order rolloff
- Phase margin criterion based on second order systems

Closed loop design approach: 
Directly design G(f) by specifying dominant pole and 
zero locations on the s-plane (pole-zero diagram)

Limitations of Open Loop Design Approach
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Closed Loop Design Approach: Overview

G(f) completely describes the closed loop dynamics
- Design of this function is the ultimate goal

Instead of indirectly designing G(f) using plots of A(f), 
solve for G(f) directly as a function of specification 
parameters
Solve for A(f) that will achieve desired G(f) 
Account for the impact of parasitic poles/zeros

Performance

Specifications

{type, fo, ...}

|A(f)|

\A(f)

{K, fzA, fpA, ...}

G(f)

{fz 
, fp , ...}

A(f)

1+A(f)
G(f) =

Open Loop

Design

Approach

Closed Loop Design ApproachClosed Loop Design Approach

G(f)

1-1-G(f)
A(f) ) =
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Closed Loop Design Approach:  Implementation

Download PLL Design Assistant Software at   
http://www-mtl.mit.edu/research/perrottgroup/tools.html
Read accompanying manual
Algorithm described by C.Y. Lau et. al. in “Fractional-N 
Frequency Synthesizer Design at the Transfer Function 
Level Using a Direct Closed Loop Realization 
Algorithm”, Design Automation Conference, 2003
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Definition of Bandwidth, Order, and Shape for G(f)

Bandwidth – fo- Defined in asymptotic manner as shown
Order – n
- Defined according to the rolloff characteristic of G(f)

Shape
- Defined according to standard filter design 

methodologies
Butterworth, Bessel, Chebyshev, etc.

fo f

rolloff =
-20n 

dB/decadeG(f)
(dB)

0
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Definition of Type

Type I: one integrator in PLL open loop transfer 
function
- VCO adds on integrator
- Loop filter, H(f), has no integrators

Type II:  two integrators in PLL open loop transfer 
function
- Loop filter, H(f), has one integrator

N

Φref(t) Φout(t)

Φdiv(t)

e(t) v(t)
H(f) Kv

jf
α
2π

1

Loop Filter
PFD

VCO

Divider

Tristate:  α=1
XOR-based:  α=2
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Loop Filter Transfer Function Vs Type and Order of G(f)

Practical PLL implementations limited to above
- Prohibitive analog complexity for higher order, type

Open loop gain, K, will be calculated by algorithm
- Loop filter gain related to open loop gain as shown above 

KLP

1+s/wp

KLP

1+s/(wpQp)+(s/wp)2

KLP KLP
1+s/wz

s

KLP
1+s/wz

s(1+s/wp)

KLP(1+s/wz)

s(1+s/(wpQp)+(s/wp)2)

Type I Type II

Order 1

Order 2

Order 3

where KLP = 
Nnom

KvIcpα
K

Calculated from software

H(s) Topology For Different Type and Orders of G(f) 
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Passive Topologies to Realize a Second Order PLL

DAC is used for Type I implementation to coarsely 
tune VCO
- Allows full range of VCO to be achieved

Vout

C1 R1

Iin

DAC
Idac

Vout

C1
C2

R1

Iin

Vout

Iin

R1

1+sR1C1
= Vout

Iin

1
s(C1+C2)

=
1+sR1C2

1+sR1C||

Type I, Order 2 Type II, Order 2
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Passive Topologies to Realize a Third Order PLL

Inductor is necessary to create a complex pole pair
- Must be implemented off-chip due to its large value

Vout

C1 R1

L1
Iin

DAC
Idac

Vout

C1
C2

R1

L1
Iin

Vout

Iin

R1

1+sR1C1+s2L1C1
=

where C||= C1C2/(C1+C2)

Vout

Iin

1

s(C1+C2)
=

1+sR1C2

1+sR1C||+s2L1C||

Type I, Order 3 Type II, Order 3
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Problem with Passive Loop Filter Implementations

Large voltage swing required at charge pump output
- Must support full range of VCO input

Non-ideal behavior of inductors (for third order G(f) 
implementations)
- Hard to realize large inductor values
- Self resonance of inductor reduces high frequency 

attenuation
Cp

L1
L1

Alternative:  active loop filter implementation
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Guidelines for Active Loop Filter Design

Use topologies with unity 
gain feedback in the 
opamp
- Minimizes influence of 

opamp noise

Vnoise,in

Vref

Vout

R1 R2

2

Set nominal
voltage to Vref 

Vout

Level
Shift

Element

Use current
to achieve
level shift

Perform level shifting in 
feedback of opamp
- Fixes voltage at charge 

pump output

Prevent fast edges from directly reaching opamp inputs
- Will otherwise cause opamp to be driven into nonlinear 

region of operation
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Active Topologies To Realize a Second Order PLL 

Follows guidelines from previous slide
Charge pump output is terminated directly with a high 
Q capacitor
- Smooths fast edges from charge pump before they 

reach the opamp input(s) 

Vout

R2

R1

DAC

Iin

Idac

C1

Vref

Vout

C1

C3

C2

R1

Iin

Iin

Vref

Vref

Vout

Iin

R1

1+sR1C1
= Vout

Iin

1+sR1(C1+C2+C3)
=

sC2(1+sR1C1)

Type I, Order 2 Type II, Order 2
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Follows active implementation guidelines from a few 
slides ago

Vout

C1

C2

R1 R2

Iin

Vref

DAC
Idac

Vout

C1

C2

C3R1 R2

Iin

Vref

Vout

Iin

-R2

1+s(R1+R2)C2+s2R1R2C1C2
=

Vout

Iin

-1

s(C1+C2)
=

1+sR2C3

1+sC||(R1(1+C1/C3)+R2)+s2R1R2C1C||

where C||= C2C3/(C2+C3)

Type I, Order 3 Type II, Order 3

Active Topologies To Realize a Third Order PLL 
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Example Design

Type II, 3rd order, Butterworth, fo = 300kHz, fz/fo = 0.125
- No parasitic poles

Required loop filter transfer function can be found from 
table: 
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Use PLL Design Assistant to Calculate Parameters



M.H. Perrott MIT OCW

Resulting Step Response and Pole/Zero Diagram
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Impact of Open Loop Parameter Variations

Open loop parameter variations can be directly entered 
into tool
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Resulting Step Responses and Pole/Zero Diagrams

Impact of variations on the loop dynamics can be 
visualized instantly and taken into account at early 
stage of design
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Design with Parasitic Pole

K, fp and  Qp are adjusted to obtain the same dominant 
pole locations

Include a parasitic pole at nominal value fp = 1.2MHz
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Noise Estimation

Phase noise plots can be easily obtained- Jitter calculated by integrating over frequency 
range
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Calculated Versus Simulated Phase Noise Spectrum

Simulated Phase Noise of SD Freq. Synth.
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Calculated Versus Simulated Phase Noise Spectrum
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Noise under Open Loop Parameter Variations

Impact of open loop parameter variations on phase 
noise and jitter can be visualized immediately

SD Noise     
Detector Noise
VCO Noise     
Total Noise   

Output Phase Noise of Synthesizer
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RMS jitter = 11.678ps (min), 18.211ps (max)
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Conclusion

New closed loop design approach facilitates: 
- Accurate control of closed loop dynamics

Bandwidth, Order, Shape, Type 
- Straightforward design of higher order PLL’s
- Direct assessment of impact of parasitic poles/zeros

Techniques implemented in a GUI-based CAD tool

Beginners can quickly come up to speed in designing 
PLL’s
Experienced designers can quickly evaluate the 
performance of different PLL configurations



Simulation of Frequency Synthesizers
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Impact of Synthesizer Noise

Noise must be low to 
meet transmit mask 
requirement 

Noise must be low to meet 
receiver SNR and blocking 
requirements 

Channel
Select

Digital
Baseband

D/A

Channel
Select

Digital
Baseband

A/D
RF Out RF In

Wireless Transmitter Wireless Receiver

Frequency
Synthesizer

Frequency
Synthesizer

Transmitter
Channel

f

Synthesizer
Noise

Receiver
Channel

f

Synthesizer
Noise
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Impact of Synthesizer Dynamic Behavior

Settling time must be fast to support channel hopping 
requirements 

Channel
Select

Digital
Baseband

D/A

Channel
Select

Digital
Baseband

A/D
RF Out RF In

Wireless Transmitter Wireless Receiver

Frequency
Synthesizer

Frequency
Synthesizer

Transmitter
Channel

f
Receiver
Channel

f
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What Do We Want From a Simulator?

Accurate estimation of synthesizer performance
- Noise spectral density
- Dynamic behavior

Fast computation to allow use in IC design flow
Simple to use
- C++, Verilog, Matlab
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Background Information
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Integer-N Frequency Synthesizer

VCO                 produces high frequency sine wave
Divider            divides down VCO frequency
PFD                 compares phase of ref and div
Loop filter       extracts phase error information

Poor frequency resolution

PFD Charge
Pump

out(t)e(t) v(t)

N

Loop
Filter

Divider
VCO

ref(t)

div(t)

Fout = N  FrefFref
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Fractional-N Frequency Synthesis

Divide value is dithered between integer values
Fractional divide values can be realized!

Very high frequency resolution

PFD Charge
Pump

Nsd[m]

out(t)e(t)

Dithering
Modulator

v(t)

N[m]

Loop
Filter

Divider
VCO

ref(t)

div(t)

M
M+1

Fout = M.F  Fref

M.F

Fref



M.H. Perrott MIT OCW

Σ−∆ Fractional-N Frequency Synthesis

Dither using a Σ−∆ modulator
Quantization noise is shaped to high frequencies

PFD Charge
Pump

Nsd[m]

out(t)e(t)

Σ−∆
Modulator

v(t)

N[m]

Loop
Filter

Divider
VCO

ref(t)

div(t)

M
M+1

Fout = M.F  Fref

f

Σ−∆
Quantization

Noise

Fref
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Other Noise Sources

Charge pump noise
VCO noise

PFD Charge
Pump

Nsd[m]

out(t)e(t)

Σ−∆
Modulator

v(t)

N[m]

Loop
Filter

Divider
VCO

ref(t)

div(t)

M
M+1

M.F

f

Σ−∆
Quantization

Noise

f

Charge
Pump
Noise

f

VCO
Noise

-20 dB/dec
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Problems with Current 
Simulators
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Problem 1:  Classical Simulators are Slow

High output frequency       High sample rate 
Long time constants          Long time span for transients

Large number of simulation time steps required

PFD Charge
Pump

Nsd[m]

out(t)e(t)

Σ−∆
Modulator

v(t)

N[m]

Loop
Filter

Divider
VCO

ref(t)

div(t)

10-100 kHz

M
M+1

1-10 GHz
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Problem 2:  Classical Simulators Are Inaccurate

PFD output is not bandlimited
- PFD output must be simulated in discrete-time

Phase error is inaccurately simulated
Non-periodic dithering of divider complicates matters

PFD Charge
Pump

Nsd[m]

out(t)e(t)

Σ−∆
Modulator

v(t)

N[m]

Loop
Filter

Divider
VCO

ref(t)

div(t)

M
M+1
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Example:  Classical Constant-Time Step Method

Directly sample the PFD output according to the 
simulation sample period
- Simple, fast, readily implemented in Matlab, Verilog, C++

Issue – quantization noise is introduced
- This noise overwhelms the PLL noise sources we are 

trying to simulate

PFD
e(t)ref(t)

e(t)
t

e[n]
n

Sample Period = Ts(Johns and Martin,
Analog Integrated Circuit Design)



M.H. Perrott MIT OCW

Alternative:  Event Driven Simulation

Set simulation time samples at PFD edges
- Sample rate can be lowered to edge rate!

PFD
e(t)ref(t)

Sample Period Non-constant

e(t)
t

e[n]
n

Tk Tk+1
(Smedt et al, CICC ’98,
Demir et al, CICC ’94,
Hinz et al, Circuits and Systems ’00)
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Issue:  Simulation of Filter Blocks is Complicated

Filtering computation must deal with non-constant 
time step
- Closed-form calculation is tedious
- Iterative computation is time-consuming

Complicates Verilog, Matlab, or C++ implementation

Sample Period Non-constant

e(t)
e(t)

t

e[n]
n

Tk Tk+1

t
Loop Filter

h(t)
v(t)
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Is there a better way?
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Proposed Approach: Use Constant Time Step

Straightforward CT to DT transformation of filter blocks
- Use bilinear transform or impulse invariance methods

Overall computation framework is fast and simple
- Simulator can be based on Verilog, Matlab, C++ 

e(t)

t
Loop Filter

h(t)

v(t)
e(t)

t

1

0

e[n]

n

Loop Filter

Ts v[n]
h[n] = Ts  h(Tsn)

Ts



M.H. Perrott MIT OCW

Problem: Quantization Noise at PFD Output

Edge locations of PFD output are quantized
- Resolution set by time step:  Ts

Reduction of Ts leads to long simulation times

e(t)

t
Loop Filter

h(t)

v(t)
e(t)

t

1

0

εTs Ts/2

e[n]

n

Loop Filter

Ts v[n]
h[n] = Ts  h(Tsn)
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Proposed Approach: View as Series of Pulses

Area of each pulse set by edge locations
Key observations:
- Pulses look like impulses to loop filter
- Impulses are parameterized by their area and time offset

e(t)

t
Loop Filter

h(t)

v(t)

e(t)

e(t)
t

t

1

0

1

0

εTs Ts/2

area = εarea = Ts/2

e[n]

n

Loop Filter

Ts v[n]
h[n] = Ts  h(Tsn)
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Proposed Method

Set e[n] samples according to pulse areas
- Leads to very accurate results

Mathematical analysis given in paper
- Fast computation

e(t)

t
Loop Filter

h(t)

v(t)

e(t)

e(t)
t

t

e[n]
n

1

0

1

0

1

0

εTs Ts/2

area = εarea = Ts/2

ε/Ts1/2
e[n]

n

Loop Filter

Ts v[n]
h[n] = Ts  h(Tsn)
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Implementation Overview

Compute transition values in VCO block

PFD Charge
Pump

Nsd[n]

out[n]e[n]

Σ−∆
Modulator

v[n]

N[n]

Loop
Filter

Divider
VCO

ref[n]

div[n]

(Assume VCO output
is a square-wave
for this discussion)
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Calculation of Transition Values

Model VCO based on its phase

v[n]

VCO

out[n]

π

Φvco(t)

t

εk

out[n]

n
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Calculation of Transition Values

Determine output transition time according to phase

v[n]

VCO

out[n]

π

Φvco(t)

t

Φ[k]

Φ[k-1]

out(t)

εk

π
out[n]

n
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Calculation of Transition Values

Use first order interpolation to determine transition value

v[n]

VCO

out[n]

π

Φvco(t)

tεk Φ[k]-Φ[k-1]
π-Φ[k-1]

=

Φ[k]

Φ[k-1]

out(t)

out[n] n

εk

π

2 -1

out[n]

εk

n
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Implementation Overview

Compute transition values in VCO block
Pass transition information in Divider block

PFD Charge
Pump

Nsd[n]

out[n]e[n]

Σ−∆
Modulator

v[n]

N[n]

Loop
Filter

Divider
VCO

ref[n]

div[n]
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Implementation Overview

Compute transition values in VCO block
Pass transition information in Divider block
Compute transition values for PFD output

PFD Charge
Pump

Nsd[n]

out[n]e[n]

Σ−∆
Modulator

v[n]

N[n]

Loop
Filter

Divider
VCO

ref[n]

div[n]
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Implementation Overview

Compute transition values in VCO block
Pass transition information in Divider block
Compute transition values for PFD output
Compute Filter output

PFD Charge
Pump

Nsd[n]

out[n]e[n]

Σ−∆
Modulator

v[n]

N[n]

Loop
Filter

Divider
VCO

ref[n]

div[n]
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Implementation Overview

Compute transition values in VCO block
Pass transition information in Divider block
Compute transition values for PFD output
Compute Filter output

PFD Charge
Pump

Nsd[n]

out[n]e[n]

Σ−∆
Modulator

v[n]

N[n]

Loop
Filter

Divider
VCO

ref[n]

div[n]
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Computation of PFD Output

Goal:  compute transition information in terms of 
primitive blocks (registers, XOR gates, etc.)
- Allows straightforward implementation in simulator
- Accommodates a rich variety of PFD structures 

ref[n]

n

n

div[n]

e[n]
n

S

RD
Q
Q

D
Q
Q

D
Q
Q

D
Q
Q
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Implementation of Primitives - Registers

Relevant timing information is contained in the clock 
signal- Transfer transition information from the clock to the 

register output- Complement output using a sign change

D
Q
Q

clk[n] n

out[n] n

n

clk
out

out

out[n]
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Implementation of Primitives – Logic Gates

Relevant timing information contained in the input 
that causes the output to transition
- Determine which input causes the transition, then pass 

its transition value to the output

a[n] n

b[n] n

n

a
b

out

out[n]
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Issue:  Must Observe Protocol When Adding Noise

Divider and PFD blocks operate on a strict protocol for 
their incoming signals
- Values other than 1 or -1 are interpreted as edges
- Example:  inputting noise at divider input breaks protocol!

Add noise only at places where signal is “analog”
- PFD, charge pump, and loop filter outputs are fine

PFD Charge
Pump

Nsd[n]

out[n]e[n]

Σ−∆
Modulator

v[n]

N[n]

Loop
Filter

Divider
VCO

ref[n]

div[n]

Noise
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Can we speed the 
simulation up further?
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out(t)v(t)

div(t)

N[m]

Divider
VCO

N[m]
cyclesN[m-1]

cycles

div(t)

out(t)

Time step of simulation 
typically set by VCO output

Small time steps means long 
simulation runs

Divider output often 100 
times lower in frequency

Sample Rate Set by Highest Frequency Signal

Can we sample according to divider output?
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Divider Output Can Be Computed from VCO Phase

Key Idea:  Model VCO and Divider using Phase

v(t)

VCO

Kv
s

Φvco(t)out(t)v(t)

div(t)

N[m]

Divider
div(t)

Divider

VCO

2πN[m]
N[m]
cyclesN[m-1]

cycles 2πN[m-1]

Φvco(t)

t

div(t)div(t)

out(t)

(Van Halen et al,  Circuits and Systems ’96)
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Combine VCO and Divider Blocks

PFD Charge
Pump

Nsd[n]

e[n]

Σ−∆
Modulator

v[n]

N[n]

Loop
Filter

Divider
VCO

ref[n]

div[n]

2πN[m]

Φvco(t)

t

Φ[k]

Φ[k-1]

div(t)

div[n] n
εk

εk

Nπ

Transient simulations run 2 orders of magnitude faster!

Compute divider output using 
first order interpolation of VCO 
phase
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Does it really work?



M.H. Perrott MIT OCW

The CppSim Simulator

Blocks are implemented with C/C++ code
- High computation speed
- Complex block descriptions

Users enter designs in graphical form using Cadence 
schematic capture
- System analysis and transistor level analysis in the 

same CAD framework
Resulting signals are viewed in Matlab
- Powerful post-processing and viewing capability

Simulation package available on Athena
and freely downloadable at

http://www-mtl.mit.edu/~perrott
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Experimental Prototype to Verify Approach

1.8 - 1.9 GHz

0.6 µ CMOS IC

Digital Σ−∆
Modulator

PFD Out
20 MHz

64 Modulus
Divider

Loop
Filter

2
Frequency

Select

Perrott et al
JSSC, Dec 97
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Simulation Results - Dynamic Behavior

Simulation time:  260 thousand time steps in 5 seconds 
on a 650 MHz Pentium III Laptop (custom C++ simulator)
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0 100 200 300 400 500 600 700

Synthesizer Output Frequency (MHz)

Fr
eq

ue
nc

y 
(M

H
z)

Time (Micro Seconds)

97
96
95
94
93
92
91

1940
1920
1900
1880
1860
1840
1820

D
iv

id
e 

Va
lu

e



M.H. Perrott MIT OCW

Noise Sources Included in Simulation

Dominant noise sources in synthesizer
- Quantization noise of Σ−∆  (produced by Σ−∆ block)
- Charge pump noise (calculated from Hspice)
- VCO noise (input-referred – calculated from measurement)

PFD
ref(t)

div(t)

Loop
Filter v(t)

1.85e-25
A2/Hz 3.25e-16

V2/Hz

1.2e-24
A2/Hz1.5 µA

1.5 µA

f

Σ−∆
Quantization

Noise

Charge
Pump
Noise

VCO
Noise

(Input-referred)
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Measured  Synthesizer Noise Performance

Measured
VCO Noise
(open loop)

(closed loop)

Measured Overall
Synthesizer Noise

Noise Floor of
Measurement

System
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Simulated Synthesizer Noise Performance
L(

f) 
(d

B
c/

H
z)

-60
-70
-80
-90

-100
-110
-120
-130
-140
-150

Simulated Spectrum:  1/Ts = 20*(reference frequency)

100 kHz25 kHz 1 MHz 10 MHz 25 MHz

Measured Noise
Simulated Noise

Simulated results compare quite well to measured!
Simulation time:  5 million time steps in 80 seconds
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Conclusion

Phase locked loop circuits can be quickly and 
accurately simulated
- Accuracy achieved with area conservation principle
- Fast computation by combining VCO and Divider blocks

A variety of simulation frameworks can be used
- C++, Matlab, Verilog
- Circuit primitives are supported

Noise and dynamic performance of fractional-N 
frequency synthesizers can be investigated at system level
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