Low-Power High-Speed Links

Gu-Yeon Wei Division of Engineering and Applied Sciences Harvard University 6.976 Guest Lecture, Spring 2003

Outline

- Motivation
- Brief Overview of High-Speed Links
- Design Considerations for Low Power
- DVS Link Design Example
- Summary

Motivation

- Demand for high bandwidth communications
- Advancements in IC fabrication technology
 - Higher performance
 - More complex functionality
 - → Chip I/O becomes performance bottleneck
 - \rightarrow Increasing power consumption
- Network router example
 network card
 witch card
 digital crosspoint
 transceivers
 backplane PCB
 50-Ω traces

High-Speed Links Overview

- High-speed data communication between chips across an impedance controlled channel
 - Shared communication bus (memories)
 - Point-to-point links
- Types of link architectures and implementations
 - Parallel vs. serial
 - Differential vs. single-ended
 - Low-impedance vs. high-impedance driver
 - Transmitter-only vs. receiver-only vs. double termination
- We will focus on point-to-point serial links using differential highimpedance drivers with double termination for network routers
 - Techniques to reduce power applicable to other link types

Link Components

• High-speed links consist of 4 main components

- Serializing transmitter driver
- Communication channel
- De-serializing receiver samplers
- Timing recovery

Performance Limitations

- Important to look at performance because higher performance can lead to lower power by trading off performance for energy reduction
- Several factors limit the performance of high-speed links
 - Non-ideal channel characteristics
 - Bandwidth limits of transceiver circuitry
 - Noise from power supply, cross talk, clock jitter, device mismatches, etc.
- Eye diagrams a qualitative measure of link performance

Channel Impairments and ISI

- One of the dominant causes of eye closure is inter-symbol interference (ISI) due to channel bandwidth limitations
 - Two ways to view channel impairments

Equalization

- Placing a high-pass filter in the signal path can counter the rolloff effects of the channel
 - Preemphasis or transmit-side equalization is commonly used

Critical Path in Links

• The critical path in links can be as short as 1~2 gate delays

Clock Frequency Limit

- While a symbol time can be short, there is a limit to the maximum on-chip clock frequency
 - Must distribute a clock driven by a buffer chain

Overcome this limitation with parallelism

Parallelism

- Parallelism can increase bit rate even with limited clock frequency
 - Time-interleaved multiplexing
 - Multi-level signaling

- Some performance issues to be wary of
 - Static timing offsets in multi-phase clock generator (DLL or PLL)
 - Requires higher voltage dynamic range in transmitter and receiver
- Parallelism can also be low power

Sources of Noise

- Power supply noise
 - Translates into voltage and timing uncertainty
- Cross talk
 - Near- and Far-End Cross Talk (NEXT and FEXT)
 - High-frequency coupling
- Clock Jitter
 - Timing uncertainty in transmitted and sampled symbol
 - Probabilistic distribution of timing edges (bounded and unbounded components)
- Device mismatches and systematic offsets
 - Deterministic or systematic variation in timing edges from multi-phase clock generators

Considerations for Low Power

- Low noise \rightarrow low power
 - Target some signal to noise ratio (SNR)
 - Reducing noise allows for lower signal power
- Trade speed for lower power
 - Reducing bit rate improves SNR
 - Many noise sources are fixed → ratio of timing uncertainty to bit time improves (have longer bit times)
- Let's look at a few design choices for low power
 - Circuit level
 - Architecture level
 - System level

Offset Calibration

- Two sets of offsets that can manifest itself as voltage and timing uncertainty to close the eye and may require higher power to overcome them:
 - Multi-phase clock generator timing offsets
 - Receiver input voltage offsets

- Static offsets due to systematic (layout) and random (device)
 mismatches
 - Calibration enables more timing and voltage margins (i.e., lower noise)

Differential Signaling

- Differential communication can lead to a lower power solution
 - Immunity to common mode noise
 - Injects less noise into the supplies
- But aren't there now are two channels that switch? Yes, but...
 - Signal amplitudes can be smaller on both channels
 - Alternative is pseudo-differential signaling but needs a reference voltage which can be noisy and require larger V_{swing}

- What does it cost?
 - Requires two pins per link

Signal Multiplexing

- There are different options for choosing where to combine pulses to create sub-clock period symbols
 - Combine at the final transmitter stage vs. farther up stream

- C_{load} for the clocks higher when combined at the final transmitter vs.
- Need faster signal path after the multiplexer
- Best choice depends on implementation (see Zerbe, ISSCC2003)

Multiplexing

Multiplexing = Low Power?

With M:1 multiplexing, f_{CLK} = bit rate/M

- Power = $M \cdot CV^2 \cdot f = M \cdot CV^2 \cdot (BR/M) = C \cdot V^2 \cdot BR$
- With fixed supply, power does not vary with M

But wait, at lower frequencies, I can lower voltage!

- With lower supply voltage (V \propto f_{CLK} = BR/M),
- Power decreases as $\propto 1/M^2$!

Power vs. M

- Larger M
- ⇒ Can reduce voltage
- ⇒ Lower power
- ⇒ Less accurate timing
 - static phase offsets
 - jitter
- Cannot make M arbitrarily large b/c there is a lower limit to Vdd
- Choice: M= 4~6

This begs the questions... What if we make Vdd adaptive w/ $f_{\text{CLK}}?$

DVS Links

- Dynamic Voltage Scaling (DVS)
 - Technique first introduced for digital systems (e.g., uP, DSP chips)
 - Lot's of work done in both academia and industry (e.g., Intel, Transmeta)
 - Allows trade off between speed and power
- Let's investigate DVS for high-speed links
 - Motivation and potential benefits
 - Design example from Dr. Jaeha Kim
 (ISSCC2002, JSSC2002, PhD thesis 2002)

DVS Links

- Dynamic Voltage Scaling (DVS) can reduce power consumption in two ways
 - 1) Digital circuits operate at their most energy-efficient point in the presence of PVT variations by eliminating extra performance margins

Trade Performance for Energy Savings

- 2) DVS enables trade off between performance and energy
 - Reducing frequency alone reduces power but not energy per bit

DVS Link Components

- DVS links require two additional components
 - Mechanism to measure circuit critical path to appropriately adjust voltage with respect to frequency
 - Use an on-chip performance monitor circuit (inverter delay elements of core DLL)
 - Efficient supply-voltage regulator (buck converter)
- Overall Block diagram (Wei et al, ISSCC2000)

Performance Monitoring DLL

- Reduces design complexity by enabling one to replace precision analog components with simple digital gates. How?
 - Inverters of the delay line model the critical path (clock distribution)
 - Delay of gates in I/O circuitry are fixed relative to clock period

Adaptive Receiver Filter

- Filter signal frequencies beyond the Nyquist rate at the receiver (helps for dealing with cross talk)
- Receiver example

Filter's corner frequency tracks f_{symbol}

Example: Adaptive Supply Serial Links

• Jaeha Kim (Ph.D. defense 2002)

Multi-Phase Clock Generation

- Must minimize static offsets between phases
- Generate multiphase clocks locally at each pin, but watch out for power and area overhead

Dual-Loop Clock Generation

Dual-Loop Clock Generation (2)

- Global loop brings the local VCO frequency close to lock
- Narrow local tuning range (+/-15%) is sufficient to compensate for on-chip mismatches
- Narrow tuning range leads to low VCO gain
 - Small loop capacitor area (2.5pF)
 - Low sensitivity on Vctrl noise

Clock Recovery

• Optimal receiver timing is recovered from the incoming data stream

Phase Detection

Phase detector made of an identical set of receivers minimizes timing error

Chip Prototype

- 0.25µm CMOS
- 2.5V / 0.55Vth
- 3.1×2.9mm²
- 0.4~5.0Gb/s
- 0.9~2.5V
- 5.6~375mW
- BER < 10⁻¹⁵
- Reg. Efficiency: 83-94%

Power and Performance

Power Breakdown

Summary

- Higher performance links require low noise → low noise solutions lead to lower power
 - Trade performance (speed) for power reduction
- DVS links enable energy-efficient link operation and also have some nice properties
- Outstanding issues with using DVS links
 - Communication during frequency and voltage transitions
 - Supply voltage regulator slew rate limits
 - Overhead of multiple regulators