

6.976

High Speed Communication Circuits and Systems

Lecture 20

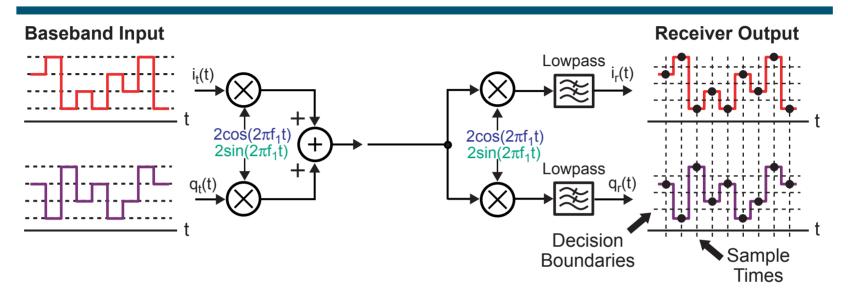
Performance Measures of Wireless Communication

Michael Perrott

Massachusetts Institute of Technology

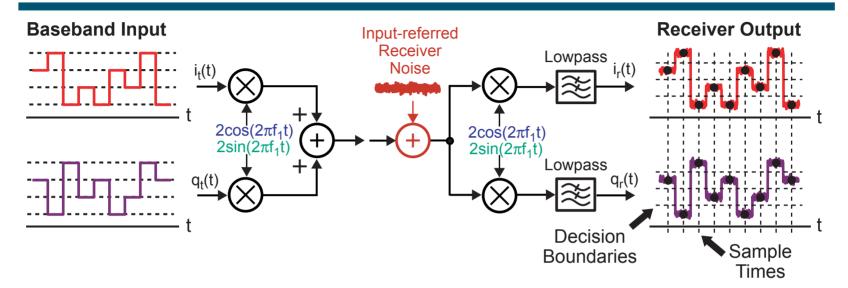
Copyright © 2003 by Michael H. Perrott

Recall Digital Modulation for Wireless Link



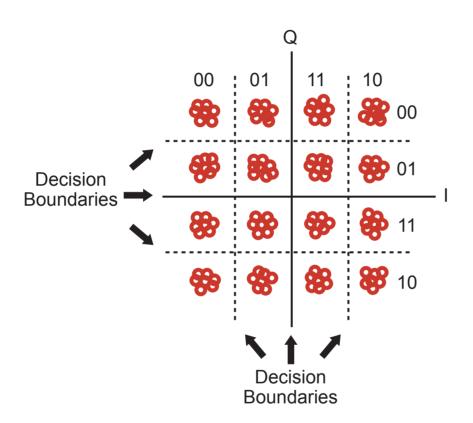
- Send discrete-leveled values on I and Q channels
- Performance issues
 - Spectral efficiency (transmitter)
 - Bit error rate performance (receiver)
- Nonidealities
 - Intersymbol interference
 - Noise
 - Interferers

Impact of Receiver Noise



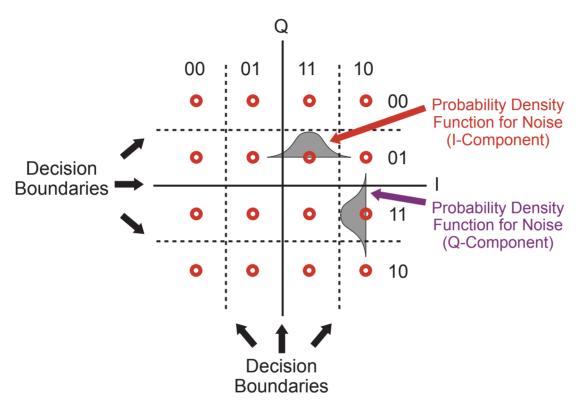
- Performance impact
 - SNR is reduced, leading to possible bit errors
- Methods of increasing SNR
 - Decrease bandwidth of receiver lowpass
 - SNR is traded off for intersymbol interference
 - Increase input power into receiver
 - Increase transmit power and/or shorten its distance from receiver

View SNR Issue with Constellation Diagram



- Noise causes sampled I/Q values to vary about their nominal values
- Bit errors are created when sampled I/Q values cross decision boundaries

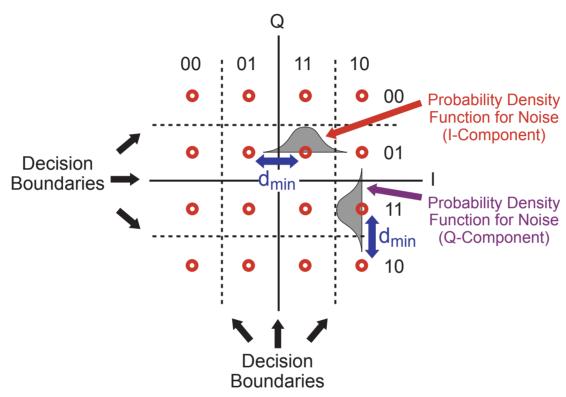
Mathematical Analysis of SNR versus Bit Error Rate (BER)



- Model noise impacting I and Q channels according to a probability density function (PDF)
 - Gaussian shape is often assumed
- Receiver bit error rate can be computed by calculating probability of tail regions of PDF curves

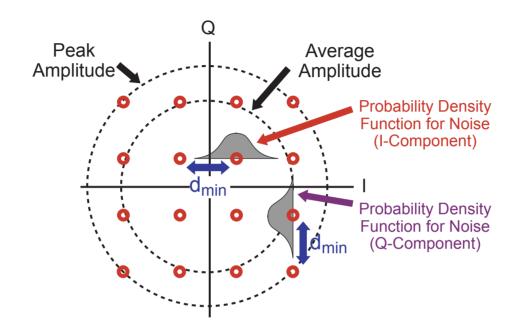
 M.H. Perrott

Key Parameters for SNR/BER Analysis



- Bit error rate (BER) is a function of
 - Variance of noise
 - Distance between constellation points (d_{min})
- Larger d_{min} with a fixed noise variance leads to higher SNR and a lower bit error rate

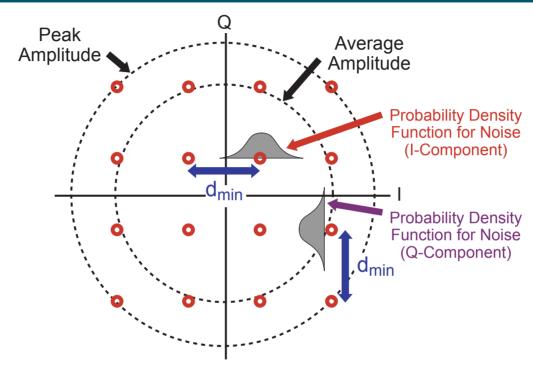
Relationship Between Amplitude and Constellation



- Distance of I/Q constellation point from origin corresponds to instantaneous amplitude of input signal at that sample time
- Amplitude is measured at receiver and a function of
 - Transmit power
 - Distance between transmitter and receiver (and channel)

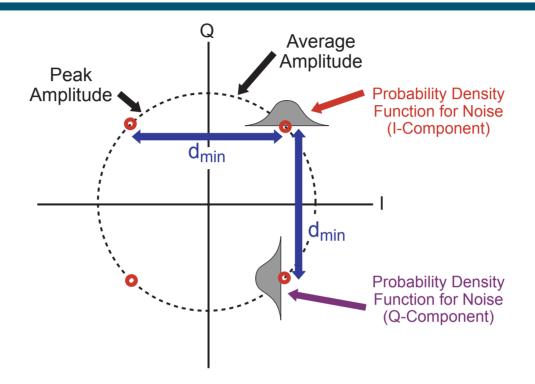
M.H. Perrott

Impact of Increased Signal Power At Receiver



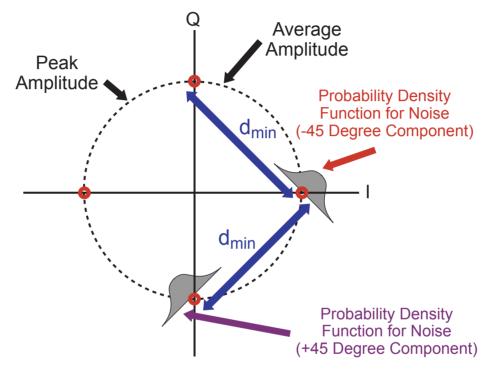
- Separation between constellation points, d_{min}, increases as received power increases
- Noise variance remains roughly constant as input signal power is increased
 - Noise variance primarily determined by receiver circuits
- Bit error rate improves with increased signal power!

Impact of Modulation Scheme on SNR/BER



- Lowering the number of constellation points increases d_{min} for a fixed input signal amplitude
 - SNR is increased (given a fixed noise variance)
 - Bit error is reduced
- Actual situation is more complicated when coding is used

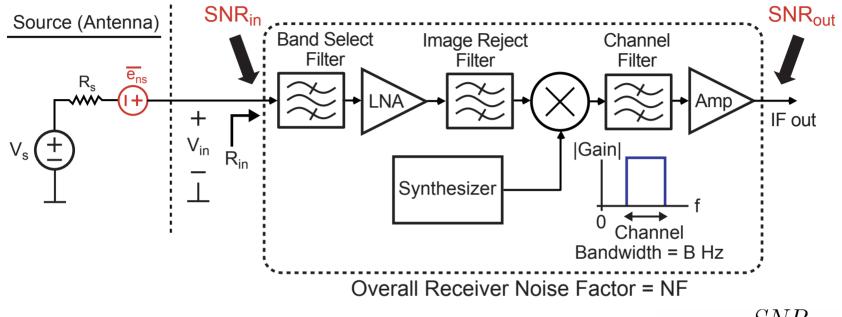
Alternate View of Previous Constellation



- Common modulation method is to transmit independent binary signals on I and Q channels
- The above constellation has the same d_{min} as the one on the previous slide

 Obtains the same SNR/BER performance given that the noise on I/Q channels is symmetric

Impact of Noise Factor on Input-Referred SNR



$$NF = \frac{SNR_{in}}{SNR_{out}}$$

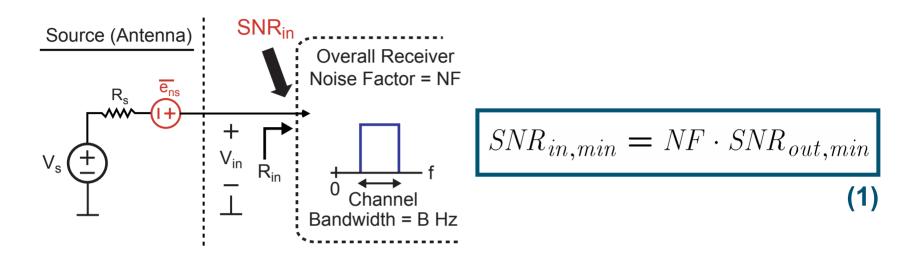
To achieve acceptable bit error rates (BER)

$$SNR_{out} \geq SNR_{out,min}$$

Refer SNR requirement to input

$$SNR_{in} = NF \cdot SNR_{out} \ge NF \cdot SNR_{out,min}$$

Minimum Input Power to Achieve Acceptable SNR



Calculation of input SNR in terms of input power

$$SNR_{in} = \frac{v_{in}^2/R_{in}}{\alpha^2 \overline{e_{nRs}^2}/R_{in}} = \boxed{\frac{P_{in}}{\alpha^2 \overline{e_{nRs}^2}/R_{in}}}, \text{ where } \alpha = \frac{R_{in}}{R_s + R_{in}}$$

$$\blacksquare \text{ Combine (1) and (2)}$$

$$P_{in,min} = \alpha^2 \overline{e_{nRs}^2} / R_{in} \cdot NF \cdot SNR_{out,min}$$

Simplified Expression for Minimum Input Power

$$P_{in,min} = \alpha^2 \overline{e_{nRs}^2} / R_{in} \cdot NF \cdot SNR_{out,min}$$

 Assume that the receiver input impedance is matched to the source (i.e., antenna, etc.)

$$\Rightarrow \alpha = \frac{R_{in}}{R_s + R_{in}} \Big|_{R_{in} = R_s} = \frac{1}{2}$$

$$\Rightarrow \alpha^2 \overline{e_{nRs}^2} / R_{in} \Big|_{R_{in} = Rs} = \left(\frac{1}{2}\right)^2 \frac{4kTR_s \Delta f}{R_{in}} \Big|_{R_{in} = Rs} = kT \Delta f$$

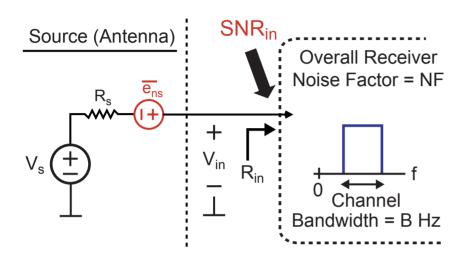
Resulting expression

$$P_{in,min} = kT\Delta f \cdot NF \cdot SNR_{out,min}$$

At room temperature:

$$kT = -174 \text{ dBm/Hz}$$

Receiver Sensitivity



$$P_{in,min} = kT\Delta f \cdot NF \cdot SNR_{out,min}$$

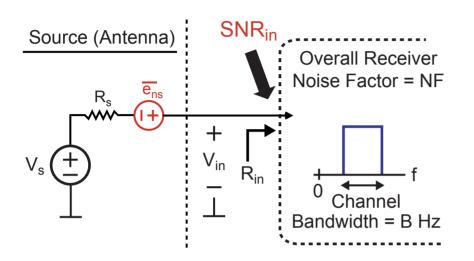
 Sensitivity of receiver is defined as minimum input power that achieves acceptable SNR (in units of dBm)

$$dBm(P_{in,min}) = 10\log(kT\Delta f \cdot NF \cdot SNR_{out,min})$$

$$= -174 + 10 \log(B) + dB(NF) + dB(SNR_{out,min})$$

M.H. Perrott

Example Calculation for Receiver Sensitivity

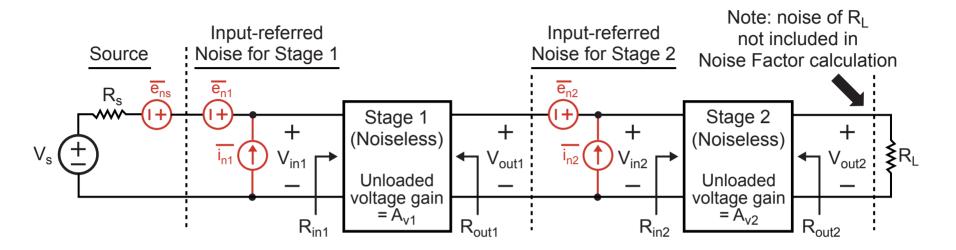


$$dBm(P_{in,min}) = -174 + 10\log(B) + dB(NF) + dB(SNR_{out,min})$$

- Suppose that a receiver has a noise figure of 8 dB, channel bandwidth is 1 MHz, and the minimum SNR at the receiver output is 12 dB to achieve a BER of 1e-3
 - Receiver sensitivity (for BER of 1e-3) is

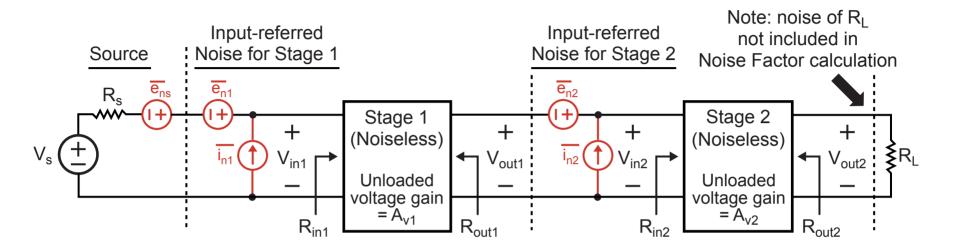
$$dBm(P_{in,min}) = -174 + 60 + 8 + 12 = -94 dBm$$

Calculation of Noise Figure of Cascaded Stages

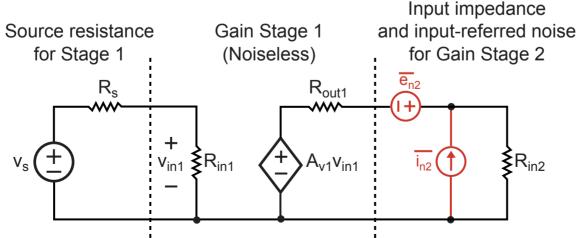


- Want to calculate overall noise figure of above system
- Assumptions
 - Input refer the noise sources of each stage
 - Model amplification (or attenuation) of each stage as a noiseless voltage controlled voltage source with an unloaded gain equal to A_v
 - Ignore noise of final load resistor (or could input refer to previous stage)

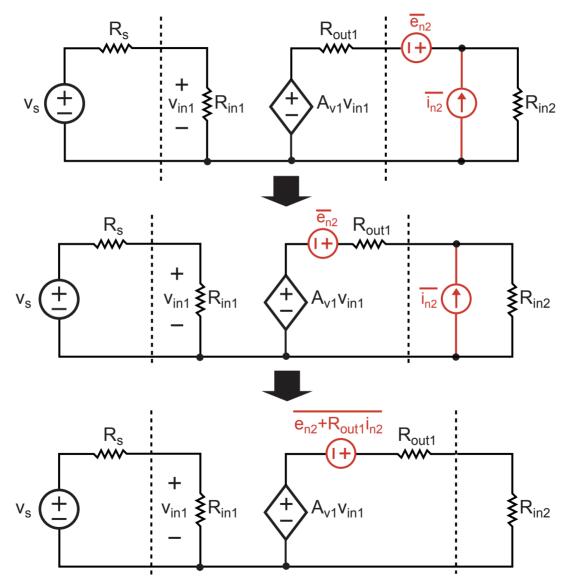
Method: Refer All Noise to Input of First Stage



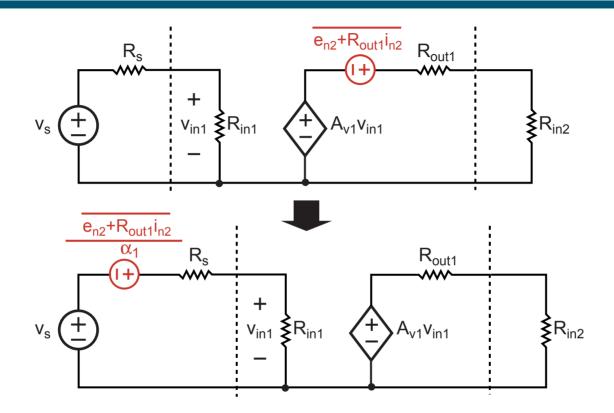
Model for referring stage 2 noise to input of stage 1



Step 1: Create an Equivalent Noise Voltage Source



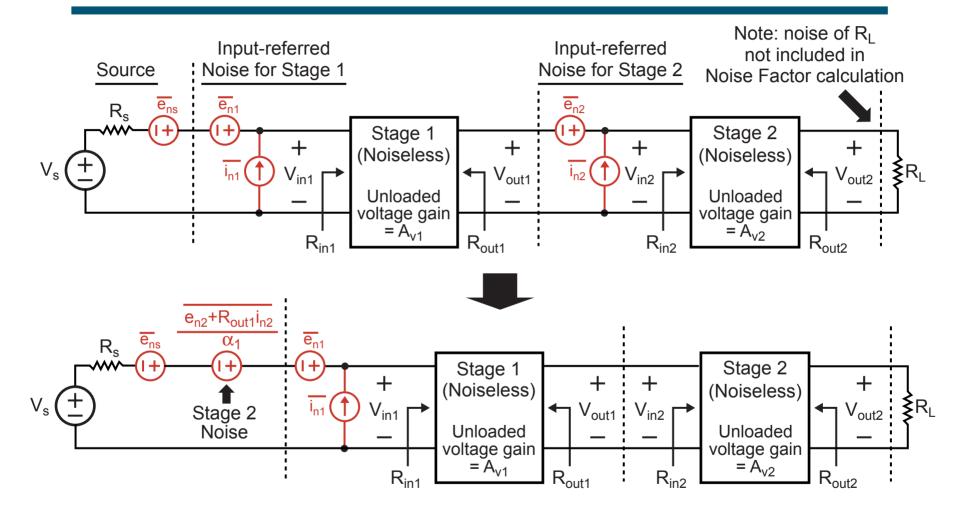
Step 2: Input Refer Voltage Noise Source



• Scaling factor α_1 is a function of unloaded gain, A_v , and input voltage divider

$$\alpha_1 = \frac{R_{in}}{R_s + R_{in}} A_v$$

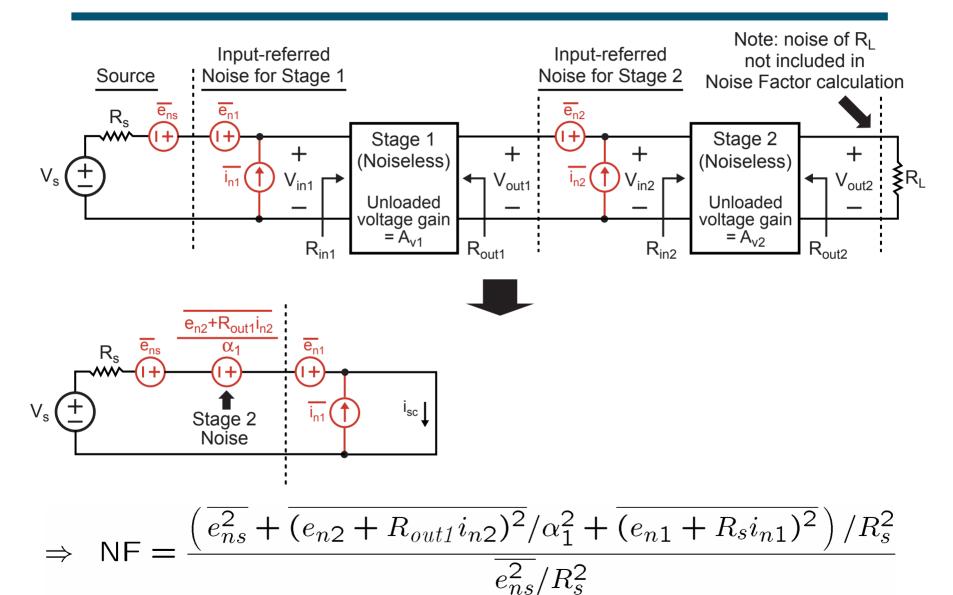
Input Referral of Noise to First Stage



• Where
$$lpha_1 = rac{R_{in}}{R_s + R_{in}} A_{vi}$$

M.H. Perrott

Noise Factor Calculation



Alternate Noise Factor Expression

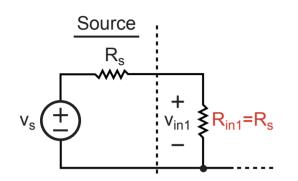
$$\begin{aligned} &\mathsf{NF} = \frac{\left(\overline{e_{ns}^2} + \overline{(e_{n2} + R_{out1}i_{n2})^2}/\alpha_1^2 + \overline{(e_{n1} + R_si_{n1})^2}\right)/R_s^2}{\overline{e_{ns}^2}/R_s^2} \\ &= \frac{\overline{e_{ns}^2} + \overline{(e_{n1} + R_si_{n1})^2} + \overline{(e_{n2} + R_{out1}i_{n2})^2}/\alpha_1^2}{\overline{e_{ns}^2}} \\ &= 1 + \frac{\overline{(e_{n1} + R_si_{n1})^2}}{\overline{e_{ns}^2}} + \frac{1}{\alpha_1^2} \frac{\overline{(e_{n2} + R_{out1}i_{n2})^2}}{\overline{e_{ns}^2}} \\ &= 1 + \frac{\overline{(e_{n1} + R_si_{n1})^2}}{4kTR_s} + \frac{1}{\alpha_1^2} \frac{R_{out1}}{R_s} \frac{\overline{(e_{n2} + R_{out1}i_{n2})^2}}{4kTR_{out1}} \\ &= 1 + (\mathsf{NF}_1 - 1) + \frac{1}{\alpha_1^2} \frac{R_{out1}}{R_s} (\mathsf{NF}_2 - 1) \\ &= 1 + (\mathsf{NF}_1 - 1) + \frac{(\mathsf{NF}_2 - 1)}{A_{p1}}, \quad A_{p1} = \alpha_1^2 \frac{R_s}{R_{out1}} \end{aligned}$$

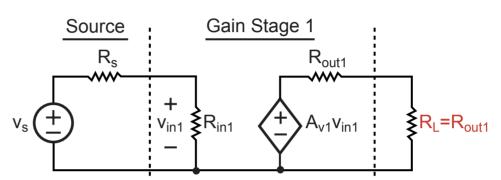
M.H. Perrot

Define "Available Power Gain"

Available Source Power

Available Power at Output





Available power gain for stage 1 defined as

Available power at output

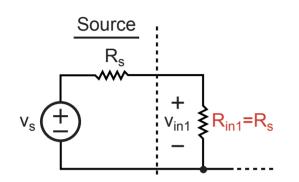
$$\left(v_s \frac{R_{in1}}{R_s + R_{in1}} A_{v1} \frac{R_{out1}}{R_{out1} + R_{out1}}\right)^2 / R_{out1} = \frac{v_s^2 \alpha_1^2}{4R_{out1}}$$

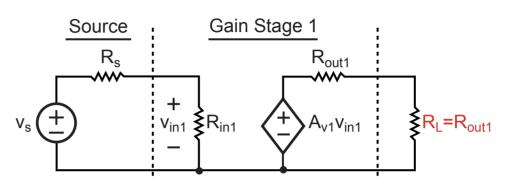
Available source power
$$\left(v_s \frac{R_s}{R_s + R_s}\right)^2 / R_s = \frac{v_s^2}{4R_s}$$

Available Power Gain Versus Loaded Voltage Gain

Available Source Power

Available Power at Output





Available power gain for stage 1

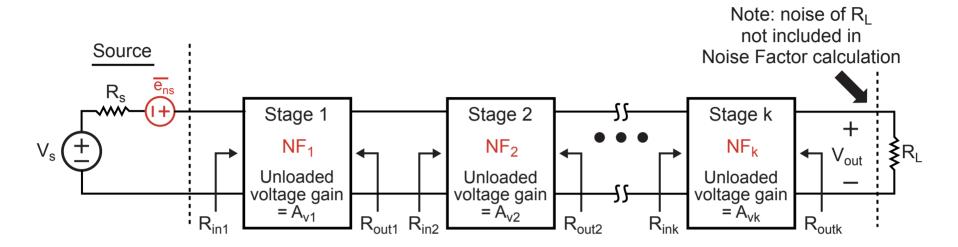
$$A_{p1} = \frac{v_s^2 \alpha_1^2}{4R_{out1}} \frac{4R_s}{v_s^2} = \alpha_1^2 \frac{R_s}{R_{out1}} \quad \text{where } \alpha_1 = \frac{R_{in1}}{R_s + R_{in1}} A_{v1}$$

If $R_{in1} = R_{out1} = R_s$

$$\alpha_1 = \frac{1}{2} A_{v1} \implies A_{p1} = \frac{1}{4} A_{v1}^2 = A_{v1_l}^2$$

Where A_{v1 I} is defined as the "loaded gain" of stage 1

Final Expressions for Cascaded Noise Factor Calculation



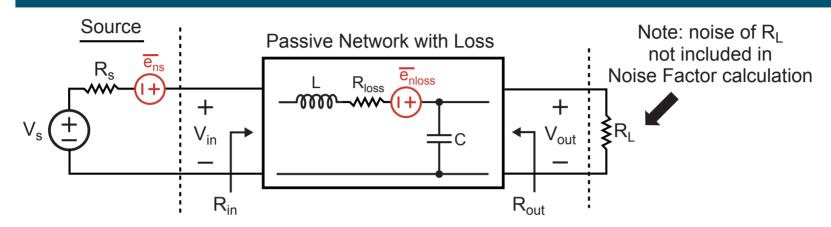
Overall Noise Factor (general expression)

$$NF = 1 + (NF_1 - 1) + \frac{(NF_2 - 1)}{A_{p1}} + \dots + \frac{(NF_k - 1)}{A_{p1} \cdot \dots \cdot A_{pk}}$$

Overall Noise Factor when all input and output impedances equal R_s:

$$NF = 1 + (NF_1 - 1) + \frac{(NF_2 - 1)}{A_{v_1 l}^2} + \dots + \frac{(NF_k - 1)}{A_{v_1 l}^2 \dots A_{v_k l}^2}$$

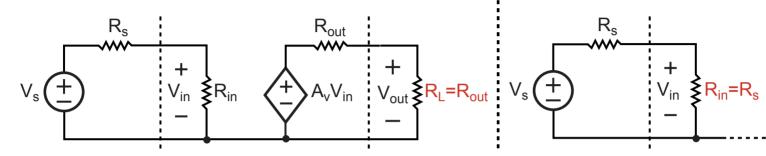
Calculation of Noise Factor for Lossy Passive Networks



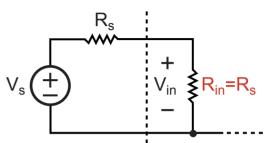
- RF systems often employ passive filters for band select and channel select operations
 - Achieve high dynamic range and excellent selectivity
- Practical filters have loss
 - Can model as resistance in equivalent RLC network
 - Such resistance adds thermal noise, thereby lowering noise factor of receiver
- We would like to calculate noise factor contribution of lossy passive networks in a straightforward manner
 - See pages 46-48 of Razavi book

Define "Available Power Gain" For Passive Networks

Available Power at Output



Available Source Power



Available power at output

$$V_s^2 \left(\frac{R_{in}}{R_s + R_{in}}\right)^2 A_v^2 \left(\frac{R_{out}}{R_{out} + R_{out}}\right)^2 / R_{out}$$

$$= \frac{V_s^2}{4R_{out}} \left(\frac{R_{in}}{R_s + R_{in}}\right)^2 A_v^2$$
Available source power

Available source power

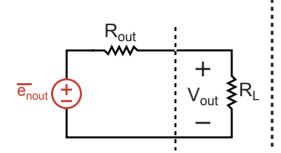
$$V_s^2 \left(\frac{R_s}{R_s + R_s}\right)^2 / R_{in} = \frac{V_s^2}{4R_s}$$

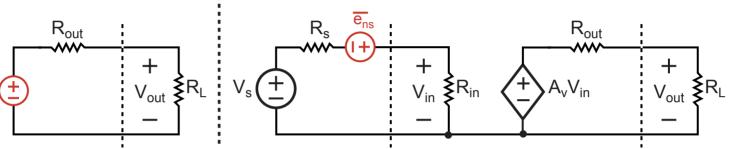
$$\Rightarrow A_p = \frac{R_s}{R_{out}} \left(\frac{R_{in}}{R_s + R_{in}} \right)^2 A_v^2 \quad (\leq 1 \text{ for passive networks})$$

Equivalent Noise Model and Resulting NF Calculation

Equivalent Model for Computing Total Noise

Equivalent Model for Computing Source Noise Contribution





Total noise at output

$$\overline{e_{nout}^2} \left(\frac{R_L}{R_L + R_{out}} \right)^2 = 4kTR_{out} \left(\frac{R_L}{R_L + R_{out}} \right)^2$$

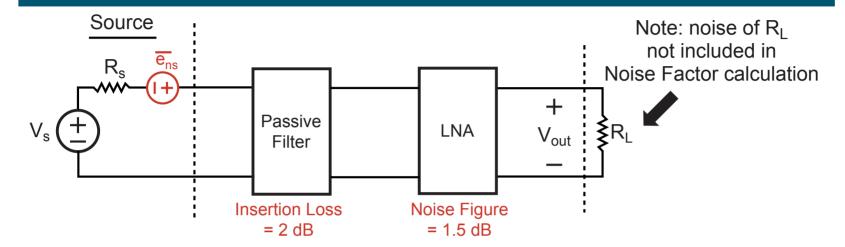
Noise due to source (referred to output)

$$4kTR_s \left(\frac{R_{in}}{R_s + R_{in}}\right)^2 A_v^2 \left(\frac{R_L}{R_L + R_{out}}\right)^2$$

Noise factor

$$NF = \frac{R_{out}}{R_s} \left(\frac{R_s + R_{in}}{R_{in}}\right)^2 \frac{1}{A_v^2} = \boxed{1/A_p}$$

Example: Impact of Cascading Passive Filter with LNA



Noise Factor calculation

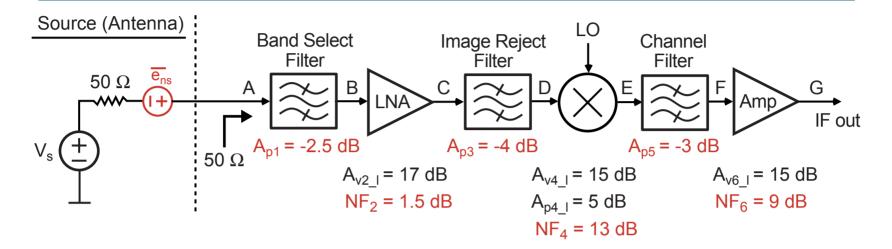
$$\begin{aligned} \text{NF} &= 1 + (\text{NF}_{\text{filt}} - 1) + \frac{\text{NF}_{\text{LNA}} - 1}{A_{\text{p_filt}}} \\ &= 1 + (1/A_{\text{p_filt}} - 1) + \frac{\text{NF}_{\text{LNA}} - 1}{A_{\text{p_filt}}} = \\ &= 1 + (1/A_{\text{p_filt}} - 1) + \frac{\text{NF}_{\text{LNA}} - 1}{A_{\text{p_filt}}} = \\ &= 1 + (1/A_{\text{p_filt}} - 1) + \frac{\text{NF}_{\text{LNA}} - 1}{A_{\text{p_filt}}} = \\ &= 1 + (1/A_{\text{p_filt}} - 1) + \frac{\text{NF}_{\text{LNA}} - 1}{A_{\text{p_filt}}} = \\ &= 1 + (1/A_{\text{p_filt}} - 1) + \frac{\text{NF}_{\text{LNA}} - 1}{A_{\text{p_filt}}} = \\ &= 1 + (1/A_{\text{p_filt}} - 1) + \frac{\text{NF}_{\text{LNA}} - 1}{A_{\text{p_filt}}} = \\ &= 1 + (1/A_{\text{p_filt}} - 1) + \frac{\text{NF}_{\text{LNA}} - 1}{A_{\text{p_filt}}} = \\ &= 1 + (1/A_{\text{p_filt}} - 1) + \frac{\text{NF}_{\text{LNA}} - 1}{A_{\text{p_filt}}} = \\ &= 1 + (1/A_{\text{p_filt}} - 1) + \frac{\text{NF}_{\text{LNA}} - 1}{A_{\text{p_filt}}} = \\ &= 1 + (1/A_{\text{p_filt}} - 1) + \frac{\text{NF}_{\text{LNA}} - 1}{A_{\text{p_filt}}} = \\ &= 1 + (1/A_{\text{p_filt}} - 1) + \frac{\text{NF}_{\text{LNA}} - 1}{A_{\text{p_filt}}} = \\ &= 1 + (1/A_{\text{p_filt}} - 1) + \frac{\text{NF}_{\text{LNA}} - 1}{A_{\text{p_filt}}} = \\ &= 1 + (1/A_{\text{p_filt}} - 1) + \frac{\text{NF}_{\text{LNA}} - 1}{A_{\text{p_filt}}} = \\ &= 1 + (1/A_{\text{p_filt}} - 1) + \frac{\text{NF}_{\text{LNA}} - 1}{A_{\text{p_filt}}} = \\ &= 1 + (1/A_{\text{p_filt}} - 1) + \frac{\text{NF}_{\text{LNA}} - 1}{A_{\text{p_filt}}} = \\ &= 1 + (1/A_{\text{p_filt}} - 1) + \frac{\text{NF}_{\text{LNA}} - 1}{A_{\text{p_filt}}} = \\ &= 1 + (1/A_{\text{p_filt}} - 1) + \frac{\text{NF}_{\text{LNA}} - 1}{A_{\text{p_filt}}} = \\ &= 1 + (1/A_{\text{p_filt}} - 1) + \frac{\text{NF}_{\text{LNA}} - 1}{A_{\text{p_filt}}} = \\ &= 1 + (1/A_{\text{p_filt}} - 1) + \frac{\text{NF}_{\text{LNA}} - 1}{A_{\text{p_filt}}} = \\ &= 1 + (1/A_{\text{p_filt}} - 1) + \frac{\text{NF}_{\text{LNA}} - 1}{A_{\text{p_filt}}} = \\ &= 1 + (1/A_{\text{p_filt}} - 1) + \frac{\text{NF}_{\text{LNA}} - 1}{A_{\text{p_filt}}} = \\ &= 1 + (1/A_{\text{p_filt}} - 1) + \frac{\text{NF}_{\text{LNA}} - 1}{A_{\text{p_filt}}} = \\ &= 1 + (1/A_{\text{p_filt}} - 1) + \frac{\text{NF}_{\text{LNA}} - 1}{A_{\text{p_filt}}} = \\ &= 1 + (1/A_{\text{p_filt}} - 1) + \frac{\text{NF}_{\text{LNA}} - 1}{A_{\text{p_filt}}} = \\ &= 1 + (1/A_{\text{p_filt}} - 1) + \frac{\text{NF}_{\text{LNA}} - 1}{A_{\text{p_filt}}} = \\ &= 1 + (1/A_{\text{p_filt}} - 1) + \frac{\text{NF}_{\text{LNA}} - 1}{A_{\text{p_filt}}} = \\ &= 1 + (1/A_{\text{p_filt}} - 1) + \frac{\text{NF}_{\text{LNA}} - 1}{A_{\text{p_filt}}} = \\ &= 1 + (1/A_{\text{p_filt}$$

Noise Figure

$$10\log(NF) = -10\log(A_{p_filt}) + 10\log(NF_{LNA})$$

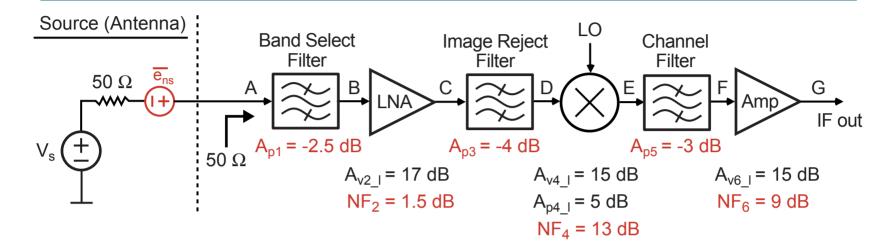
$$= 2 + 1.5 = 3.5 dB$$

Example: Noise Factor Calculation for RF Receiver



- Ports A, B, C, and D are conjugate-matched for an impedance of 50 Ohms
 - Noise figure of LNA and mixer are specified for source impedances of 50 Ohms
- Ports E and F and conjugate-matched for an impedance of 500 Ohms
 - Noise figure of rightmost amplifier is specified for a source impedance of 500 Ohms

Methodology for Cascaded NF Calculation



- Perform Noise Figure calculations from right to left
- Calculation of cumulative Noise Factor at node k

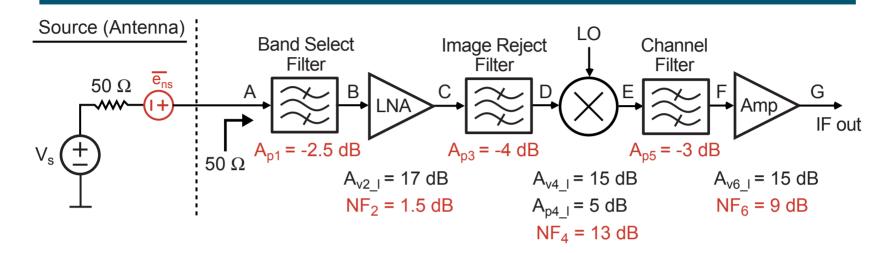
$$NF_{-}cum_{k} = NF_{k} + \frac{(NF_{k+1} - 1)}{A_{pk}}$$

If source and load impedances are equal

$$NF_{-}cum_{k} = NF_{k} + \frac{(NF_{k+1} - 1)}{A_{vk}^{2}}$$

True for all blocks except mixer above

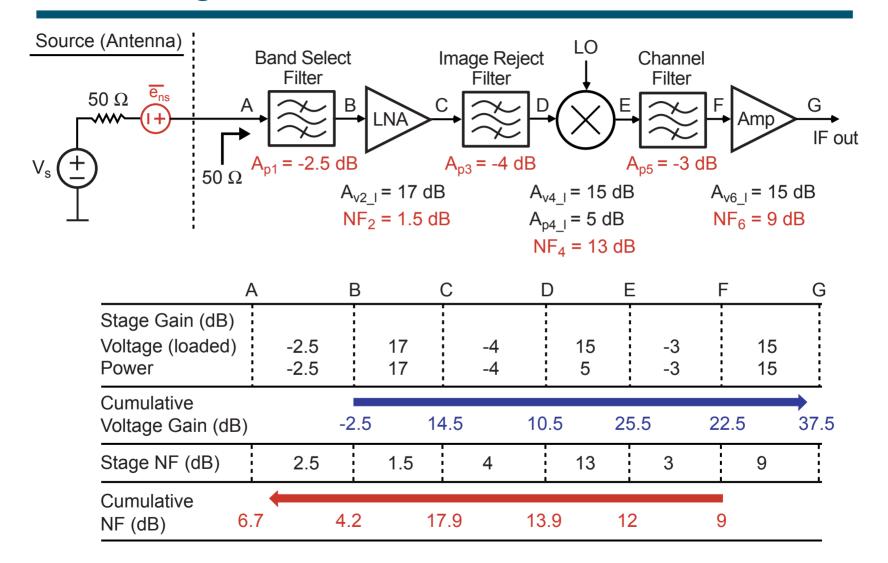
Cumulative Noise Factor Calculations



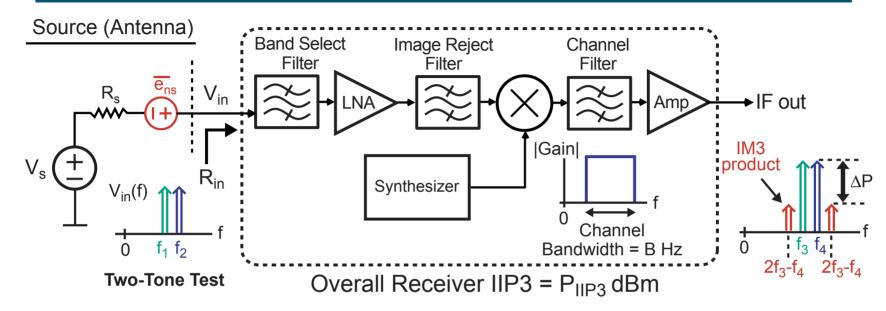
$$\begin{aligned} &\mathsf{NF}_E = 10^{(3+9)/10} = 15.85 \quad (12 \, \mathsf{dB}) \\ &\mathsf{NF}_D = 10^{(13)/10} + (15.85 - 1)/10^{(5/10)} = 24.65 \quad (13.9 \, \mathsf{dB}) \\ &\mathsf{NF}_C = 10^{(13.9 + 4)/10} = 61.7 \quad (17.9 \, \mathsf{dB}) \\ &\mathsf{NF}_B = 10^{1.5/10} + (61.7 - 1)/10^{17/10} = 2.62 \quad (4.2 \, \mathsf{dB}) \\ &\mathsf{NF}_A = 10^{(2.5 + 4.2)/10} = 4.68 \quad (6.7 \, \mathsf{dB}) \end{aligned}$$

M.H. Perrott

"Level Diagram" for Gain, NF Calculation



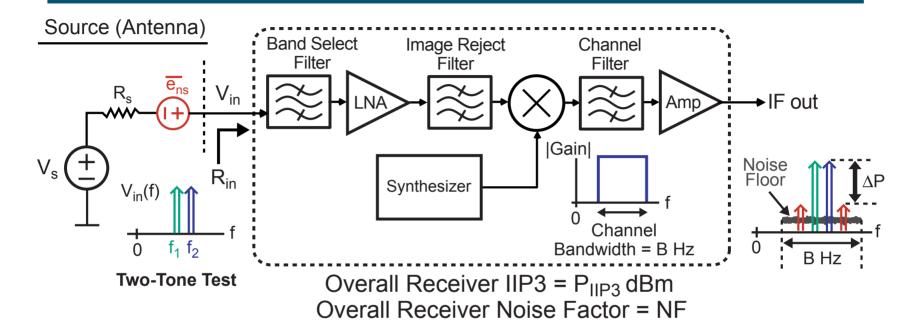
The Issue of Receiver Nonlinearity



- Lower limit of input power into receiver is limited by sensitivity (i.e., required SNR, Noise Figure, etc.)
- Upper limit of input power into receiver is determined by nonlinear characteristics of receiver
 - High input power will lead to distortion that reduces SNR (even in the absence of blockers)
 - Nonlinear behavior often characterized by IIP3 performance of receiver

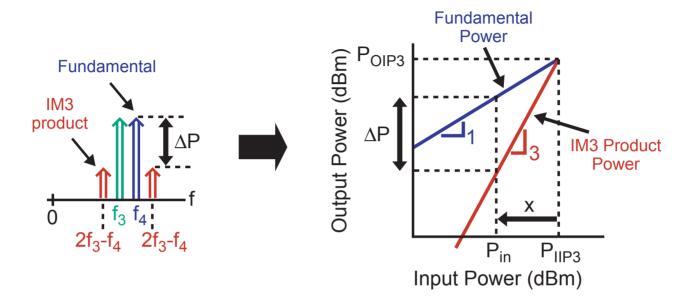
MIT OCW

Receiver Dynamic Range



- Defined as difference (in dB) between max and min input power levels to receiver
 - Min input power level set by receiver sensitivity
 - Max input power set by nonlinear characteristics of receiver
 - Often defined as max input power for which third order IM products do not exceed the noise floor in a two tone test

A Key IIP3 Expression



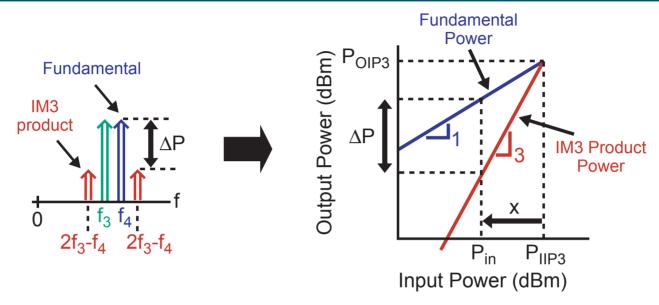
By inspection of the right figure

$$P_{IIP3} = P_{in} + x \qquad \Delta P = 3x - x = 2x$$

Combining the above expressions:

$$\Rightarrow P_{IIP3} = P_{in} + \frac{\Delta P}{2} = P_{in} + \frac{P_{out} - P_{IM3,out}}{2}$$

Refer All Signals to Input in Previous IIP3 Expression



- Difference between fundamental and IM3 products, ΔP , is the same (in dB) when referred to input of amplifier
 - Both are scaled by the inverse of the amplifier gain

$$\Rightarrow P_{IIP3} = P_{in} + \frac{\Delta P}{2} = P_{in} + \frac{P_{in} - P_{IM3,in}}{2}$$

Applying algebra:

$$P_{in} = \frac{2P_{IIP3} + P_{IM3,in}}{3}$$

Calculation of Spurious Free Dynamic Range (SFDR)

- Key expressions:
 - Minimum P_{in} (dBm) set by SNR_{min} and noise floor

$$P_{in,min} = F + SNR_{out,min}$$

Where F is the input referred noise floor of the receiver

$$F = -174 + 10\log(B) + dB(NF)$$

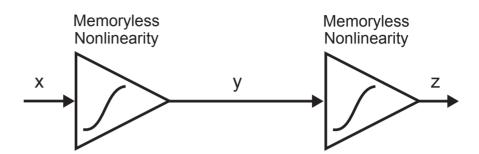
Max P_{in} (dBm) occurs when IM3 products = noise floor

$$P_{in,max} = \frac{2P_{IIP3} + P_{IM3,in,max}}{3} \Rightarrow P_{in,max} = \frac{2P_{IIP3} + F}{3}$$

Dynamic range: subtract min from max P_{in} (in dB)

$$SFDR = \frac{2P_{IIP3} + F}{3} - (F + SNR_{out,min})$$

Calculation of Overall IIP3 for Cascaded Stages



Assume nonlinearity of each stage characterized as

$$y(t) = \alpha_1 x(t) + \alpha_2 x^2(t) + \alpha_3 x^3(t)$$

$$z(t) = \beta_1 y(t) + \beta_2 y^2(t) + \beta_3 y^3(t)$$

Multiply nonlinearity expressions and focus on first and third order terms

$$z(t) = \alpha_1 \beta_1 x(t) + (\alpha_3 \beta_1 + 2\alpha_1 \alpha_2 \beta_2 + \alpha_1^3 \beta_3) x^3(t) + \cdots$$

Resulting IIP3 expression

$$A_{IP3} = \sqrt{\frac{4}{3} \left| \frac{\alpha_1 \beta_1}{\alpha_3 \beta_1 + 2\alpha_1 \alpha_2 \beta_2 + \alpha_1^3 \beta_3} \right|}$$

Alternate Expression for Overall IIP3



Worst case IIP3 estimate – take absolute values of terms

$$A_{IP3} \approx \sqrt{\frac{4}{3} \frac{|\alpha_1 \beta_1|}{|\alpha_3 \beta_1| + |2\alpha_1 \alpha_2 \beta_2| + |\alpha_1^3 \beta_3|}}$$

Square and invert the above expression

$$\frac{1}{A_{IP3}^2} \approx \frac{3|\alpha_3\beta_1| + |2\alpha_1\alpha_2\beta_2| + |\alpha_1^3\beta_3|}{|\alpha_1\beta_1|}$$

Express formulation in terms of IIP3 of stage 1 and stage 2

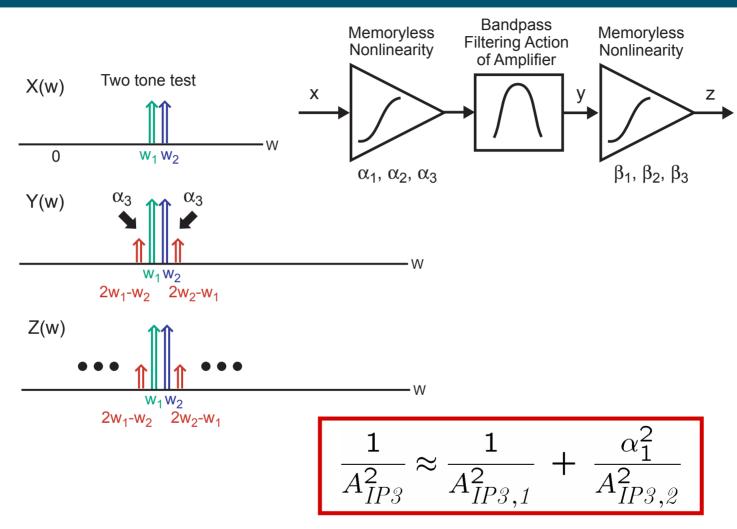
$$\frac{1}{A_{IP3}^2} \approx \frac{1}{A_{IP3,1}^2} + \frac{3|\alpha_2\beta_2|}{2|\beta_1|} + \frac{\alpha_1^2}{A_{IP3,2}^2}$$

A Closer Look at Impact of Second Order Nonlinearity



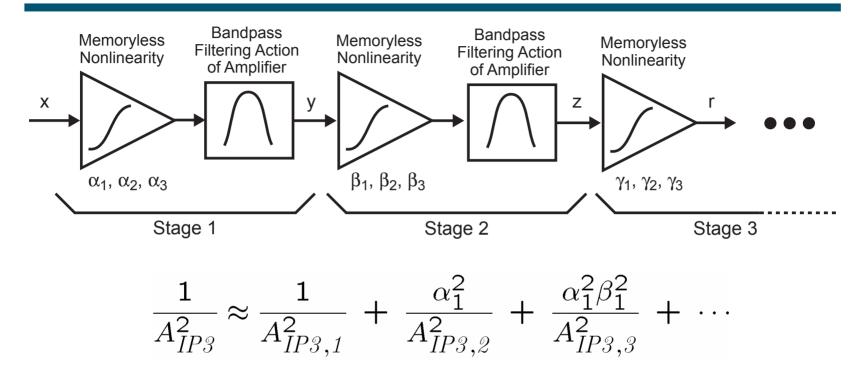
Influence of α_2 of Stage 1 produces tones that are at frequencies far away from two tone input

Impact of Having Narrowband Amplification



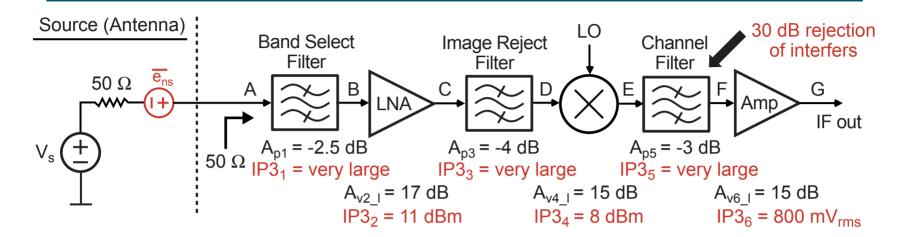
 Removal of outside frequencies dramatically simplifies overall IIP3 calculation

Cascaded IIP3 Calculation with Narrowband Stages



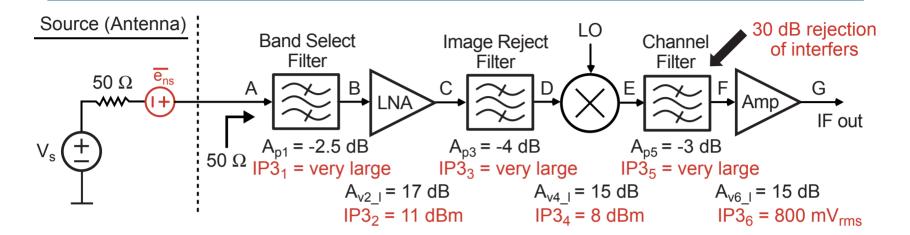
Note that α_1 and β_1 correspond to the loaded voltage gain values for Stage 1 and 2, respectively

Example: IIP3 Calculation for RF Receiver



- Ports A, B, C, and D are conjugate-matched for an impedance of 50 Ohms
 - IIP3 of LNA and mixer are specified for source impedances of 50 Ohms
- Ports E and F and conjugate-matched for an impedance of 500 Ohms
 - IIP3 of rightmost amplifier is specified for a source impedance of 500 Ohms

Key Formulas for IIP3 Calculation



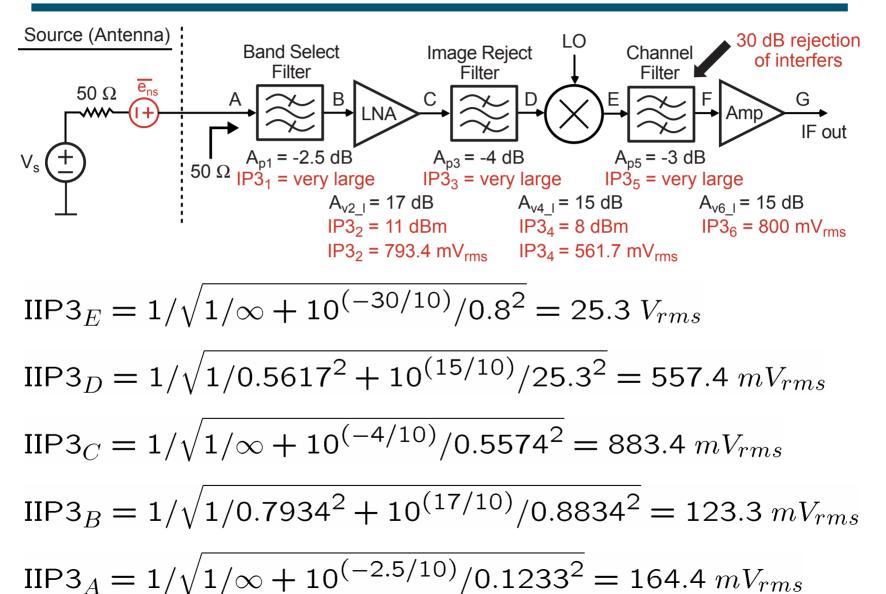
- Perform IIP3 calculations from right to left
- Calculation of cumulative IIP3 at node k (IIP3 in units of rms voltage)

$${\rm IIP3_cum}_k = 1/\sqrt{1/{\rm IIP3}_k^2 + A_{vk_l}^2/{\rm IIP3}_{k-1}^2}$$

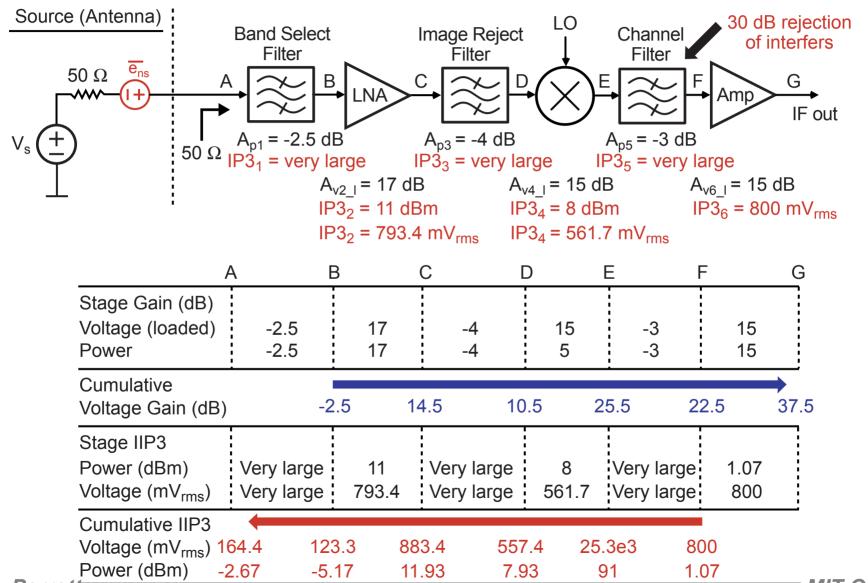
Conversion from rms voltage to dBm

$$dBm = 10\log(1e3 \cdot V_{rms}^2/R)$$

Cumulative IIP3 Calculations



"Level Diagram" for Gain, IIP3 Calculations



M.H. Perrott

Final Comments on IIP3 and Dynamic Range

- Calculations we have presented assume
 - Narrowband stages
 - Influence of second order nonlinearity removed
 - IM3 products are the most important in determining maximum input power
- Practical issues
 - Narrowband operation cannot always be assumed
 - Direct conversion architectures are also sensitive to IM2 products (i.e., second order distortion)
 - Filtering action of channel filter will not reduce in-band IM3 components of blockers (as assumed in the previous example in node E calculation)

Must perform simulations to accurately characterize IIP3 (and IIP2) and dynamic range of RF receiver