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Problem 4.1: Numerical Solution of the NSE 

The NSE can easily be numerically solved using the Split-Step Fourier 
transform. Starting from the NSE 

∂A(z, t) ∂2A(z, t) 
= jD2 − jδ A(z, t) 2A(z, t), (1)
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(a) Show by using the following transform 

ξ = z/lD, τ = t/τ0 � 

lD = 
τ 2 
0 , u = 

δ 
τ0A,
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that the NSE can be broad into the normalized form 

∂u(ξ, τ) ∂2u(ξ, τ) 
= u(ξ, τ) 2 u(ξ, τ), (2)
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(b) The NSE can be understood in the following way 

∂u(ξ, τ) � 
ˆ ˆ= D + N

� 
u(ξ, τ), (3)

∂ξ 

as the simultaneous action of a dispersion operator D = −j ∂2ˆ
∂τ2 , and a 

ˆnonlinear operator N = −j u(ξ, τ) 2 . If the linear and nonlinear changes | |
in the pulse are small within a short distance of propagation Δξ, then, 
the solution of the NSE, which can be symbolically written as 

D+ ˆ
u(Δξ, τ) = e( ̂ N)Δξ u(0, τ) (4) 

and approximated by 

1 ˆ ˆ DΔξ
2u(Δξ, τ) = e 2 DΔξ e NΔξ e 
1 ˆ

u(0, τ). 

One can show that iterative application of this propagation step only 
leads to an error of order Δξ3 . Since the linear operator can be easily 
applied in the Fourier domain and the nonlinear operator (only SPM) in 
the time domain, one can simulate the NSE over one propagation step 
Δξ by the following algorithm 

1 1 
u(ξ ± Δξ, τ) = F −1

�
e 2 jω

2ΔξF 
�
e−j|u(ξ,τ)|2 ΔξF −1

�
e 2 jω

2 ΔξF [u(ξ, τ)]
��� 

. 
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Write a program in some programming language you are familiar with 
or MATLAB and simulate the NSE for the following initial pulses 

τ 
u(0, τ ) = N sech( ).	 (5)√

2 

for N=1, 2 and evtually 3. Make use of the Fast Fourier Transform 
(FFT) and use at least 1024 points. Plot the pulse shape (in the time 
domain) and corresponding amplitude spectra (in the frequency domain) 
as a function of propagation distance, similar to those shown in Chapter 
3. 

Problem 4.2: Rate Equations for the Four-Level Laser 

As an example for a four-level laser material we consider the transition of 
Nd:YAG at λ0 = 1.064 µm. With a diode laser at 0.8 µm the 4F5/2 level can 
be pumped from the ground state 4I9/2. We assume that fast relaxation rates 
lead to efficient excitation transfer from the pump level to the upper laser 
level 4F3/2 and from the lower laser level 4I11/2 to the ground state 4I9/2, i.e. 
we assume γ32, γ10 � γ21. The cross section for stimulated emission between 

2level 2 and 1 is given by σ12 = σ = 6.5 × 10−19cm . The pump rate RP is 
assumed to be constant. The transition rates between the levels are denoted 
by γij = 

T
1 
ij 
. 

Figure 1: The four levels in Nd:YAG related to lasing at 1064 nm 

(a)	 Write down the four rate equations for the four-level laser system shown 
in Figure 1 using the level populations N2 and the photon density nL, 
cross section σ and the group velocity vg of the laser light. 
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(b)	 Write down the rate equations for the photon density nL and intensity 
I ∝ nL in the resonator mode. For simplicity assume that the effective 
cross section of the laser mode Aef f is same everywhere in the resonator. 
The resonator length is L. 

(c)	 In general γ32, γ10 are fast relaxation rates much faster than any other 
processes in the system. Therefore, the populations N3 and N1 always 
relax quasi instantaneously into the steady state determined by the val­
ues for intensity I and population N2. Eliminate the fast populations 
N3 and N1 and derive a rate equation for N2 − N1. Assume that the 
population in the ground state never gets depleted. 
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