Nanomaker

Lab #9: Piezoelectricity and Thermoelectricity

Energy Harvesting Piezoelectricity Thermoelectricity

Energy Harvesting

Illustration of energy harvesting sources removed due to copyright restrictions. Refer to: Fig. 1 in Kume, Hideyoshi. "From Low Power to No Power through Energy Havesting: Powering Up the Battery-Free World." *Nikkei Electronics Asia*, October 31, 2010.

Energy Harvesting

<u>Source</u>	Harvested Power
Vibration (efficiency: up to 50 %)	
Human	4 μW/cm²
Industrial	$100 \mu\text{W/cm}^2$
Heat (efficiency: up to 10 %)	
human	30 μW/cm ²
industrial	1-10 mW/cm ²
Light (efficiency: up to 40 %)	
Indoor	10 μW/cm²
outdoor	10 mW/cm ²
RF (efficiency: up to 50 %)	
GSM	$0.1 \mu\text{W/cm}^2$
WiFi	1 μW/cm²

Energy Harvesting Piezoelectricity Thermoelectricity

Vibration Transduction Mechanisms

Renaud et al., Sensors and Actuators A, 145-146 (2008) 380 Roundy et al., Computer Communications 26 (2003) 1131 William and Yates, Sensors and Actuators A, 52 (1996) 8

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

Piezoelectric Effect

Discovered in 1880 by Jacques and Pierre Curie during studies into the effect of pressure on the generation of electrical charge by crystals.

Polarizing (poling): Exposure to strong electric field at an elevated temperature

Piezoelectric Conversion

- D = electric displacement [C/m²]d = piezoelectric coefficient [C/N]T = stress [N/m²] $\varepsilon = \text{permittivity [F/m]}$
- E = electric field [V/m]

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

$$\begin{bmatrix} D_1 \\ D_2 \\ D_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 & d_{15} & 0 \\ 0 & 0 & 0 & d_{24} & 0 & 0 \\ d_{31} & d_{32} & d_{33} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} T_2 \\ T_3 \\ T_4 \\ T_5 \\ T_6 \end{bmatrix} + \begin{bmatrix} 11 & 0 & 0 \\ 0 & 22 & 0 \\ 0 & 0 & 33 \end{bmatrix} \begin{bmatrix} E_1 \\ E_2 \\ E_3 \end{bmatrix}$$

 $\left\lceil T_{1}\right\rceil$

Piezoelectric Materials

Rochelle Salt was the first material discovered to exhibit piezoelectricity

- Crystals: Quartz (crystalline SiO2), Cane sugar, Rochelle salt
- Ceramics: Lead zirconate titanate (PZT), Barium titanate (BaTiO3)
- Polymers: Polyvinylidenfluoride (PVDF)

Applications

Actuator (electrical to mechanical)

Piezoelectric buzzer

Nanopositioning

Piezo inkjet printer

Power source (mechanical to electrical)

Grill lighter

Energy harvesting

Paper-based piezoresistive force sensor

Piezoelectric Lighter

A small, spring-powered hammer rise off the surface of the piezo crystal strikes the crystal as the gas is turned on. The impact creates a large voltage across the crystal, and therefore a spark between the wires, which ignites the gas.

Piezoelectric Buzzer

A piezoelectric diaphragm consists of a piezoelectric ceramic plate which has electrodes on both sides and a metal plate.

When AC voltage is applied across electrodes, the bending is repeated, producing sound waves in the air.

Atomic Force Microscope

This image is in the public domain.

Van der Waals Force

Graph of net intermolecular force intensity removed due to copyright restrictions. Refer to: Fig. 10 from Barr, Ewan J. "Modelling Atomic Force Micrscopy (Using An Euler-Bernoulli Beam Equation)."

A small probe (nm) is brought close to or in contact with a surface

Energy Harvesting Piezoelectricity Thermoelectricity

Heat Transduction Mechanisms

<u>Thermoelectric</u> Direct conversion of temperature differences to electric voltage (Seebeck) and vice versa (Peltier)

<u>Heat Engine</u> System that performs the conversion of heat or thermal energy to mechanical work

Courtesy of Nature Publishing Group. Used with permission.

Thermoelectric Effect

Thomas Johann Seebeck was a physicist who in 1921 discovered the thermoelectric effect.

This image is in the public domain.

- Direct conversion of temperature differences to electric voltage (Seebeck) and vice versa (Peltier)
- Module contains n and p-type doped semiconductor connected electrically in series and thermally in parallel
- Charge carriers diffuse due to temperature difference and motion of charge carriers results in an electrical current

Terminal S, σ , and k that we measure are <u>average</u> values.

...vary with nanoparticle size, shape, and density,

...vary with superlattice period, flatness, grain size,

...vary with alloy composition.

Figure of Merit

ZT was less than 1 for a long time

ZT changes with temperature

Room Temperature

Heat Sources

Industrial Processes

Can be constant source of heat and require high temperature technologies

Solar Thermal

Weather, latitude and seasonal variability can extend operation

Automotive

Requires high temperature technologies and/or air flow

Living Space (HVAC)

Requires systems that harvest at low temperature differentials

Aviation

Altitude and speed dependent, weight is important

Human Body

Requires systems that harvest at low temperature differentials

Thermoelectricity Generator

Devices convert heat directly into electrical energy. The typical efficiencies are around 5-10%. And the most common material is bismuth telluride (Bi_2Te_3) semiconductor p-n junctions with thicknesses in the millimeter range.

Applications

(Peltier) (Seebeck) Watch Seat Cooling/ Heating Exhaust Pipe Wine Cooler Water Pipe Laser Pulse

Cooling

22

Oximeter

How much energy can you generate from waste heat in engines?

How much energy can you generate from waste heat in engines? Answer: 300 W

Thermoelectric Cooler

2. Measure resistance of TE module

3. Measure Seebeck coefficient of TE module

Conclusions

Courtesy of Elsevier, Inc., http://www.science direct.com. Used with permission.

 $D = dT + \epsilon E$

- D = electric displacement [C/m²]
- *d* = piezoelectric coefficient [C/N]
- $T = \text{stress} [\text{N/m}^2]$
- $\boldsymbol{\varepsilon}$ = permittivity [F/m]
- E = electric field [V/m]

Courtesy of Nature Publishing Group. Used with permission.

MIT OpenCourseWare http://ocw.mit.edu

6.S079 Nanomaker Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.