Measurement Sheet

Lab #8: Doping

MIT Nanomaker_Spring 2013

Experiment #1: Self-Assembly

Pour a portion of the 1:1 Ni:PDMS mixture into one of the small petri dishes. Place a magnet underneath the dish and observe how the mixture moves with the orientation of the magnet. How could this property be exploited to make a practical device?

Experiment #2: Electrical Conductivity

You have prepared and cured three different PDMS mixtures into rows of pellets: 1) plain PDMS, 1:1 Ni:PDMS, and 4:1 Ni:PDMS. For each pellet, measure the resistance across the pellet using two strips of copper tape and your multimeter. Record how the resistance changes before and after you squeeze the pellet.

	Resistance	Resistance
↓ PDMS Mixture	(uncompressed), ${f \Omega}$	(under compression), ${f \Omega}$
Plain PDMS		
1:1 Ni:PDMS		
4:1 Ni:PDMS		

Experiment #3: Thermal Conductivity

a) You have also prepared and cured thermochromic PDMS mixtures into a row of pellets. Place thermochromic pellets on the top of PDMS/Ni:PDMS pellets and heat them up with a hot plate (50°C). Observe which PDMS/Ni:PDMS pellet heats up fastest. What does this tell you about their thermal conductivities?

↓PDMS Mixture	Time to change color of thermochromic pellets (sec)
Plain PDMS	
1:1 Ni:PDMS	
4:1 Ni:PDMS	

b) Place PDMS/Ni:PDMS pellets on a hot place and for each pellet, measure the temperature difference across the pellet at steady state using thermocouples. What are the ratio of thermal conductivity among PDMS, 1:1 Ni:PDMS, and 4:1 Ni:PDMS?

↓PDMS Mixture	Temperature of hot plate (°C)	Temperature of top surface of pellet (°C)
Plain PDMS		
1:1 Ni:PDMS		
4:1 Ni:PDMS		

Follow-up Questions:

- Silicon and germanium become good insulators at very low temperatures and good conductors at very high temperature. Do you agree? Explain.

- An isolated zinc atom has a ground-state electron configuration of filled 1s, 2s, 2p, 3s, 2p and 4s subshells. How can zinc be a conductor if its valence subshell is full?

- What are the differences between doping and alloying?

- To achieve thermochromism, there are the two basic approaches: liquid crystals and leuco dyes. What are the differences?

- How does thermal fax paper work?

MIT OpenCourseWare http://ocw.mit.edu

6.S079 Nanomaker Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.