Nanomaker

Lab #11: Silicon Photovoltaics (PV)

Photograph and illustration of BigBelly smart trash can removed
due to copyright restrictions.
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Solar Spectrum

(1366 W/m2)

(1000 W/m2)

Image created by Robert A. Rohde / Global Warming Art. Used with permission.

Nearly ~50% of the solar irradiance is in the visible spectrum
Lots of solar power is in the form of IR light


http://www.globalwarmingart.com/wiki/File:Solar_Spectrum_png
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Courtesy of PVCDROM, Christiana Honsberg
and Stuart Bowden. Used with permission.


http://www.pveducation.org/pvcdrom

Insolation

Insolation: Incoming Solar Radiation
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Silicon Crystal Growth
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This image is in the public domain.
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Polycrystalline Silicon Solar Cell

This image is in the public domain.

Molten Silicon Rear Ribbon

Front Ribbon

Solid-Melt
Interfoce

Crucible Silicon Feed

Ribbon growth

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.



http://ocw.mit.edu/fairuse

Silicon Crystal
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Each silicon atom is bonded
to four neighbouring atoms.
Image by MIT OpenCourseWare.
Width Growth rate Throughput Energy use Best
(cm) (mm/min) (m2/day) (kWh/m2) efficiency
Czochralski 15 0.6-1.2 30 21-48 20%

Ribbon Silicon 8-80 15-20 20 20 18%



Why Purple?
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Image by MIT OpenCourseWare.

Reflectance curve of a polycrystallinesilicon solar

cells before and after silicon nitride coating

This image is in the public domain.



Low-Cost: Roll-to-Roll Vacuum Coating

UNI-IS®LAR

United Solar Ovonic

Photographs of the vaccuum coating process removed due to copyright restrictions.

Amorphous Silicon Solar Cell
Nine miles of solar cells in three days

Photo courtesy of US Army Africa on Flickr.
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http://www.flickr.com/photos/36281822@N08/7655837676/

Material Defect
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Polycrystalline Silicon

Metal Impurities

Iron, Titanium, Nickel,
Chromium, Copper

Non-Metal Impurities

Oxygen, Nitrogen
Carbon

Courtesy of Tonio Buonassisi. Used with permission.

Adopted from Prof. Buonassisi

This image is in the public domain.

Dislocations
Edge, Screw, Mixed, Loops

Grain boundaries
Small-angle, Large-angle
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High Quality Materials

Solar Cells and Material Quality: A Brief Tutorial

Cross section of solar cell made of high-quality material

This is a cross section of a solar
cell made from high-quality
material.

>

Solar Cells and Material Quality: A Brief Tutorial

Cross section of solar cell made of high-quality material

Most electrons diffuse through
the solar cell uninhibited,
contributing to high photon-to-

electron (quantum) efficiencies.

o= y

Adopted from Prof. Buonassisi

Courtesy of Tonio Buonassisi. Used with permission.
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Low Quality Materials

Solar Cells and Material Quality: A Brief Tutorial

Cross section of solar cell made of defect-ridden material

Here’s a cross section of a ti
low-quality, defect-ridden ti
wafer. Black lines represent ti
structural defects ti
(dislocations and grain ti
boundaries), while red ti
represents dangerous ti
impurity species. ti

Solar Cells and Material Quality: A Brief Tutorial

Cross section of solar cell made of defect-ridden material

Electrons generated closer to
the surface make it to the
contacts, but those in the bulk
are likely to “recombine” (lose
their energy, e.g., at bulk
defects, and not contribute to
the solar cell output current).

Adopted from Prof. Buonassisi

Courtesy of Tonio Buonassisi. Used with permission.




( 1) Materials Optimization

Solar Cells and Material Quality: A Brief Tutorial

Let’s start from the wafer,

before even a solar cell v
device is made. v

Solar Cells and Material Quality: A Brief Tutorial

( 2 ) Materials Optimization

First, let’s entice as many t
defects out of the wafer t
by annealing treatments...

e.g., D. R. Khanal, T. Buonassisi et al., Appl. Phys. Lett. 90, 102110 (2007). t

(3 ) Materials Optimization

Solar Cells and Material Quality: A Brief Tutorial

A

... and remove them once

they’re near the surfaces.

y

Solar Cells and Material Quality: A Brief Tutorial

(4) Materials Optimization

Then, as we process the
wafer into a solar cell, we
1 engineer all remaining
“ bulk defects into their
least detrimental state(s).

e.g., M. D. Pickett and T. Buonassisi, Appl. Phys. Lett. 92, 122103 (2008).

Solar Cells and Material Quality: A Brief Tutorial

@ Materials Optimization

Although we started with
defect-ridden material,
we managed to engineer
it into a very usable form.

4

Solar Cells and Material Quality: A Brief Tutorial

® Cross section of solar cell made of defect-ridden material

If we didn’t know how to
optimize our material, and
simply blindly applied a
standard cell process, we
would’ve achieved very
low efficiencies indeed!

Adopted from Prof. Buonassisi

Courtesy of Tonio Buonassisi. Used with permission. 16




Lock-in Thermography
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http://www.sciencedirect.com

Efficiency



Current (1)

IV Characterization

Hluminated IV Curve
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circuit current

Courtesy of Tonio Buonassisi. Used with permission.
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Efficiency

MPP: Maximum Power Point Quadrant flipped!
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Adopted from Prof. Buonassisi

Courtesy of Tonio Buonassisi. Used with permission.
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Adopted from Prof. Buonassisi

Courtesy of Tonio Buonassisi. Used with permission.



Conclusions

Polycrystalline

Single Crystal Crystal
1 Sun = (1000 W/m2)
This image is in the public domain.
Image created by Robert A. Rohde / Global Warming Art. Used with permission.
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Courtesy of Tonio Buonassisi. Used with permission.
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http://www.globalwarmingart.com/wiki/File:Solar_Spectrum_png
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