Nanomaker

Lab #11: Silicon Photovoltaics (PV)

Photograph and illustration of BigBelly smart trash can removed due to copyright restrictions.

Solar Energy

Fabrication Material Defect Efficiency

Solar Energy

Solar Spectrum

Image created by Robert A. Rohde / Global Warming Art. Used with permission.

Nearly ~50% of the solar irradiance is in the visible spectrum Lots of solar power is in the form of IR light

Atmospheric Effects

Atmospheric effects have several impacts on the solar radiation at the Earth's surface. The major effects for photovoltaic applications are:

- A reduction in the power of the solar radiation due to absorption, scattering and reflection in the atmosphere;
- A change in the spectral content of the solar radiation due to greater absorption or scattering of some wavelengths;
- The introduction of a diffuse or indirect component into the solar radiation; and
- Local variations in the atmosphere(such as water vapor, clouds and pollution) which have additional effects on the incident power, spectrum and directionality

Courtesy of PVCDROM, Christiana Honsberg and Stuart Bowden. Used with permission.

Insolation

Insolation: Incoming Solar Radiation

Energy per Unit Area per Unit Time (kWh/m2/day)

© NREL. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Solar Energy Fabrication Material Defect Efficiency

Silicon Crystal Growth

Single Crystal Si Boule

Silicon Wafers

crystal

Both images are in the public domain.

Melting of polysilicon, doping

Introduction Beginnin of the seed the crys

Beginning of Crystal the crystal pulling growth

Formed crystal with a residue of melted silicon

Polycrystalline Silicon Solar Cell

This image is in the public domain.

Ribbon growth

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Czochralski growth

This image is in the public domain.

Silicon Crystal

Image by MIT OpenCourseWare.

	Width (cm)	Growth rate (mm/min)	Throughput (m2/day)	Energy use (kWh/m2)	Best efficiency
Czochralski	15	0.6 - 1.2	30	21 - 48	20%
Ribbon Silicon	8-80	15 - 20	20	20	18%

Why Purple?

This image is in the public domain.

Image by MIT OpenCourseWare.

Reflectance curve of a polycrystallinesilicon solar cells before and after silicon nitride coating

Low-Cost: Roll-to-Roll Vacuum Coating

Photographs of the vaccuum coating process removed due to copyright restrictions.

Amorphous Silicon Solar Cell

Nine miles of solar cells in three days

Photo courtesy of US Army Africa on Flickr.

Solar Energy Fabrication Material Defect Efficiency

Polycrystalline Silicon

Metal Impurities

Iron, Titanium, Nickel, Chromium, Copper

<u>Non-Metal Impurities</u> Oxygen, Nitrogen Carbon

Courtesy of Tonio Buonassisi. Used with permission.

This image is in the public domain.

<u>Dislocations</u> Edge, Screw, Mixed, Loops

<u>Grain boundaries</u> Small-angle, Large-angle

High Quality Materials

Adopted from Prof. Buonassisi

Low Quality Materials

Adopted from Prof. Buonassisi

Courtesy of Tonio Buonassisi. Used with permission.

Adopted from Prof. Buonassisi

Lock-in Thermography

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

- Ribbon-Si Device
- 100 Hz lock-in frequency
- 0.6 V bias

Solar Energy Fabrication Material Defect Efficiency

IV Characterization

Courtesy of Tonio Buonassisi. Used with permission.

Efficiency

MPP: Maximum Power Point

Quadrant flipped!

Adopted from Prof. Buonassisi

Efficiency
$$\equiv \eta = \frac{\text{Power Out}}{\text{Power In}} = \frac{V_{\text{mp}} \cdot I_{\text{mp}}}{\Phi}$$

Fill Factor $\equiv FF = \frac{V_{\text{mp}} \cdot I_{\text{mp}}}{V_{\text{oc}} \cdot I_{\text{sc}}}$

Efficiency
$$\equiv \eta = \frac{\text{Power Out}}{\text{Power In}} = \frac{V_{\text{mp}} \cdot I_{\text{mp}}}{\Phi} = \frac{FF \cdot V_{\text{oc}} \cdot I_{\text{sc}}}{\Phi}$$

Adopted from Prof. Buonassisi

Courtesy of Tonio Buonassisi. Used with permission.

Conclusions

Image created by Robert A. Rohde / Global Warming Art. Used with permission.

This image is in the public domain.

Metal Impurities Iron, Titanium, Nickel Chromium, Copper <u>Non-Metal Impurities</u> Oxygen, Nitrogen Carbon

<u>Dislocations</u> Edge, Screw, Mixed, Loops <u>Grain boundaries</u> Small-angle, Largeangle Efficiency $\equiv \eta = \frac{\text{Power Out}}{\text{Power In}}$ $= \frac{V_{\text{mp}} \cdot I_{\text{mp}}}{\Phi} = \frac{FF \cdot V_{\text{oc}} \cdot I_{\text{sc}}}{\Phi}$

Courtesy of Tonio Buonassisi. Used with permission.

MIT OpenCourseWare http://ocw.mit.edu

6.S079 Nanomaker Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.