
MITOCW | watch?v=auK3PSZoidc

SRINI DEVADAS: All right good morning, everyone. Welcome back. I hope you had a good long weekend. So

today's puzzle is, I guess, a classic puzzle. It's Sudoku. I've never actually successfully

managed to complete a Sudoku puzzle by myself, because they've fallen into two categories

for me. Either they're easy, and I get bored and I stop. Or they're too hard, and I get lazy and I

stop.

But what I have done is write a computer program that essentially solves any Sudoku puzzle

that is put in front of it in seconds. Maybe there exist puzzles for which it would take minutes,

but I haven't discovered such puzzles. And what we're going to do today is talk about Sudoku,

compare and contrast the human way of solving Sudoku puzzles against a brute force way,

and then try and integrate the two together. You know perhaps this is the closest we're going

to get to AI in this class, where we're going to try and marry an exhaustive search method with

some smarts.

And back-- I think when we were doing the N-queens puzzle-- one of you asked a question

about what the number of possibilities were. For an eight queens puzzle, was it eight raised to

eight? And I said, well no. You can prune the search by figuring out that particular partial

configurations that correspond to perhaps two queens being placed on the eight by eight

board already does not correspond to a solution, because the two queens conflict with each

other. And you can then shrink this eight raised to eight substantially.

So that's exactly the methodology that we're going to follow here in trying to take our brute

force solver, which will work, given enough time, on arbitrary Sudoku puzzles. But we may not

want to wait that long. And we're going to take this strategy of pruning the search to try and

improve the solver. And one last thing before I get started on the rules of Sudoku, we're going

to have to have a way of measuring performance. Just like we can measure eight raised to

eight or four raised to four or what have you, we want to have a way of measuring-- outside of

the particular machine that's being used, we can obviously measure real time in terms of

seconds, but that's not as precise-- you want to measure more precisely what the number of

combinations are.

And so we could certainly instrument our code with appropriate counters that will allow us to

measure this performance. And so then it won't matter if our code runs on a fast machine or a

slow machine. We can compare it with another piece of code or another variant of the code



and say, oh this new variant is slower or the new variant is faster according to this metric. All

right?

So without further ado, let's dive into Sudoku. How many of you have never seen Sudoku,

never played Sudoku? All right, so that's fine. It's only going to take me about 30 seconds to

explain what the rules of Sudoku are. And then we can dive into trying to, at least partially,

solve this puzzle. I do not want to completely solve the puzzle because, as I said, it's either too

simple or it's too hard. And I'd rather write computer programs.

And so the rules of Sudoku are simple. So this is classic Sudoku, and it's a nine by nine.

There's many variants of Sudoku. In fact, a couple of the exercises talk about two variants,

diagonal Sudoku and even Sudoku, I think-- there's probably odd Sudokus as well-- that add

even more constraints to the basic constraints of Sudoku that I'm going to write up here. And

this is nine by nine Sudoku. And the numbers are one through nine.

And the rules are simple. Each row has all the numbers, which means that no numbers could

be repeated, because there's nine columns and nine rows. So there's nine numbers on each

row. Each column has all the numbers-- same thing. So there's nine rows and nine columns.

And then each sector, which is a three by three grid-- and so that's why I have these

overhangs here corresponding to pointing out what the nine sectors are in Sudoku. So this is a

sector. That's a sector. This middle one, which is completely blank right now is a sector, et

cetera. So each sector has all the numbers.

You can grow the size of the puzzle. It gets more difficult. You could add more constraints. As I

mentioned, diagonal Sudoku might say something like both of the diagonals, the large

diagonals, the full size diagonals, have all nine numbers on them, et cetera. So that makes the

puzzle different. You may have a solution to the nine by nine original Sudoku puzzle, but it

may not be a solution to the diagonal puzzle. Obviously the other way around works because

the diagonal puzzle only has more constraints.

And so what we do here is try and use implications. Right, so we have these rules. And we'll

first forget about computer programs and try and solve this the way people do when they just

have a paper and pencil and they have the puzzle in front of them. And they try and use these

rules to discover empty positions. And it's kind of hard to do anything with this sector here. You

could use the row and column constraints, obviously, even for this sector. Because you have

constraints on these three based on the fact that you have nine and seven and one and six on



this row, et cetera.

But usually you go with sectors that have a few numbers in them. You go with rows that have a

few numbers in them. And you go with columns that have a few numbers in them. And then

you can try and shrink the possibilities. All right?

So just because I don't want to go overboard with respect to looking all over the puzzle, let's

focus in on eight-- the number eight. And one of you tell me if I can imply something based on

the locations of eight on the top third of this puzzle. Yeah, go ahead.

AUDIENCE: Top middle square.

SRINI DEVADAS: Top middle square, what's your name? Kye? So Kye says top middle square should be an

eight, right here. Right, and-- oh, top OK. Yeah that clearly can't be an eight, because this is

an eight here. But good, so the claim is this is an eight. And Kye, how did you figure that out?

AUDIENCE: You can eliminate the first two rows because.

SRINI DEVADAS: Right you can eliminate this, because eight can't be here because of this eight. Eight can't be

here because of this eight. You need to have an 8 in here somewhere, because eight doesn't

exist in the sector. So that would imply that I need to put an eight up here. OK?

So this is what's called a horizontal scan. The only thing that Kye did here was scan

horizontally. And you can imagine that-- so Kye did not use, in order to imply the eight-- and so

this word implication, imply, is something that we're going to use in a more technical sense as

well when we write our code, but an implication essentially says these rules imply the location

of the eight. Right?

And we didn't do a vertical scan. We did not use the fact that-- in this particular implication, we

did not use the fact that a column needs to have all numbers on it, and therefore all of the

numbers on a column have to be unique. Take a look at-- take a look at this part here. And

let's look at one. And try and use a more sophisticated form of implication corresponding to

both horizontal and vertical scans to imply the position of a one somewhere on the puzzle.

Can someone do that? Yeah, back there.

AUDIENCE: In the top box-- in the top right box, it's to the right of six.

SRINI DEVADAS: OK, so the one can't be here. The one can't be here. Right? And the one can't be here. So it



has to be over here. What's your name?

AUDIENCE: George.

SRINI DEVADAS: George-- so George says the one has to be here. And he used both vertical scanning as well

as horizontal scanning in order to imply the one. So it's a little more sophisticated. OK, on top

of that, obviously, sectors are going to give you some implications as well. And there's no end

to this, honestly. There's combinations, there's also a little bit of look ahead, where the hardest

puzzles are the ones where you run out of the eights and the ones in terms of the examples

that we have here where we've just sort of implied-- without guessing, we've implied the

location of a number. And then because of that, our puzzle got smaller in the sense that

there's fewer blank locations, blank squares. And then that helps us move forward.

So the easy puzzles are the ones where fairly straightforward implications like the ones we did

here always exist, are easy to find. Sometimes you have to search a little bit, look at the top,

look at the bottom, look at the middle. And then you fill things in. And because you filled things

in, something else now is in play, right? It becomes viable in terms of an implication. The fact

that I put an eight in there implies that the eight is now taken-- its location. And so now

obviously there's only four left here. And the fact that there's an eight here implies that all of

these can't have an eight in them. These seven locations underneath can't have an eight in

them, right, because of the constraints.

So this shrinking of possibilities is something that a human does. And you can kind of go

through this process. It's an iterative process that you go through. And if you get stuck then

you can't do an implication that gives you a number. And some of the harder puzzles you have

to-- you have a couple of choices, and only one of them is going to be a correct one going

forward, but you don't know that at that moment.

So you now have to guess. And perhaps you put an eight over here or an eight over there.

And then you say I'm going to go with an eight over here. And then you go a little bit further,

and then you realize, wait a minute, there's no way I can solve this puzzle. Because I need to

put two sevens into this sector. And then you go back and there's actually a bit of backtracking

that happens-- a wrong guess, and you need to go backwards.

And it's very hard to do for us. It's very hard to do for us with pencil and paper, keeping things

in our head, or you know writing down notes on the side of the paper. Whereas it's very easy

to do that for a computer program. And we kind of did that already in the eight queens. But



we're going to do that in a much more systematic way over here.

So you kind of weigh these two ways of approaching this problem. One of which is I'm just

going to blast through the different combinations, having a giant tree structure in my head of

where, you know this might imply that particular grid location grid IJ equals eight. This might

imply that grid IJ equals seven. And there's obviously a huge number of combinations

corresponding to which of these squares that I pick and what value I assign to those squares.

And then once I do that there's another set. And this explodes on you very quickly.

And so if you just did this in a completely brutish way, there's no way your program would ever

end, even on a simple puzzle. But thanks to these rules, it turns out a fairly straightforward

program that's 20 lines of code is going to solve most problems-- at least the ones that I've

looked at-- in a reasonable amount of time. And then it's just interesting from an algorithmic

standpoint and an efficiency standpoint to look and see how we can take that fairly naive

approach which does have some pruning but it's exhaustive and improve that. All right, so

that's kind of where we are headed. Make sense? Any questions about what we have so far?

All right.

So what we're going to do is go ahead and look at code for Sudoku that-- so all you need to

think about now for the next few minutes, because we're going to move into exhaustive search

mode and code things up in a computer, is just those rules. So you don't have to really think

about horizontal scans and implications or vertical scans. That's going to come a little bit later.

And we're going to vary that up as well.

But we're going to do kind of what we did for the N-queens problem, which is set up a

recursive search that is going to explore all of these different possibilities. And the equivalent

of no conflicts for the eight queens or the N-queens problem, which said there's no conflicts

here because none of the queens attack each other, we're going to have something that

essentially says this is valid so far, none of the rules of Sudoku corresponding to these three

rules that I have up on the board are going to be violated. All right so let's take a look.

And so this structure hopefully, given that we've done N-queens, should be a little bit easier to

understand. So when we did eight queens or N-queens, we decided to start column by

column. And we could have done row by row, but we decided to start column by column. And it

was a fairly straightforward puzzle. There's obviously no real change in an eight queens

puzzle. I mean, you're solving the same puzzle as I am.



But if I give you a Sudoku puzzle, there's more variety to it in the sense that depending on

what I fill up-- the hard puzzles are the ones that are kind of intermediate in the sense of

they're not obviously fully filled and they're not empty. Right if it's completely empty then it's

trivial to solve a Sudoku puzzle. You can take any solution to a Sudoku puzzle and present it

as a solution to the empty puzzle. And then if everything is full except for two things, I mean it's

kind of obvious what those two things are assuming that the puzzle had a valid solution.

So really it's puzzles like this where maybe a third are full that are more difficult. And it's kind of

a separate school, a little community that designs puzzles and tries to create hard puzzles.

And they try and make the human's problem harder by making this requirement of look ahead,

like I mentioned. So good.

So let's take a look at the code here. So what I want to do here-- and the first part here is-- as

I said, we went column by column in the case of N-queens. And the question is, where do I

start. I want to do something in a fairly naive way. And what I'm going to do is I'm going to do

some sort of scan. I'm going to scan like that. And I'm going to find-- as I do the scan, I'm

going to find the next empty grid location. And I'm going to say that is going to be something

that I'm going to try and fill in.

OK so it's not going to be I discovered this eight in the-- it was, if you count in terms of the

empty locations, if I went this way, it was the fourth empty location and decided to fill that up.

But here I'm just-- in this code I'm going to try one, two, three, four, five, six, seven, eight, nine

here. And the first part of the code here that says what is the name of this procedure. It says

find next cell to fill.

Which means what its name is-- find the next cell. Find the next grid location to fill. And it

simply goes for X in range zero through nine, for Y in range zero through nine. I'm assuming

that since zero is not a valid entry here, I could use zero to signify empty. OK? It's only one

through nine, so zero can signify empty. And this just returns X and Y corresponding to the

first empty location. So in this case it would just return (0,0). OK?

And then if this were full then it would go-- obviously the X changes. And when X changes,

you're going over to the right. And so you would get a (1,0) back. If this were filled, the next

time around I'd get this grid location, et cetera. It doesn't matter. Just like I could go column by

column or row by row, as long as I have a deterministic way of discovering the empty location-

- and usually you want to have the same way of discovering the empty location. But even that



is not a requirement as long as there's an empty location and your find next cell to fill finds that

empty location and returns it to you, you're good, and the rest of our code is going to work. But

no reason to get more complicated than what I have up there. So find next cell to fill makes

sense? We good with that? All right.

And generally with exhaustive search the key procedure is always do you have a valid solution

or not? And you may not have a complete solution. Think of it as a partial configuration. So

this is a partial configuration that is valid. It's not a complete solution to the Sudoku puzzle. It's

a partial configuration that's valid in the sense that it satisfies all of the constraints. You know,

if I put another eight in here it would not be a valid partial configuration. It would be partial, but

not valid. Right?

I need to grow this. I need to grow this into a solution. And when I say solution I mean all the

constraints have to be satisfied. A configuration could be invalid or valid. A solution is always

valid. All right? That's just terminology.

And so I want to be able to look high up and be able to truncate the search and say, you know

what, grid IJ equaling eight, because I put an eight in that sector which already had an eight in

it, is something that should not be explored. And I don't have to worry about any of the

branches that come here. Because immediately I've violated the constraint. So in general, I

can always check whether partial configurations violate the three constraints I have or not. And

that is what this piece of code does. And it's also straightforward.

It's perhaps even more straightforward than diagonal checking in the case of eight queens.

But all this does is use the construct that says I'm going to look at-- essentially this is

something that is list comprehensions in Python. The for comes after this predicate here. But

effectively what you're saying is for X in range nine, check that grid IX is not equal to E. OK,

and you're just looking at E.

So is valid, grid IJE takes the grid which looks like this one, let's say, and so it's got zeros in all

of the empty places. And it's got a bunch of non-zero entries in all of the places that you see

here. And in addition, you have perhaps zero, zero, and let's call it one. And so this is I, and

this is J, and that is E. OK. And so let me write that out here, I, J, and E, where I is one-- zero,

I'm sorry, I is zero, J is zero, and E is 1. So that would mean putting a one up here and that

obviously is going to violate one of our constraints. But that's fine. We're going to check that.

And it's essentially doing incremental checking just like we did. So it's not checking to see that



all of the existing grid IJ values are conflicting or not. It's just saying I have an-- I'm going to be

writing something into this grid, into an empty location. It happens to be zero, zero having the

value one. And I'm going to check whether the introduction of a one into this square is going to

cause problems or not. That's all that it's doing-- incremental, just like we had with eight

queens.

And that check is relatively easy to do, because I just need to go and I look at the row

corresponding to I, which in this case is the top row. I look at the column corresponding to J,

which is the leftmost column, and then I look at the sector corresponding to zero, zero, which

is this top left sector. And I check to see for each of those three things, whether there's a

problem or not. And the first two-- well actually, I have a problem with the row. And I would

also have a problem with the sector. I wouldn't have a problem with the column. But one of

them is bad enough. And so I'm going to get a false. So row OK is going to be false. And so

I'm going to return false out here. All right, that make sense?

So those are the three things. And there's really not that much here beyond taking those

constraints and codifying them. Right. Any questions? Yeah. Fadi.

AUDIENCE: What is the all thing--

SRINI DEVADAS: Ah, the all is essentially a Python built in function that is going to essentially say that-- it's going

to-- it's a conjunction that says I'm getting a bunch of Booleans that correspond to the

generation of this list comprehension where E not equal to grid IX is going to give me true or

false. And I need all of those things to be true. All right?

AUDIENCE: Okay, it's always going to be a Boolean there and that depends on whether all of the elements

of the list itself are--

SRINI DEVADAS: It's a conjunction. Yeah, that's right. So and, think of it as an and. Even if one of them is false,

the and is false. In order for the and to be true, then all of them need to be true. All right? So

it's just a convenient construct which is applicable in sort of-- the perfect application is what

you see here. It's not the most sophisticated of applications, but it works very well in this case.

Now for the sector, I can't actually do that. And so there's a little bit more work, because I

can't-- this only works when-- and I could put a list comprehension in here like this and

generate all the Booleans. For the sector I end up having to do something a little bit different. I

mean you could do things more convoluted and use all in here as well, but it's not worth it. OK,



that make sense? Good.

So here's the core routine that corresponds to the search. And ignore this global variable here.

I'll explain that in a minute. That's going to be our metric. Backtracks is going to be our metric

for computing performance. And it's going to be quite interesting. It's going to produce some

interesting results for us when we run this on various different examples.

But this core procedure looks a lot like the n-queens search in the sense that you have a for

loop and a recursive call. And in this case the for loop is going to be something that ranges

through the different values, that you find a location that you want to put something into, which

is the next empty location in your current configuration. And then you need to go put in one

through nine in there.

And it's brutish. You're going to put in one and you're going to check conflicts. And then you'll

put in two and you're going to check conflicts. If you put in a one and you don't get a conflict,

then you get to recur. And you now move into something that is another partial configuration,

potentially, but obviously has one location filled from the caller configuration. And then you go

and look for the next cell.

So it's certainly possible that I'd go-- when I put in a one here that fails, but if I put in a two

here, it's not going to fail. A two is not going to fail here because, if I just look at those

constraints, a two OK. All right, so I'm going to put in a two here. And then I'm going to recur.

And I'm going to go out here, and I'll try and put in a one here. And a one is going to fail

because of this and that. A two is going to fail because of that. A three-- is a three going to

fail? No, not immediately. So I could put in a three here. And then I recur and go to the next

one, and so on and so forth, right?

And for each of these things obviously I have to do a bunch of search underneath. And you

know thank goodness for fast computers, right? Because otherwise, I mean God, I mean can

you imagine the amount of paper we'd generate if you were doing this and putting two and

three and I want a new sheet of paper for the four, et cetera, et cetera. I mean, we can count

the number of backtracks. That's how many sheets of paper you'll need. OK.

So what you see here, again ignore the backtracks, I'll get to that in just a second-- it's just a

way of counting the number of calls. And this thing here essentially says I'm going to be

returning-- as long as I get through and find a solution I want to return true. So if solve Sudoku

grid IJ is true, then I'm going return through. And then I'm going to pop up all the way to the



top, assuming I got-- I go all the way down to the bottom and I get to the point where I have a

solution that returns true, which is a completely full configuration that returns true. Right? But if

not, then I need to go try the other combinations and I'm only going to make that recursive call

if, obviously IJE, corresponding to this, is valid. And that checks the constraints.

And the only other thing I have to worry about is essentially something that says reset your

grid location and make sure that you're setting it back to zero after you're done. Right, and so

I've just made a choice here, grid IJ equals E. If I look at this line of code here, this is resetting

the grid IJ equals E and saying it's empty. Because if I've failed in all of these and I haven't

return true in all of these, then obviously I want to change this. And you could argue that the

next time around if I and J are exactly the same-- because I and J are set up here-- then I'm

going to overwrite the E from a one to a two, et cetera, et cetera. And so that is, in fact,

correct.

But I do need to reset this outside of the loop, if not inside of the loop. So it's not like I can get

away with this line of code. In general, if you ever backtrack, you have to go back and undo

your decision. And you have to erase the tree. And that's essentially what that grid IJ equaling

zero is doing. You just need to undo that decision. And you can do this a few different ways.

But the biggest thing to remember when you do recursive search is to get your-- the undoing

of your decision, which is what we call backtracking, to be correct. And if you ever leave a

mess, then you'd have a problem. That's also true in the case of the N-queens problem.

So I'm going to go ahead and-- and this is just a print routine. So this is not exactly the Sudoku

that I have up there, the Sudoku puzzle that I have up there, but it's kind of roughly similar in

complexity. And I could go ahead and run the Sudoku program.

And for each of those different Sudoku problems, it's producing solved puzzles. So this is a

solved puzzle. You can check this puzzle just real quick and you'll find that all of the

constraints are satisfied. And I'm going to explain backtracks in a second. So true says that

there's a solution. The number of backtracks was 579. For the second puzzle, which was a

little bit harder, the number of backtracks was 6363. I'm sorry, this is just scrolling. And for the

fourth one, it was 335,000-- I'm sorry, for the third one. And for the fourth one, was 9949.

These last two puzzles, hard and diff, there was a Finnish guy called-- there is a Finnish guy

called Arto Inkala, who designs puzzles. And he claimed that this hard puzzle in 2006 was the



hardest puzzle ever designed in Sudoku. And then in 2010 he came up with this more difficult

puzzle, according to him, that required a lot of look ahead from a standpoint of the human

being. Like if we went back to what I said you can't quite do this implication. You have to kind

of make a guess. And then you have to go further and further down. And I think the claim was

that the hard puzzle required like five levels of look ahead, and then the difficult puzzle

required six levels of look ahead.

And obviously, given that look ahead, this puzzle has to have an initial configuration that's

solvable. So it's not a trivial thing to create puzzles. But now people are using computer

programs and doing things like we're doing here to find difficult puzzles. And interestingly

enough, the 2006 puzzle, at least for this naive computer program, takes 335,000 backtracks--

the one that was supposedly made more difficult in 2010, which now takes about 10,000

backtracks. So obviously there's a difference between the way this program behaves and how

you or I would behave, or rather you would behave if you tried to solve this puzzle.

So let me just explain backtracks, and then I'll stop to see if there's any questions about the

code. So when you make recursive calls and you want to count the number of recursive

procedure calls-- you want to do something inside each of the recursive procedures and you

want to sort of cumulatively or collectively keep some information, one way of certainly doing it

is to pass arguments. And then you have to return the argument, because when you pass an

argument and you modify it it's not like that is going to be-- that modification, if it's just an

integer, if it's not a mutable variable, it's not going to be seen by the caller procedure.

And so when you do recursion and you want to do some counting, the notion of global

variables is a convenient construct to have. And global variables essentially say that there's

exactly one memory location associated with this variable. And we're going to go ahead and,

anytime we are mutating this variable and you're modifying it, you're going to see the effect of

that in that memory location.

So what you have up here is, I set backtracks to be zero. OK and that's my global variable.

The fact that I put backtracks equals zero here doesn't make this a global variable just yet.

The fact that I have global backtracks inside of solve Sudoku now says that there's a single

copy of backtracks, and it doesn't matter whether I'm at the top level of recursion or the

bottom level of recursion. It's just that memory location corresponding to backtracks-- the

name backtracks, that is getting incremented. And this could be 10 levels deep. It could be 40

levels deep, given that I've called things 40 levels in. But it's just the one backtracks.



So as you can see, what backtracks does is anytime you have a valid location and you've

gone ahead and-- essentially you've failed. The reason it's out here is solve Sudoku did not

return true. When solved Sudoku actually returns false, that's when you come out and you

increment backtracks. So it meant that you had to do some undoing. When you set grid IJ to

be zero, that's when you're undoing your guess, right?

So backtracks makes sense from a standpoint of I need to backtrack and go in a different fork

in the road. And so that's why I have backtracks plus equals one when I'm undoing my

decision that I made. So this kind of gives you a sense for how many wrong guesses that this

program did. And as you can imagine, the more the number of wrong guesses, the more the

computation and the longer it takes.

So it is definitely a proxy for performance. But it's a platform independent proxy that's more

algorithm related as opposed to the speed of the computer. Because if this computer were

twice as fast, I mean I'd just see things running faster even though the algorithm isn't any

better. Right? That make sense? So it's a very simple use of global. You don't want to use

global variables except in certain constrained settings. This is a fine use of global variables.

Cool, good. So any questions about this code?

So what I've done here is I just have the naive code. And I happen to have different numbers

of backtracks because I have different inputs. Unlike the N-queens problem, which is kind of

boring in some sense, because once you've solved it there's nothing left, in the case of

Sudoku, I could change my input, my starting point, and give you different problems.

And so the reason we had many different kinds of backtracks was simply because-- numbers

of backtracks was because we had four different inputs to the Sudoku puzzle. All right, so are

we good here? People understand this code? You're going to have to modify it, right? Not

necessarily this code, depending on the exercise you do, but this is certainly something that

hopefully you feel comfortable with potentially modifying.

All right so what I'm going to do now is first I'm going to go ahead and show you some code

that corresponds to something that is the original code, except that I'm going to add some

smarts to it. What I'm going to do is, at any given point of time, I'm going to try to do some

implications without actually doing any guessing.

So the way I'm going to integrate the human approach into this exhaustive search approach at



top level, is I'm going to take my configuration, and before I do an arbitrary guess, before I call

find next cell, or maybe I have a particular location here that I'm eventually going to guess. So

I do know that. But before that, I'm going to try and see whether the current grid values imply

anything or not by using the rules in exactly the same way or roughly, I should say, the same

way that we did right when we began the lecture. All right? So we're going to try and use some

implications and maybe imply the eight or imply something different associated with some

other location.

So this is not a backtrack, in the sense that this is going to be-- I can take this to the bank

assuming I haven't done any guessing up until this point, and assuming that the initial

configuration that was given to me corresponds to a valid solution. But I'm actually going to do

this at different points in the search. So it might be that I'm just going to arbitrarily choose a

two here.

And so I go through and I'm going to take this, for argument's sake, and I'm going to put a two

down. And then I have not the initial puzzle that was given to me, but something that I've kind

of hacked in the sense that I've stuck a two in there. And that may not correspond to the

solution, because I just sort of put the two down there. But now given the two, I'm going to try

and do some implications. And I'm going to try and see whether there's things that are valid or

not. The important thing is that, because I put a two down in an arbitrary way without using

implications, the two could have been incorrect. I mean that's exactly why we have all of these

backtracks, correct? Because I've put down incorrect guesses and then I've had to backtrack.

So once I put a two down and then I fill in a bunch of things with implications. You know, I may

even put an eight up there. I may put a six out here, et cetera, et cetera. And I go deep in and

then I realize, ooh, you know that two was a mistake. The two really shouldn't have been in

there. Now I have to clean up everything. I have to clean up all of the guesses that came after

two and all of the implications that came after two. All right?

That's the biggest thing that I want you to take away from this integration of implications with

exhaustive search. It's clean up your mess, clean up your bad guesses. The fact that-- you

say, oh but the implication was something that was deterministic. It was exactly following these

rules. No, no, no, no, no. It was deterministic. All of that is true. But you made a wrong guess.

And therefore everything that you did from then on out is in question.

And if you, in fact, find a contradiction, you've got to go all the way back and clean up



everything. And then go back and erase everything that you had. And then go take this two

and maybe turn it into a three or what have you. All right?

So before I show you the code that does the implications-- and you can kind of imagine that

there's many ways that we could do implications, we did that manually. I want to show you this

part looks exactly the same as before, no change. Find next cell to grid is exactly the same. Is

valid is exactly the same, right? There's a large make implications procedure and an undo

implications that I'll get to in a second. But this part here looks almost exactly the same, except

that I've replaced grid IJ equals E with make implications.

And this is something that not only is-- what make implications is going to do is it's going to

set-- whatever I had up here, it's going to set two up here. And on top of that it's going to go

use these things to go fill in a bunch of different values in here. So it's one extra step. This is

the integration that I talked about. So the idea is that-- now you can do this for the original as

well.

But the point is, once you've made a guess, you always want to check to see whether that

guess does certain implications or not. Right? I mean that's the whole purpose of this exercise.

Even humans do this in the very difficult puzzles. They make a guess and then they see

whether there's some implication or not. And maybe there's a contradiction and they have to

go back and undo all of that damage they caused and change the guess. But in general, when

you have a configuration and you add to it, it's possible suddenly that there will be other things

that are implied by the one change that you made to it.

So grid IJ equals E in the original code got replaced with this procedure that we'll talk about,

which I don't want to spend a whole lot of time on, but it's essentially something in terms of

details. But it's essentially something that puts in different values in the different locations. And

grid IJ equal zero is replaced by undo implications, which is cleaning up all of the incorrect

guesses and incorrect implications. And the reason the implications are incorrect-- because it

came from an incorrect guess.

And so that's it. Undo implications is trivial. It just sets all of the implications, and I'll tell you

what the data structure is in a second, but think of it as making everything zero, going back to

a clean slate. I mean clean slate in the sense that all of the incorrect implications and guesses

are cleaned up. So that's all there is over here.

Make implications is-- you can do anything you want. You can do vertical scans. You can do



horizontal scans. You can-- if you go look at Sudoku literature and you look at ways of playing

Sudoku, there's books written on how you can become a better Sudoku puzzle solver. And you

could take that, and you could code that in. And you could replace make implications with

those fancy techniques that are up there, right? But we've established I'm lazy. And so I only

write a certain amount of code, and then I get tired. And so I wrote about 20 lines of code

corresponding to a fairly straightforward implication just to give you a sense of how this would

work.

But the most important thing in here is not the details of make implications. And I'll give you

some sense of that before we're done. But it's really the structure that is the most important.

The fact that I've done make implications here and undo implications here is the correctness

requirement that is important to exhaustive search.

So if I do this and I do kind of the implications that we had right at the beginning of lecture and

I go ahead and run it, just take a look. I won't write this out, but remember what the backtracks

are for these things, roughly speaking, for the original Sudoku. Oh, I'm sorry, I need to go to

the shell. And it was 335,000-- what is it-- 579, 6363, 335,000, and 9949. So if I go off and I

run Sudoku optimized, which is doing these implications like I describe, and I go ahead and

run that.

The first one goes from 579 to 33 backtracks. OK so that's pretty good. Because it's done a

bunch of implications. It's still-- it's not super smart. I mean that is a simple enough puzzle that

a human being would not backtrack. I mean a human being would not backtrack in that first

puzzle, right? And you should check that. And-- oh, this thing finished in the middle. So it went

to 33. Oh, only had three of them? What do I have here in Sudoku Opt?

Oh I see. I only ran-- oh wow. OK so I ran inp2, hard, and difficult. So it really went from 6363

to 33. It went from 335,000 to 24,000. And then it went to-- 7-- went from 9949 to 726. The

details aren't-- the numbers aren't super important. Don't hang your hat on them. Obviously if I

change the code those numbers change. But you can see that there are substantial gains to

be had in terms of implications not making these dumb guesses that clearly are incorrect. And

you can fill in-- if you take away some of these empty squares, then the depth of the recursion

that you have to go through becomes substantially smaller. And that's why your backtracking

is simpler.

So I want to leave you with a couple of things. I want to give you some sense for what



particular implication that-- a strategy that we used. And so I'll just put up make implications

and give you some sense for how this works. So the basic idea is that what I'm doing here is

I'm looking at a particular sector. And I've created a data structure that says the missing

elements here-- if I put a two in here-- let's just say I go ahead and put a two in here. The

missing elements here are-- the set is three, four, five, six, seven, and nine.

So this could be three, four, five, six, seven, eight, nine. This could be three, four, five, six,

seven, eight, nine. This is quite dumb right now. But each of these different squares could be

three, four, five, six, seven, eight, nine. OK? Possibly, all right. And then I say-- so that's the

first part of the code. And then I say I'm going to attach, essentially, a copy of the set to each

of the missing squares. And then I'm going to go through and find the missing elements.

So this thing here can't be a nine because I see a nine here. It can't be a three, right? And so I

can take this thing here. And I take away the nine. And I take away the three. And I can do the

same thing with that. Obviously I can also take away the-- the eight isn't there, but I could take

away the seven, and I could away the three, the six, and the one. So I go ahead and I take

away the six. And the three was already taken out. And I keep doing this. And I try and shrink

the possibilities corresponding to this particular square that has the set of different possibilities.

And if I ever-- so when can I make an implication? What is the condition that is going to let me

make an implication when I take this set of numbers and I start shrinking them down using

these rules that I have over on the right hand side there? What is an implication? What does

that correspond to in relation to the size-- in relation to the set? Right, yeah, behind you, Ryan.

AUDIENCE: So if you only have one element.

SRINI DEVADAS: That's exactly right. If you have one element in the set, then that's an implication. If I have two

elements in the set, it's not an implication, because I don't quite know what to do there. But if I

had one element in the set, that's an implication. And that's it. That's-- you know this code is

not complicated. Check if the vset is a singleton, which is a single element. And I'm going to go

ahead and append to this implication, which is a very straightforward data structure that says

this is the grid location I, grid location J, and this is the value that was implied by that.

So not only do I have IJE, which is the original guess that I have, I also have kind of a bunch of

other tuples corresponding to different coordinates, you know, KL coordinates and the value,

call it V, associated with that. And these are all the different implications that I can collect

together in this list. And I can just add those things into make implications. And then I keep



going. And then if I ever realize I've made a bad guess, I have to undo everything by zeroing

them all out, which is making them all empty.

So one thing that this code does, and you can take a look at it. And I would encourage you to

do the first exercise, which is taking these implications and making them a little more powerful

by adding three or four lines of code to this code. And exactly what you have to do in this

exercise, and I'll show you what the results should be in just a minute. But let me just spend 30

seconds explaining to you how you could do a little bit better than what this code does.

So what I've described to you really is get this set, imply, get a singleton, et cetera. And then

you can do this, obviously, for each of these sectors. And that's what this does. You had a for

loop up there that does it for each of the sectors. Grab a sector and go ahead and do an

implication for that sector. Now this code just runs through the sectors, you know, One, two,

three, four, five, six, seven, eight, nine and then discovers the implications if they exist, adds

them to the imply list, and then throws up its hands and says I'm tired, I'm done, I don't want to

do any more.

What could you do that's an improvement, given what we have described and what I've told

you so far. What is an incremental improvement over going over these sectors once and doing

these implications and storing them and moving on? What is an incremental improvement?

Ganatra?

AUDIENCE: Look, once we get all the singletons, we can set those as-- since those are determined, like,

deterministic, I think that we could set those into the original grid and say that's our new base

grid and run through it again.

SRINI DEVADAS: Run through it again, exactly. You don't have to stop. There's no reason to stop if you're

implying. Once you've put something in here and you've gone through one, two, three, four,

five, six, seven, eight, nine, got the implications, you can put them into the grid and then start

over again. One, two, three, four, that's what humans do. Right? When humans put something

in, then they don't stop. They just keep going until they get to the end.

Now of course all of these implications could be incorrect if that first guess was incorrect.

There's no change there. But there's nothing that's stopping you from turning this little thing--

there's a loop here that simply corresponds to making a pass over the sectors, but you can put

this whole thing into a loop. And you keep going through the loop until you basically have no

change that happens in your grid. OK so that's four lines of code. And I'm not going to show



change that happens in your grid. OK so that's four lines of code. And I'm not going to show

you what those four lines of code look like, so close your eyes in case you--

And this is the solution to that code. And I'm going to go ahead and run it. And you saw what

those numbers were with respect to the backtracks. But if you do those extra implications, the

33 went down to two for that example. So this is not optimal, because I wanted one. So if I

wanted to be a human being that took this easy puzzle and just sort of went all the way without

making any incorrect guesses, I would be doing implications. And that would go all the way.

And I got close with two. And I didn't print out the intermediate ones, but the 24,000 went down

to 11,000. And I forget what the last one was. It went down.

So with four lines of code and with the optimized code that I'll put up you should be able to get

those numbers in your first exercise. Or you could solve diagonal Sudoku or even Sudoku. Or

you could spend the rest of the day coding whatever you want, whatever. All right, see you

next time.


