
11. Memory Serves You Well 
 
The advantage of a bad memory is that one enjoys several times the same good things for 
the first time.  ― Friedrich Nietzsche 

 
Here’s a cute coin row game that corresponds to an optimization problem. We have a set 
of coins in a row all with positive values. We need to pick a subset of the coins to 
maximize their sum, but with the additional constraint that we are not allowed to pick two 
adjacent coins. 
 
Given: 
 

14	3	27	4	5	15	1 
 

You should pick 14, skip 3, pick 27, skip 4 and 5, pick 15 and skip 1. This gives a total of 
56, which is optimal.  Note that alternately picking and skipping coins does not work for 
this example (or in general). If we picked 14, 27, 5 and 1, we would only get 47. And if 
we picked 3, 4, and 15, we would get a pathetic score of 22. 
 
Can you find the maximum value for the coin row problem below? 
 

3	15	17	23	11	3	4	5	17	23	34	17	18	14	12	15	
 
 
  

Programming constructs and algorithmic paradigms covered in this puzzle: 
Dictionary creation and lookup. Exceptions. Memoization in recursive search. 
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The optimal value for the coin row problem 
 

3	15	17	23	11	3	4	5	17	23	34	17	18	14	12	15	
 
is 126 obtained by selecting coins 15, 23, 4, 17, 34, 18, and 15. 
 
Obviously, our goal is a general-purpose algorithm that we can code and run to find the 
optimal selection.  We will first use recursive search to solve this problem – we will recur 
on different choices, picking a coin or skipping it. If we skip a coin, we have the choice 
of either picking or skipping the next coin. The catch is that if we pick a coin, we are 
forced to skip the next coin.   

Recursive Solution 
 
Here’s code that recursively solves the coin row problem. 
		
	1.	 def	coins(row,	table):	
	2.	 				if	len(row)	==	0:	
	3.	 								table[0]	=	0	
	4.	 								return	0,	table	
	5.	 				elif	len(row)	==	1:	
	6.	 								table[1]	=	row[0]	
	7.	 								return	row[0],	table	
	8.	 				pick	=	coins(row[2:],	table)[0]	+	row[0]	
	9.	 				skip	=	coins(row[1:],	table)[0]	
10.	 				result	=	max(pick,	skip)	
11.	 				table[len(row)]	=	result	
12.	 				return	result,	table	
 
The procedure takes a coin row as input, which is assumed to be a list. It also takes a 
dictionary table as input. The dictionary will contain information about the optimal 
value for the original problem as well as subproblems of the original problem. The 
dictionary will be empty for the initial call. The dictionary will get filled in during the 
recursive search and will need to be passed to the recursive calls. Note that we could have 
used a list representation for table, in which case we would have to allocate a table with 
len[row]	+	1 entries beforehand. Using a dictionary will come in handy when we 
memoize the coins procedure and other recursive procedures later in the book. 
 
We have two base cases in Lines 2-7.  The first base case is for the empty row, in which 
case we simply return 0 as the maximum value, and the updated dictionary. The 
dictionary table is updated with 0 as the value for key 0 as shown on Line 3. If the row 
has length 1, then we can simply return the coin value as the maximum value. In the one 
coin case, we update key 1 of the dictionary with the coin value (Line 6).
 
Lines 8 and 9 make recursive calls corresponding to picking or skipping the first coin on 
the row, respectively. If we add the value row[0] to our value, then we had better not 

	

pick row[1], and so the recursive call on Line 8 has row[2:] as the argument. This 
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means that the first two elements in the row are dropped, the first because we picked it, 
and the second because of the adjacency constraint. On Line 9, we make a recursive call 
with row[1:] as argument and without adding in the row[0] value. Because we did not 
pick row[0] we are allowed to pick row[1] if we want to. Lines 10 figures out which of 
the recursive calls won and uses that call’s value as the result and Line 11 fills in the 
appropriate dictionary entry. In the general case, the key/index for the dictionary is the 
length of the row for which we have computed the optimal value, and the value stored for 
that key/index is the optimal value found for that row. 
 
A word about how the recursion works.  We are selecting or skipping coins from the 
front of the list.  So the smaller problems associated with the smaller length rows 
correspond to dropping the elements from the front of the list, or the coins to the left of 
the row. In our example: 
 

14	3	27	4	5	15	1 
 
the length 5 sublist that coins considers is the sublist: 
 

27	4	5	15	1 
 
If you are only interested in the maximum value that can be obtained for a coin row 
problem we would simply return result and we would not even need table. But we 
want to know what coins were picked. Suppose that someone solved the long coin row 
problem (our second example) and told you that the optimal value was 126, you would 
need quite some work to verify that. You would have to solve the coin row problem 
yourself. The dictionary returned has the information necessary to efficiently figure out 
what coins were picked and the trace back procedure we will describe shortly shows the 
operations required. 
 
If we run: 
 

coins([14,	3,	27,	4,	5,	15,	1],	table={})	
 
It returns: 
 

(56,	{0:	0,	1:	1,	2:	15,	3:	15,	4:	19,	5:	42,	6:	42,	7:	56})	
 
The first value is the optimal value, and the dictionary is printed between the curly braces 
as a listing of key: value pairs. For example, table[0]	=	0, table[4]	=	19, table[7]	
=	56. The dictionary is telling us not only what the optimal value is for the original row 
that has length 7, but is also telling us what the optimal value is for smaller coin row 
problems so we can trace back the coin selection. For example, table[4] tells us that the 
optimal value is 19 for the sublist corresponding to the last four elements of the list, 
namely, 4,	5,	15,	1. The maximum value is obtained by picking 4 and 15.	
	
You might think that it would have been convenient to set the default value of the 
dictionary table to {} in coins and not specify the second argument in the invocation. 
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Python has one copy of default arguments per function. As a result, using the default 
argument on multiple coin row problems would result in spilling values over from the 
previous instance of the problem. Mutable default arguments should be used with care!	
	
We will now show how to use the table values to conveniently trace back what coins 
were picked.  
 

Tracing Back Coin Selection 
 
	1.	 def	traceback(row,	table):				
	2.	 				select	=	[]	
	3.	 				i	=	0	
	4.	 				while	i	<	len(row):	
	5.	 								if	(table[len(row)-i]	==	row[i])	or	\	
	5a.													(table[len(row)-i]	==	\	
	5b.														table[len(row)-i-2]	+	row[i]):	
	6.	 												select.append(row[i])	
	7.	 												i	+=	2	
	8.	 								else:	
	9.	 												i	+=	1												
10.	 				print	('Input	row	=	',	row)	
11.	 				print	('Table	=	',	table)	
12.	 				print	('Selected	coins	are',	select,	
																	'and	sum	up	to',	table[len(row)])	
     
The procedure traceback takes both the coin row and the dictionary as input. Note that 
the keys of table range from 0 to len(row), inclusive, whereas the indices of row will, 
as always, range from 0 to len(row)–1. 
 
The procedure works backwards in looking at dictionary keys that are the largest, i.e., 
those that store information for the longest row problems.  Line 5 is the crucial line in the 
procedure.  First, focus on the second part (after the first '\') of Line 5. If we are 
working backwards from the end of the list and see two table entries table[len(row)-
i-1] and table[len(row)-i], where the latter is larger than the former by row[i], then 
it means that we have picked the coin row[i] (this would be the i+1th coin on the row).  
For example, suppose i	=	0. Then, the last two entries of the dictionary table are 
compared. These correspond to the optimal solutions for the original problem skipping 
the very first element (table[len(row)-1) and the original problem (table[len(row]), 
respectively.  If the latter is larger by row[0], it means that the optimal solution for the 
original problem picked the first element row[0].  
 
Why do we have the condition table[len(row)-i]	==	row[i] in the first part of Line 
5? This is simply to take the corner case into account, when i	=	len(row)–1. In this 
case, the second part of Line 5 would crash since len(row)-i-2	<	0. Thanks to the first 
condition and the disjunctive or the second part is never executed – the first condition 
will evaluate to True, since table[1] is always set to row[len(row)-1]. 
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In general, if we pick row[i] we could not have picked row[i+1] and so we increment i 
by 2 and keep going (Line 7). If we did not pick row[i], we increment i by 1 and keep 
going (Line 9). 
 
What happens for our example? Suppose we run: 
 

row	=	[14,	3,	27,	4,	5,	15,	1]	
result,	table	=	coins(row,	{})	
traceback(row,	table)	

 
We get: 
 

Input	row	=		[14,	3,	27,	4,	5,	15,	1]	
Table	=		{0:	0,	1:	1,	2:	15,	3:	15,	4:	19,	5:	42,	6:	42,	7:	56}	
Selected	coins	are	[14,	27,	15]	and	sum	up	to	56	

	
Since table[7] equals table[5]	+	row[0], i.e., 56	=	42	+	14, we choose row[0]	=	
14 and increment the counter i by 2. Since table[5] equals table[3]	+	row[2], i.e., 
42	=	15	+	27, we pick row[2]	=	27 and increment i by 2.  We next check table[3], 
which is not equal to table[1]	+	row[4], i.e., 15	≠	1	+	5, so we increment i by 1. 
table[2] equals table[0]	+	row[5], i.e., 0	=	15	+	15, so we include row[5]	=	15. 
 
We now have an automated way of finding the optimum for an arbitrarily sized list. 
There is a small problem, however. For a list of size n, we end up calling the procedure 
with a list of size n – 1 and a list of size n – 2. Therefore, the number of calls for a list of 
size n is given by: 
 

An = An-1 + An-2 
 
If n = 40, An = 102,334,155. Not good L 
 
The reason for all these calls is the redundant work that the recursive coins function 
does. Below are the recursive calls coins makes for a length 5 list. We only indicate 
what the length of the list is below since it does not matter what the list elements are to 
chart recursive calls. 
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Can we make the recursive solution to this puzzle more efficient? 

Memoization 
 
Yes, we can, through a technique called memoization that eliminates redundant calls. We 
already have a dictionary for our coin row problem and all we need to do is to look up the 
dictionary table to see if we have already computed the solution to the problem! 
 
Here’s how memoization works in the recursive solution to our coin row problem. 
 
	1.	 def	coinsMemoize(row,	memo):	
	2.	 				if	len(row)	==	0:	
	3.	 								memo[0]	=	0	
	4.	 								return	(0,	memo)	
	5.	 				elif	len(row)	==	1:	
	6.	 								memo[1]	=	row[0]	
	7.	 								return	(row[0],	memo)	
	8.	 				if	len(row)	in	memo:	
	9.	 								return	(memo[len(row)],	memo)	
10.	 				else:	
11.	 								pick	=	coinsMemoize(row[2:],	memo)[0]	+	row[0]	
12.	 								skip	=	coinsMemoize(row[1:],	memo)[0]	
13.	 								result	=	max(pick,	skip)	
14.	 								memo[len(row)]	=	result									
15.	 								return	(result,	memo)	
 
The amazing thing is that we added 3 lines of code to get an exponential improvement in 
runtime. The memoized function only computes the solution to each problem once and 
stores it in the dictionary memo.  There are only len(row)	+	1 entries in memo, each is 
computed exactly once, but looked up many times. 
 
We renamed the variable table in coins to memo in coinsMemoize to reflect the 
different functionality of this variable. We are looking up the memo table during 
recursion in coinsMemoize to make the computation significantly more efficient, 
whereas variable table was only written and not read in coins. 
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Dynamic Programming 
 
Dynamic programming is a method for solving a problem by dividing it into a collection 
of simpler, possibly repeated and overlapping subproblems.  Dynamic programming 
differs from Divide and Conquer in that in the latter the subproblems are disjoint or non-
overlapping. For example, in Merge Sort or Quicksort the two arrays are disjoint. 
Similarly, in coin weighing, the coins are broken into disjoint groups. However, in our 
coin selection example, the two subproblems that we defined are overlapping, in the 
sense that they have coins in common. 
 
This overlap of subproblems means that we might solve some subproblems repeatedly. In 
dynamic programming, each of these subproblems is solved just once, and their solutions 
stored. The next time the same subproblem occurs, instead of recomputing its solution, 
one simply looks up the previously computed solution, thereby saving computation time. 
Each of the subproblem solutions is indexed in some way, typically based on the values 
of the subproblem’s input parameters, for efficient lookup. The technique of storing 
solutions to subproblems instead of recomputing them is called “memoization.” 
 

Exercises 
 
Puzzle Exercise 1: Solve a variant coin row problem where if you pick a coin you can 
pick the next one, but if you pick two in a row, you have to skip two coins. Write 
recursive, and recursive memoized versions of the variant problem where as before the 
objective is to maximize the value of selected coins.  To obtain the selected coins, write 
the code to trace back the coin selection. 
 
For our simple row example: 
 

[14,	3,	27,	4,	5,	15,	1]	
 
your code should produce: 
 

(61,	{0:	(0,	1),	1:	(1,	2),	2:	(16,	3),	3:	(20,	3),	4:	(20,	1),	
5:	(47,	2),	6:	(47,	1),	7:	(61,	2)})	

 
The maximum value 61 that can be selected corresponds to selecting 14, 27, 5, and 15. 
 
Hint: You will need to make three recursive calls to obey the new adjacency constraint 
and pick the maximum value obtained from these three calls. Instead of the two choices 
of pick a coin and skip a coin in the original problem, you will have to code three choices 
in this variant: skip a coin, pick a coin and skip the next, and pick two adjacent coins.  
You may find the recursive solution for this problem easier to write than the iterative 
solution. 
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