
11. Memory Serves You Well

The advantage of a bad memory is that one enjoys several times the same good things for
the first time. ― Friedrich Nietzsche

Here’s a cute coin row game that corresponds to an optimization problem. We have a set
of coins in a row all with positive values. We need to pick a subset of the coins to
maximize their sum, but with the additional constraint that we are not allowed to pick two
adjacent coins.

Given:

14	3	27	4	5	15	1

You should pick 14, skip 3, pick 27, skip 4 and 5, pick 15 and skip 1. This gives a total of
56, which is optimal. Note that alternately picking and skipping coins does not work for
this example (or in general). If we picked 14, 27, 5 and 1, we would only get 47. And if
we picked 3, 4, and 15, we would get a pathetic score of 22.

Can you find the maximum value for the coin row problem below?

3	15	17	23	11	3	4	5	17	23	34	17	18	14	12	15	

Programming constructs and algorithmic paradigms covered in this puzzle:
Dictionary creation and lookup. Exceptions. Memoization in recursive search.

1

sanwani
Line

sanwani
Line

sanwani
Line

sanwani
Line

The optimal value for the coin row problem

3	15	17	23	11	3	4	5	17	23	34	17	18	14	12	15	

is 126 obtained by selecting coins 15, 23, 4, 17, 34, 18, and 15.

Obviously, our goal is a general-purpose algorithm that we can code and run to find the
optimal selection. We will first use recursive search to solve this problem – we will recur
on different choices, picking a coin or skipping it. If we skip a coin, we have the choice
of either picking or skipping the next coin. The catch is that if we pick a coin, we are
forced to skip the next coin.

Recursive Solution

Here’s code that recursively solves the coin row problem.
		
	1.	 def	coins(row,	table):	
	2.	 				if	len(row)	==	0:	
	3.	 								table[0]	=	0	
	4.	 								return	0,	table	
	5.	 				elif	len(row)	==	1:	
	6.	 								table[1]	=	row[0]	
	7.	 								return	row[0],	table	
	8.	 				pick	=	coins(row[2:],	table)[0]	+	row[0]	
	9.	 				skip	=	coins(row[1:],	table)[0]	
10.	 				result	=	max(pick,	skip)	
11.	 				table[len(row)]	=	result	
12.	 				return	result,	table	

The procedure takes a coin row as input, which is assumed to be a list. It also takes a
dictionary table as input. The dictionary will contain information about the optimal
value for the original problem as well as subproblems of the original problem. The
dictionary will be empty for the initial call. The dictionary will get filled in during the
recursive search and will need to be passed to the recursive calls. Note that we could have
used a list representation for table, in which case we would have to allocate a table with
len[row]	+	1 entries beforehand. Using a dictionary will come in handy when we
memoize the coins procedure and other recursive procedures later in the book.

We have two base cases in Lines 2-7. The first base case is for the empty row, in which
case we simply return 0 as the maximum value, and the updated dictionary. The
dictionary table is updated with 0 as the value for key 0 as shown on Line 3. If the row
has length 1, then we can simply return the coin value as the maximum value. In the one
coin case, we update key 1 of the dictionary with the coin value (Line 6).

Lines 8 and 9 make recursive calls corresponding to picking or skipping the first coin on
the row, respectively. If we add the value row[0] to our value, then we had better not

	

pick row[1], and so the recursive call on Line 8 has row[2:] as the argument. This

2

means that the first two elements in the row are dropped, the first because we picked it,
and the second because of the adjacency constraint. On Line 9, we make a recursive call
with row[1:] as argument and without adding in the row[0] value. Because we did not
pick row[0] we are allowed to pick row[1] if we want to. Lines 10 figures out which of
the recursive calls won and uses that call’s value as the result and Line 11 fills in the
appropriate dictionary entry. In the general case, the key/index for the dictionary is the
length of the row for which we have computed the optimal value, and the value stored for
that key/index is the optimal value found for that row.

A word about how the recursion works. We are selecting or skipping coins from the
front of the list. So the smaller problems associated with the smaller length rows
correspond to dropping the elements from the front of the list, or the coins to the left of
the row. In our example:

14	3	27	4	5	15	1

the length 5 sublist that coins considers is the sublist:

27	4	5	15	1

If you are only interested in the maximum value that can be obtained for a coin row
problem we would simply return result and we would not even need table. But we
want to know what coins were picked. Suppose that someone solved the long coin row
problem (our second example) and told you that the optimal value was 126, you would
need quite some work to verify that. You would have to solve the coin row problem
yourself. The dictionary returned has the information necessary to efficiently figure out
what coins were picked and the trace back procedure we will describe shortly shows the
operations required.

If we run:

coins([14,	3,	27,	4,	5,	15,	1],	table={})	

It returns:

(56,	{0:	0,	1:	1,	2:	15,	3:	15,	4:	19,	5:	42,	6:	42,	7:	56})	

The first value is the optimal value, and the dictionary is printed between the curly braces
as a listing of key: value pairs. For example, table[0]	=	0, table[4]	=	19, table[7]	
=	56. The dictionary is telling us not only what the optimal value is for the original row
that has length 7, but is also telling us what the optimal value is for smaller coin row
problems so we can trace back the coin selection. For example, table[4] tells us that the
optimal value is 19 for the sublist corresponding to the last four elements of the list,
namely, 4,	5,	15,	1. The maximum value is obtained by picking 4 and 15.	
	
You might think that it would have been convenient to set the default value of the
dictionary table to {} in coins and not specify the second argument in the invocation.

3

Python has one copy of default arguments per function. As a result, using the default
argument on multiple coin row problems would result in spilling values over from the
previous instance of the problem. Mutable default arguments should be used with care!	
	
We will now show how to use the table values to conveniently trace back what coins
were picked.

Tracing Back Coin Selection

	1.	 def	traceback(row,	table):				
	2.	 				select	=	[]	
	3.	 				i	=	0	
	4.	 				while	i	<	len(row):	
	5.	 								if	(table[len(row)-i]	==	row[i])	or	\	
	5a.													(table[len(row)-i]	==	\	
	5b.														table[len(row)-i-2]	+	row[i]):	
	6.	 												select.append(row[i])	
	7.	 												i	+=	2	
	8.	 								else:	
	9.	 												i	+=	1												
10.	 				print	('Input	row	=	',	row)	
11.	 				print	('Table	=	',	table)	
12.	 				print	('Selected	coins	are',	select,	
																	'and	sum	up	to',	table[len(row)])	

The procedure traceback takes both the coin row and the dictionary as input. Note that
the keys of table range from 0 to len(row), inclusive, whereas the indices of row will,
as always, range from 0 to len(row)–1.

The procedure works backwards in looking at dictionary keys that are the largest, i.e.,
those that store information for the longest row problems. Line 5 is the crucial line in the
procedure. First, focus on the second part (after the first '\') of Line 5. If we are
working backwards from the end of the list and see two table entries table[len(row)-
i-1] and table[len(row)-i], where the latter is larger than the former by row[i], then
it means that we have picked the coin row[i] (this would be the i+1th coin on the row).
For example, suppose i	=	0. Then, the last two entries of the dictionary table are
compared. These correspond to the optimal solutions for the original problem skipping
the very first element (table[len(row)-1) and the original problem (table[len(row]),
respectively. If the latter is larger by row[0], it means that the optimal solution for the
original problem picked the first element row[0].

Why do we have the condition table[len(row)-i]	==	row[i] in the first part of Line
5? This is simply to take the corner case into account, when i	=	len(row)–1. In this
case, the second part of Line 5 would crash since len(row)-i-2	<	0. Thanks to the first
condition and the disjunctive or the second part is never executed – the first condition
will evaluate to True, since table[1] is always set to row[len(row)-1].

4

In general, if we pick row[i] we could not have picked row[i+1] and so we increment i
by 2 and keep going (Line 7). If we did not pick row[i], we increment i by 1 and keep
going (Line 9).

What happens for our example? Suppose we run:

row	=	[14,	3,	27,	4,	5,	15,	1]	
result,	table	=	coins(row,	{})	
traceback(row,	table)	

We get:

Input	row	=		[14,	3,	27,	4,	5,	15,	1]	
Table	=		{0:	0,	1:	1,	2:	15,	3:	15,	4:	19,	5:	42,	6:	42,	7:	56}	
Selected	coins	are	[14,	27,	15]	and	sum	up	to	56	

	
Since table[7] equals table[5]	+	row[0], i.e., 56	=	42	+	14, we choose row[0]	=	
14 and increment the counter i by 2. Since table[5] equals table[3]	+	row[2], i.e.,
42	=	15	+	27, we pick row[2]	=	27 and increment i by 2. We next check table[3],
which is not equal to table[1]	+	row[4], i.e., 15	≠	1	+	5, so we increment i by 1.
table[2] equals table[0]	+	row[5], i.e., 0	=	15	+	15, so we include row[5]	=	15.

We now have an automated way of finding the optimum for an arbitrarily sized list.
There is a small problem, however. For a list of size n, we end up calling the procedure
with a list of size n – 1 and a list of size n – 2. Therefore, the number of calls for a list of
size n is given by:

An = An-1 + An-2

If n = 40, An = 102,334,155. Not good L

The reason for all these calls is the redundant work that the recursive coins function
does. Below are the recursive calls coins makes for a length 5 list. We only indicate
what the length of the list is below since it does not matter what the list elements are to
chart recursive calls.

5

Can we make the recursive solution to this puzzle more efficient?

Memoization

Yes, we can, through a technique called memoization that eliminates redundant calls. We
already have a dictionary for our coin row problem and all we need to do is to look up the
dictionary table to see if we have already computed the solution to the problem!

Here’s how memoization works in the recursive solution to our coin row problem.

	1.	 def	coinsMemoize(row,	memo):	
	2.	 				if	len(row)	==	0:	
	3.	 								memo[0]	=	0	
	4.	 								return	(0,	memo)	
	5.	 				elif	len(row)	==	1:	
	6.	 								memo[1]	=	row[0]	
	7.	 								return	(row[0],	memo)	
	8.	 				if	len(row)	in	memo:	
	9.	 								return	(memo[len(row)],	memo)	
10.	 				else:	
11.	 								pick	=	coinsMemoize(row[2:],	memo)[0]	+	row[0]	
12.	 								skip	=	coinsMemoize(row[1:],	memo)[0]	
13.	 								result	=	max(pick,	skip)	
14.	 								memo[len(row)]	=	result									
15.	 								return	(result,	memo)	

The amazing thing is that we added 3 lines of code to get an exponential improvement in
runtime. The memoized function only computes the solution to each problem once and
stores it in the dictionary memo. There are only len(row)	+	1 entries in memo, each is
computed exactly once, but looked up many times.

We renamed the variable table in coins to memo in coinsMemoize to reflect the
different functionality of this variable. We are looking up the memo table during
recursion in coinsMemoize to make the computation significantly more efficient,
whereas variable table was only written and not read in coins.

6

Dynamic Programming

Dynamic programming is a method for solving a problem by dividing it into a collection
of simpler, possibly repeated and overlapping subproblems. Dynamic programming
differs from Divide and Conquer in that in the latter the subproblems are disjoint or non-
overlapping. For example, in Merge Sort or Quicksort the two arrays are disjoint.
Similarly, in coin weighing, the coins are broken into disjoint groups. However, in our
coin selection example, the two subproblems that we defined are overlapping, in the
sense that they have coins in common.

This overlap of subproblems means that we might solve some subproblems repeatedly. In
dynamic programming, each of these subproblems is solved just once, and their solutions
stored. The next time the same subproblem occurs, instead of recomputing its solution,
one simply looks up the previously computed solution, thereby saving computation time.
Each of the subproblem solutions is indexed in some way, typically based on the values
of the subproblem’s input parameters, for efficient lookup. The technique of storing
solutions to subproblems instead of recomputing them is called “memoization.”

Exercises

Puzzle Exercise 1: Solve a variant coin row problem where if you pick a coin you can
pick the next one, but if you pick two in a row, you have to skip two coins. Write
recursive, and recursive memoized versions of the variant problem where as before the
objective is to maximize the value of selected coins. To obtain the selected coins, write
the code to trace back the coin selection.

For our simple row example:

[14,	3,	27,	4,	5,	15,	1]	

your code should produce:

(61,	{0:	(0,	1),	1:	(1,	2),	2:	(16,	3),	3:	(20,	3),	4:	(20,	1),	
5:	(47,	2),	6:	(47,	1),	7:	(61,	2)})	

The maximum value 61 that can be selected corresponds to selecting 14, 27, 5, and 15.

Hint: You will need to make three recursive calls to obey the new adjacency constraint
and pick the maximum value obtained from these three calls. Instead of the two choices
of pick a coin and skip a coin in the original problem, you will have to code three choices
in this variant: skip a coin, pick a coin and skip the next, and pick two adjacent coins.
You may find the recursive solution for this problem easier to write than the iterative
solution.

7

MIT OpenCourseWare
https://ocw.mit.edu

6.S095 Programming for the Puzzled
January IAP 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

