
MIT 6.S096	 Assignment 2, Problem 1

Problem 1: Linked List Library (list)
In this problem we will learn how to write code distributed over multiple files that is compiled together
and linked into one application. Download the zipped folder provided in the file list.zip as a basis
of your program and take a look at the existing code.

First notice the directory structure. The zipped folder contains an include/ directory, a Makefile
which is much larger than the one we’ve been using in the past, a GRADER_INFO.txt file, and a src/
directory. In general, all of our header (.h) files will be found in include/ while all of our source (.c)
files will be in src/. This is visually represented in Figure 1 on the left. Now, let’s run make (just the
command make, with nothing following that one word).

I-- GRADER INFO.txt
I-- include

I-- GRADER INFO.txt
I I-- list.h

I-- include/
I \-- s096.h

I I-- list.h
I-- list-test.x

I \-- s096.h ⇒ I-- Makefile
I-- Makefile

\-- src
\-- src/

I-- list.c
I-- list.c

I-- list.o
\-- test.c

I-- test.c
\-- test.o

Figure 1: Project directory structure before and after build

Notice there have been three files created: for every .c file, there’s been a .o object file created. These
files are linked together into the list-text.x program, which you can run. Some important points:

•	 All of the implementation code you will write should go in the list.c file.

•	 GRADER INFO.txt is a file for the grader (don’t edit!) containing the usual PROG: list, LANG: C

•	 Important information for submitting your code: you should submit a zipped folder using the

same directory structure as the provided zip file. We’ve added a section in the Makefile for your

convenience: if you type make zip in the same folder as your project, a zip file containing all

of your code and the required headers will be constructed in the project directory and you can

upload that to the grader.

We are provided a header file describing the interface for the List data structure. Three functions have al­
ready been defined for you in list.c: the code to create an empty list with no items: List empty list(void);
the code to destroy all the items in a list: void list clear(List *list); and some code to print
out a representation of a provided list: void list print(List list);.

Look in the file list.c to find the functionality required of the other functions, which you will write.

1

MIT 6.S096	 Assignment 2, Problem 1

#ifndef 6S096 LIST H
#define 6S096 LIST H

#include <stddef.h>

typedef struct List node s List node;

struct List s {
size t length;
List node *front;

};
typedef struct List s List;

// Code you are provided
List empty list(void);
void list clear(List *list);
void list print(List list);

// Code you will write
void list append(List *list, int value);
void list insert before(List *list, int insert, int before);
void list delete(List *list, int value);

void list apply(List *list, int (*function ptr)(int));
int list reduce(List list, int (*function ptr)(int, int));

#endif // 6S096 LIST H

Some questions to ask yourself for understanding:

•	 How do you read the arguments to list apply and list reduce? Re-read this article.

•	 How is this a valid header to include when we don’t ever define what the struct List node s
really is?

•	 Why do we sometimes pass a pointer to a List struct and other times pass by value? When might
we want to do it this way and when might we want to be more consistent?

Input Format
Not applicable; your library will be compiled into a testing suite, your implemented functions will be
called by the program, and the behavior checked for correctness. For example, here is a potential test:

2

http://www.unixwiz.net/techtips/reading-cdecl.html

MIT 6.S096 Assignment 2, Problem 1

#include "list.h"
#include <stdio.h>

void test print list(void) {
int N = 5;
List list = empty list();

for(int i = 0; i < N; ++i) {
list append(&list, i);

}

list print(list);
list clear(&list);
return 0;

}

Upon calling this function, the code outputs

{ 0 -> 1 -> 2 -> 3 -> 4 }

You are strongly encouraged to write your own tests in test.cpp so that you can try out your imple­
mentation code before submitting it to the online grader.

Output Format
Not applicable.

WARNING! FREE YOUR MEMORY!

This problem is only worth 300 points on the online submission system when
you upload it. This is because your code will be checked for memory leaks.
No memory leaks (a clean run in valgrind on our side) earns full points for a
total of 400. Egregiously bad allocation, incorrect memory accesses, and lack
of cleanup can result in as low as 300 points out of 400 maximum, even if all
test cases are passing.

3

MIT OpenCourseWare
http://ocw.mit.edu

6.S096 Effective Programming in C and C++
IAP 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

