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Reminder: Causal effects 

� Potential outcomes under treatment and control, ! 

!

" # !  $ 

� Covariates and treatment, %# & 
% & 

� Conditional average treatment effect (CATE)
'(&) % * +  ! " , !  $ - %  

Potential outcomes Features 
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Today: Treatment policies/regimes 

� A policy assigns treatments to patients . 

(typically depending on their medical history/state) 

� Example: For a patient with medical history /, 
0(/) = 3['(&) / > 0]

“Treat if effect is positive” 

� Today we focus on policies guided by clinical outcomes 
(as opposed to legislation, monetary cost or side-effects) 
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Example: Sepsis management 

� Sepsis is a complication of an infection which 
can lead to massive organ failure and death 

� One of the leading causes of death in the ICU 

� The primary treatment target is the infection 

� Other symptoms need management: 
breathing difficulties, low blood pressure, … 
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Time
Sedation? Vasopressors?

Unobserved
responses

Observed
decisions 
& response

Recall: Potential outcomes 

Mechanical ventilation? 

Septic patient with
breathing difficulties 

1. Should the patient be put on
mechanical ventilation? 

!(0) 

!(1) 
& 

% 

Blood 
oxygen 
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Today: Sequential decision making 

� Many clinical decisions are made in sequence 

� Choices early may rule out actions later 

� Can we optimize the policy by which actions are made? 
(9 

78 79 7: 

7
;8 ;9 ;: 

<8 <9 <: 
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Time
Sedation? Vasopressors?

Unobserved
responses

Observed
decisions 
& response

Recall: Potential outcomes 

Mechanical ventilation? 

Septic patient with
breathing difficulties 

1. Should the patient be put on
mechanical ventilation? 
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Time
Vasopressors?

Unobserved
responses

Observed
decisions 
& response

Example: Sepsis management 

Mechanical ventilation? Sedation? 

Septic patient with
breathing difficulties 

2. Should the patient be
sedated? 

(To alleviate discomfort due
to mech. ventilation) 
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Time

Unobserved
responses

Observed
decisions 
& response

Example: Sepsis management 

Mechanical ventilation? Sedation? Vasopressors? 

Septic patient with
breathing difficulties 3. Should we 

artificially raise
blood pressure? 

(Which may have
dropped due to

sedation) 
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Example: Sepsis management 

Observed 
decisions 
& response 

Septic patient with
breathing difficulties 

Mechanical ventilation? Sedation? Vasopressors? 
Time 
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Mechanical ventilation? Sedation? Vasopressors?

Finding optimal policies 

� How can we treat patients so that their 
outcomes are as good as possible? 

� What are good outcomes? 

� Which policies should we consider? 

Outcome 
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Success stories in popular press 

� AlphaStar 
� AlphaGo 
� DQN Atari 
� Open AI Five 

AlphaStar © DeepMind, AlphaGo © source unknown, Atari © Nature/Google DeepMind/Atari Interactive, Dota 2 © Valve, and robots © Peter 
Pastor. All rights reserved. This content is excluded from our Creative Commons license. 
For more information, see https://ocw.mit.edu/help/faq-fair-use/ 12
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Reinforcement learning 
Game state <8

Possible actions (8

Next state <9

� Maximize reward! 

 
  

 

   

 

Reward ;9
(Loss) 

© Tim Hibal. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/
13

https://tim.hibal.org
https://ocw.mit.edu/help/faq-fair-use/


     

    

    

  

Great! Now let’s treat patients 

� Patient state at time <= is like the game board 

� Medical treatments (= are like the actions 

� Outcomes ;= are the rewards in the game 

� What could possibly go wrong? 

78 79 7: 

(9 

7
;8 ;9 ;: 

<8 <9 <: 
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1. Decision processes 

2. Reinforcement learning 

3. Learning from batch (off-policy) data 

4. Reinforcement learning in healthcare 
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Decision processes 

� An agent repeatedly, at 
times 7 takes actions (= Agent 
to receive rewards ;= 
from an environment, Reward ;= Action (= 
the state <= of which is 
(partially) observed Environment 

State <= 
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Decision process: Mechanical ventilation 
;= * ;=@A=BCD E ;=@FG=>HII E ;=@FG=>HG 

Reward!$# 

Environment 

State

Agent 

!%# 

;: 

Time 
Mechanical ventilation? Sedation? Spontaneous breathing trial? 

<9# ;9 

(8 
(9 (? 

Action!"# 

<?# ;? 

<8 
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Decision process: Mechanical ventilation 

� State <= includes demographics, 
physiological measurements, 
ventilator settings, level of 
consciousness, dosage of 
sedatives, time to 
ventilation, number of 
intubations <9 

<? 

<8 
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Decision process: Mechanical ventilation 

� Actions (= include intubation 
and extubation, as well as 
administration and dosages of 
sedatives (8 

(?(9 
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Decision processes 

� A decision process specifies how states <=, actions (=, and 
rewards ;= are distributed: J(<8, …  , <:, (8, …  , (:, ;8, …  , ;:) 

� The agent interacts with the environment according to a 
behavior policy L = J((= ∣ ⋯ )* 

* The depends on the type of agent …	 20



     

 

Markov Decision Processes 

� Markov decision processes (MDPs) are a special case 

� Markov transitions: 
J <= <8, …  , <=N9, (8, …  , (=N9 = J(<= ∣ <=N9, (=N9) 

� Markov reward function: J ;= <=, (= = J  ;= <8, … , <=N9, (8, … , (=N9 

� Markov action policy L = J((= ∣ <=) = J  (= <8, … , <=N9, (8, … , (=N9 
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Markov assumption 

� State transitions, actions and reward depend only on most 
recent state-action pair 

(8 (: 

…	 
<8 <9 <: 

;8 ;: 
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Contextual bandits (special case)* 

� States are independent: J <= <=N9, (=N9 = J(<=)

� Equivalent to single-step case: potential outcomes! 

(8 (: 

…	 
<8 <9 <: 

;8 ;: 

* The term “contextual bandits” has connotations of efficient exploration, which is not addressed here 23



       
    

Contextual bandits & potential outcomes 

� Think of each state <A as an i.i.d. patient, the actions (A as the 
treatment group indicators and ;A as the outcomes 

(8 (: 

…	 
<8 <: 

;8 ;: 
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Goal of RL 

� Like previously with causal effect estimation, we are interested 
in the effects of actions (= on future rewards 

(8 (: 

…	 
<8 <9 <: 

;8 ;: 
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Value maximization 

� The goal of most RL algorithms is to maximize the expected 
cumulative reward—the value OP of its policy 0 

� Return: Q= : Sum of future rewards = ∑DS= ;D 

� Value: OP = +TU∼P Q8 Expected sum of rewards under policy 0 

� The expectation is taken with respect to scenarios acted out 
according to the learned policy 0 
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Example 
Value 

G 

OP ≈ 
Z

1
[QG 

� Let’s say that we have data from a policy 0 AS9 

X?
9 = 0  Return XW

9 = 1  
X9
9 = 1  ;9

9 

;W
9 Q9 = ;9

9 + ;?
9 + ;W

9 

;?
9

Patient 1 

Patient 2 XW
? = 1

X9
? = 0  X?

? = 1  Q? = ;9
? + ;?

? + ;W
? 

;9
? 

;?
? 

;W
? 

Patient 3 

;9
W 

X?
W = 0X9

W = 0  

XW
W = 0;?

W 

;W
W 

QW = ;9
W + ;?

W + ;W
W 
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Robot in a room 

� Stochastic actions 
J Move up ( = ”cJ” = 0.8 

+1Available non-opposite moves 
have uniform probability 

−1 

� Rewards: 
+1 at [4,3] (terminal state) Start 
-1 at [4,2] (terminal) 
-0.04 per step 

Slide from Peter Bodik 28



  

 
	
  

 

    
 
 

   

Robot in a room 

� Stochastic actions 
J Move up ( = ”cJ” = 0.8
Available non-opposite moves 
have uniform probability 

� Rewards: 
+1 at [4,3] (terminal state) 
-1 at [4,2] (terminal) 
-0.04 per step 

Slide from Peter Bodik 

What is the optimal policy? 

? ? ? +1 

? ? −1 

? ? ? ? 
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Robot in a room 

� The following is the optimal 
policy/trajectory under +1
deterministic transitions 

  

   

 

   
  

   

−1
� Not achievable in our 

stochastic transition model 

Slide from Peter Bodik 30



Robot in a room 

� Optimal policy 

+1
� How can we learn this? 

−1
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1. Decision processes

2. Reinforcement learning

3. Learning from batch (off-policy) data

4. Reinforcement learning in healthcare
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Paradigms* 

Model-based RL 

Transitions 
J <= <=N9, (=N9 

G-computation 
MDP estimation 

Value-based RL 

Value/return 
J Q= <=, (= 

Q-learning 
G-estimation 

Policy-based RL 

Policy 
J((= ∣ <=)

REINFORCE 
Marginal structural models 

*We focus on off-policy RL here 33



  

   

ode sed RL

Transition

m utatio
DP estimatio

lic sed R

lic

EINFORC
ar inal structural models

M l ba Po y ba L

s Po y
< <

co p n R E
M n M g

Paradigms* 

Model-based RL Value-based RL Policy-based RL 

Transitions Value/return Policy 
# ( J Q= <=# (= J1( - <J1(= - <=22JJ <== <=N9=N9# (=N9=N9 = = 

G-computationG Q-learning REINFORCE 
MDP estimation G-estimation Marginal structural models 

*We focus on off-policy RL here 34
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Dynamic programming 

� Assume that we know how 
good a state-action pair is 

� Q: Which end state is the 
best? A: [4,3] 

Start 
� Q: What is the best way to get 

there? A: Only [3,1] 

Slide from Peter Bodik 35



Dynamic programming 

� [2,1] is slightly better than [3,2] 
because of the risk of 
transitioning to [4,2] from [3,2] 

� Which is the best way to [2,1]? 

Start 

+1

−1

[2,1] 

[3,2] [4,2]

  
    

  

    

   Slide from Peter Bodik 36



Dynamic programming 

� The idea of dynamic 
programming for +1
reinforcement learning is to 
recursively learn the best 

−1action/value in a previous 
state given the best 
action/value in future states 

   
 
  

  
   

   
   

   Slide from Peter Bodik 37



Dynamic programming 

� Next: How do we get the 
value of each state? +1

−1

    
   

   Slide from Peter Bodik 38



     

       

  

    

Q-learning

� Q-learning is a value-based reinforcement learning method 

� Recall: The value of a state i under a policy 0 is 
ojP i ≔ +P Q= ∣ <= = i ≔ +P ∑mS8 l

m;=nm ∣ <= = i

Reward discount factor* 

*Mathematical tool more than anything 39



     

      

      
  

    

Q-learning

� Q-learning is a value-based reinforcement learning method 

� The value of a state i under a policy 0 is 
ojP i ≔ +P Q= ∣ <= = i ≔ +P ∑mS8 l

m;=nm ∣ <= = i

Reward discount factor* 

� The value of a state-action pair i, X is 
pP i, X ≔ +P Q= ∣ <= = i, (= = X

*Mathematical tool more than anything 40



     
 

	

     

Q-learning 

� Q-learning attempts to estimate q. with a function r(i, X) such 
that 0 is the deterministic policy 

0 i =  arg maxx r(i, X) 

� The best r is the best state-action value function 

i, X = max pP(i, X) =: p
∗(i, X) r∗ 

P 

41



 

      

  

    

   

Bellman equation 

� For the optimal Q-function p∗, “Bellman optimality” holds*

p∗ i, X = +P ;=
B{ 

p∗(<=n9, X
{) ∣  <= = i, (= = X+ l  max 

State-action value Immediate reward Future (discounted) rewards* 

� Look for functions with this property! 

*A necessary property for optimality of dynamic programming 42



     
      

   

          

Q-learning with discrete states 

� If states are discrete, i ∈ {0, … , ~}, Q-learning can be solved 
exactly using dynamic programming (for small enough ~)* 

� Initialize a table of r i, X 

� Repeat 

r <=, (= ← r  <=, (= + Å  ;= + lmax r(<=n9, X) − r(<=, (=)
B 

Learning rate 

*Converges to the optimal p∗ if all state-action pairs visited over and over again 43



  

   
  

      
   

  

Q-learning with discrete states
Q-table

1. Initialize r i, X = 0, let Å, l = 1

2. Repeat
-0.04 -0.04 -0.04 -0.04 0.96 +1

-0.04 -0.04r <=, (= ← r <=, (= + Å  ;= + lmax r(<=n9, X) − r(<=, (=)
B 

-0.04 -0.04

-1.04 -1Assume that transitions are 
-0.04-0.04deterministic for now 

-0.04 -0.04 -1.04

-0.04 -0.04 -0.04 -0.04 -0.04 -0.04Let each state-pair be visited in
order, over and over* 

* We will come back to this 44



  

Q-learning with discrete states
Q-table

1. Initialize r i, X = 0, let Å, l = 1

2. Repeat
-0.08 -0.08 0.92 -0.08 0.96 +1

r <=, (= ← r <=, (= + Å  ;= + lmax r(<=n9, X) − r(<=, (=) -0.08 -0.08B 

-0.08 0.92

-1.04 -1
-0.08 -0.08

-0.08 -0.08 -1.04

-0.08 -0.08 -0.08 -0.08 -0.08 -0.08
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Q-learning with discrete states
Q-table

1. Initialize r i, X = 0, let Å, l = 1

2. Repeat
0.88 -0.12 0.92 0.88 0.96 +1

-0.12 0.88 r <=, (= ← r <=, (= + Å  ;= + lmax r(<=n9, X) − r(<=, (=)
B 

-0.12 0.92 

-1.04 -1
-0.12 -0.08

-0.12 0.88 -1.04

-0.12 -0.12 -0.12 -0.12 -0.12 -0.12
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Q-learning with discrete states 
Q-table 

1. Initialize r i, X = 0, let Å, l = 1 

2. Repeat 
0.88 0.84 0.92 0.88 0.96 +1 

-0.16 0.88 r <=, (= ← r  <=, (= + Å  ;= + lmax r(<=n9, X) − r(<=, (=)
B 

0.84 0.92 

-1.04 -1 
-0.16 0.84 

-0.16 0.88 -1.04 

-0.16 -0.16 0.84 -0.16 -0.16 0.84 
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Q-learning with discrete states

1. Initialize r i, X = 0, let Å, l = 1

2. Repeat
r <=, (= ← r <=, (= + Å ;= + lmax

B
r(<=n9, X) − r(<=, (=)

+1

-1

0.88

0.880.920.840.88

0.84

-0.18
0.80

0.80 0.84-0.18 0.800.80 0.84

-1.04

-1.04

0.88

0.84

0.92

0.80

Q-table

0.96

48



Q-learning with discrete states

1. Initialize r i, X = 0, let Å, l = 1

2. Repeat
r <=, (= ← r <=, (= + Å ;= + lmax

B
r(<=n9, X) − r(<=, (=)

+1

-1

0.96

0.88

0.880.920.840.88

0.84

0.76
0.80

0.80 0.840.76 0.800.80 0.84

-1.04

-1.04

0.88

0.84

0.92

0.80

Q-table
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Fitted Q-learning (with function approximation)

� If the number of states ~ is large or <= is not discrete, we
cannot maintain a table for r i, X

� Instead, we may represent r i, X by a function rÇ and
minimize the risk

; rÇ = +P ; + lmax
BÉ

rÑ <′, ({ − rÇ <, (
?

Current estimateOld estimate of r
50



Bellman equation (one step)

� In the one-step case (no future states)

; rÇ = +P ;= + lmax
BÉ

rÑ <′, X{ − rÇ <, (
?

= +P ;= − rÇ <, (
?

� Finding p(i, X) is analogous to finding expected potential
outcomes + ; X ∣ < = i in the one-step case!
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Recall: Potential outcomes 

Regression adjustment 
Control outcome 

IE[Y(O) IX] 

. ...... 

 , ... ,,

--
--

., 
Treated outcome 

, .. ,,' .

;
7

•
IE[Y(l) IX]

........
.

 ........ . .
.......

........
 

........ . . . . �-'• 
_.._,_

 ............ .
 
---

�-
 

.... -. -  ----. • 

X 
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Fitted Q-learning as covariate adjustment

� Fitted Q-learning is like covariate adjustment (regression) with
a moving target (which is updated during learning)

; rÇ = +P QÑ <, (, <{, ; − rÇ <, (
	?

PredictionTargetExpectation over transitions	(i, X, i{, å)

Choice of loss, (here squared)

≔ ; + lmax
BÉ

rÑ <′, X{

53



Off-policy learning

� Where does our data come from?

; rÇ = +P ; + lmax
BÉ

rÑ <′, X{ − rÇ <, (
?

� ”What are the inputs and outputs of our regression?”

� Alternate between updates of rÑ and rÇ

How do we evaluate this expectation?

54



Exploration in RL

� Tuples i, X, i{, å may be obtained by:
� On-policy exploration—“Playing the game” with the current policy

� Randomized trials—Executing a sequentially random policy
� Off-policy (observational)—E.g., healthcare records

� The latter is most relevant to us!

55



1. Decision processes

2. Reinforcement learning paradigms

3. Learning from batch (off-policy) data

4. Reinforcement learning in healthcare
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Off-policy learning

� Trajectories i9, X9, å9 , … , i:, X:, å: ,of states i=, actions X=,
and rewards å= observed in e.g. medical record

� Actions are drawn according to a behavior policy L, but we
want to know the value of a new policy 0

� Learning policies from this data is at least as hard as
estimating treatment effects from observational data

57



Assumptions for (off-policy) RL

� Sufficient conditions for identifying value function

Strong ignorability:
!(0), !(1) ⫫ & ∣ %

“No hidden confounders”

Overlap: 
∀/, 7: 	J & = 7 % = / > 0

“All actions possible”

Single-step case Sequential case

Sequential randomization:
Q … ⫫ (= ∣ <=è , (̅=N9

“Reward indep. of policy given history”

Positivity: 
∀X, 7: 	J (= = X <=è , (̅=N9	 > 0

“All actions possible at all times”
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Single-step case

Strong ignorability:
!1$2# !1"2 ç & - %

“No hidden confounders”

Overlap: 
é/# 7z >J & * 7 % * / 5 $

“All actions possible”

Positivity: 
éX# 7z >J (= * X <=è # (ê=N9> 5 $

“All actions possible at all times”

Single-step case

Strong ignorability:
!1$2# !1"2 ç & - %

“No hidden confounders”

Overlap: 
é/# 7z J & * 7 % * / 5 $

“All actions possible”

Positivity: 
éX# 7z J (= * X <=è # (ê=N9 5 $

“All actions possible at all times”

Assumptions for (off-policy) RL

� Sufficient conditions for identifying value function 

Sequential case

Sequential randomization:
Q K ç (= - <=è # (ê=N9>

“Reward indep. of policy given history”
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Recap: Learning potential outcomes

Medication B
“Treated”
! " #

Medication A
“Control”
! " $

Age = 54
Gender = Female

Race = Asian

Blood pressure = 150/95

WBC count = 6.8*109/L

Temperature = 36.7°C

Blood sugar = High

Anna

Gender = Female

Sep 15 

Blood sugar = ?
%&$'

Blood sugar = ?
%&#'

May 15 
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Treating Anna once
� We assumed a simple causal graph. This let us identify the causal effect

of treatment on outcome from observational data

Treatment, (

Outcome, ;

State, < Effect of treatment ;(X) ⫫ ( ∣ <

Ignorability

Potential outcome under
action X
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Treating Anna over time
� Let’s add a time point…

(9

;9

<9

;?

(?

<?

7 = 1 7 = 2

;=(X) ⫫ (= ∣ <=

Ignorability
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Treating Anna over time
� What influences her state?

(9

;9

<9

;?

(?

<?

It is likely that if Anna is diabetic, she will remain so

Anna’s health status depends on how we treated her

;=(X) ⫫ (= ∣ <=

Ignorability
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Treating Anna over time
� What influences her state?

(9

;9

<9

;?

(?

<?

The outcome at a later time may depend on an earlier state

The outcome at a later time point may depend on earlier choices

;=(X) ⫫ (= ∣ <=

Ignorability
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Treating Anna over time
� What influences her state?

(9

;9

<9

;?

(?

<?

If we already tried a treatment,
we might not try it again

If the last treatment was unsuccessful, 
it may change our next choice

If we know that a 
patient had a 

symptom previously, 
it may affect future 

decisions

;=(X) ⫫ (= ∣ <=

Ignorability
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State & ignorability
� To have sequential ignorability, we need to remember history!

(9

;9

<9

;?

(?

<?

History ë?
(9

;9

ë9

;?

(?

ë?
;=(X) ⫫ (= ∣ ë=

Ignorability
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Summarizing history

� The difficulty with history is that its size grows with time

� A simple change of the standard MDP is to store the states
and actions of a length í window looking backwards

� Another alternative is to learn a summary function that
maintains what is relevant for making optimal decisions,
e.g., using an RNN

67



State & ignorability 

► We cannot leave out unobserved confounders

Unobserved confounder, u
Unobserved confounder, U
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What made success possible/easier?
� Full observability

Everything important to optimal action is observed

� Markov dynamics
History is unimportant given recent state(s)

� Limitless exploration & self-play through simulation
We can test “any” policy and observe the outcome

� Noise-less state/outcome (for games, specifically)
AlphaGo © source unknown, Atari © Nature/Google
DeepMind/Atari Interactive, Dota 2 © Valve, and robots ©
Peter Pastor. All rights reserved. This content is excluded
from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faq-fair-use/
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1. Decision processes

2. Reinforcement learning paradigms

3. Learning from batch (off-policy) data

4. Reinforcement learning in healthcare. Tomorrow!
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