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Outline of today’s	 lecture 

1. Recap of risk stratification 

2. Physiological time-series 
– Monitoring babies in	 neonatal ICUs 
– Detecting atrial fibrillation 
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Survival modeling with right-censored 
data 

Event occurrence 
e.g., death, divorce, college	 graduation

Censoring 

T 

[Wang,	 Li,	 Reddy. Machine Learning for Survival Analysis: A Survey. 2017] 
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Notation and formalization 
• f(t)	 = be the probability of death at	 time t
• Survival 	function: S(t) = P(T > t) =

∞ 

f (x)dx .
t 

Time in years

Fig. 2: Relationship among different entities f(t), F (t) and S(t). 

[Wang,	 Li,	 Reddy. Machine Learning for Survival Analysis: A Survey. 2017] 
[Ha,	 Jeong,	 Lee. Statistical Modeling of Survival Data with Random Effects. Springer 2017] 4
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1

t
p✓ (a |x)da

Maximum likelihood estimation 

• Two kinds of observations: censored and uncensored
Uncensored likelihood 

p✓ (T = t | x) = f(t) 

Censored likelihood 
Z 

censoredp (t | x) =  p✓ (T > t | x) =  S(t)✓ 

• Putting the two together, we get:
nX

censoredbi log p (t | x) + (1 bi) log p✓ (t | x)✓ 
i=1

Optimize via gradient or stochastic gradient ascent! 
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Evaluation for survival modeling 

• Concordance-index (also called C-statistic): look at
model’s ability to predict	 relative survival times:

X X
ĉ = 

1 
I[S(ŷ

j |Xj ) > S(ŷ
i

|X
i

)]
num 

i: bi = 0
j:y

i

<y

j

• 

Black = uncensored 
Red = censored 

Illustration – blue lines denote pairwise comparisons: 

1y 2y 3y 4y 5y

• Equivalent to AUC for binary variables and no censoring

[Wang,	 Li,	 Reddy. Machine Learning for Survival Analysis: A Survey. 2017] 
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Final thoughts on survival modeling 

• Could also evaluate: 
– Mean-squared error for uncensored individuals 
– Held-out (censored) likelihood 

– Derive binary classifier from learned model and 
check calibration 

• Partial likelihood estimators (e.g. for cox-
proportional hazards models) can	 be much	 
more data efficient 
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Dealing with non-stationarity 

• Baseline: Retrain the model with most recent 
data 

• How to best use historical data? 
– Impute or transform historical data to look like 
current data (e.g., Ganin et al., JMLR ‘16) 

– Reweight historical data to look like current data 
(see e.g. Sugiyama and Kawanabe,	 ‘12) 

– Online algorithm that adapts quickly 
(see e.g. Shen et al. AI Stats ‘18) 

8



	 	 	

	 	 	 	

	 	 	 	
	 	 	

Recap of risk stratification 

• Classification vs. survival modeling 
(regression) 

• Causal interpretation of predictive features 
• Imputation of missing data 
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Outline of today’s	 lecture 

1. Recap of risk stratification 

2. Physiological	 time-series 
– Monitoring babies in	 neonatal ICUs 
– Detecting atrial fibrillation 
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Physiological time-series 

 

 

 

 

 

 

Fig. 4. Probes used to collect vital signs data from an infant in intensive care. 
1) Three-lead ECG, 2) arterial line (connected to blood pressure transducer), 
3) pulse oximeter, 4) core temperature probe (underneath shoulder blades), 5) 
peripheral temperature probe, 6) transcutaneous probe. 
© IEEE. All rights reserved. This content is excluded from our Creative Commons 
license. For more information, see https://ocw.mit.edu/help/faq-fair-use/ (Quinn et al.,	 TPAMI 2008) 11
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Physiological time-series 

• Typical use cases: 
1. Infer true physiological signal from noisy observations 
2. Risk stratification, e.g. predict clinical deterioration, or 

diagnosis 

• Approach taken depends on: 
– Is labeled data available? 

– Do we have a good mechanistic/statistical model? 

– How much training data is there? 
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Problem: measurements confounded by 
interventions &	 measurement errors 
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Can we identify the artifactual 
processes? 

• Once identified, can remove for use in downstream 
predictive tasks (must deal with	 missing data) 

• Can help mitigate alarm fatigue by not alerting the 
clinicians when unnecessary 

• More broadly, can we maintain beliefs about the true 
physiological values of a patient? 
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(Switching)	 linear dynamical systems 

• Conditioned on st,	 linear Gaussian state-space 
models (Kalman filters): 
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(Switching)	 linear dynamical systems 

• Full model: 

xt�1 xt xt+1State 

	 	

	

	 st�1 st st+1 
Confounding 
factors (e.g. 
artifactual events) 

yt�1 yt yt+1Observations 
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Learning SLDS models 

• Assume some labeled training data {s,y} 
• True state x assumed	 to never	 be observed 

• Learn using expectation maximization 

State 

Confounding 
factors (e.g. 
artifactual events) 

Observations 

st�1 st st+1 

xt�1 xt xt+1 

yt�1 yt yt+1 

	 	

	 	 	 	 	
	 	 	 	
	 	 	

	Update 
model 

Impute 
variables 
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Parameterizing model 

• Normal heart rate dynamics are well-modeled 
using an	 autoregressive process, e.g. 
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Parameterizing model 

• One can use domain knowledge to specify 
parts of the artifacts model 
– Probe dropouts modeled by removing 
dependence of observation	 yt on patient state xt 

– Temperature probe disconnection: exponential 
decay to room temperature 

State 

Confounding 
st�1 

xt�1 xt xt+1 

yt�1 yt yt+1 

st st+1factors (e.g. 
artifactual events) 

Observations 
20



	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	

	 	 	

Evaluation 

• 3-fold cross validation, where for each fold 
train on 10 babies and test	 on 5 

• 24-hours of data for each	 baby 

• Normal dynamics refit for test babies using a 
30-minute section near the start 

21 (Quinn et al.,	 TPAMI 2008) 



	 	 	

	 	
	 	 	

	 	
	 	

	 	 	

	 	 	 	
	 	 	

	 	 	 	
	

 

Evaluation 

GS = Gaussian-sum 
approximation (used for 
inference) 

RBPF = Rao-Blackwellized 

© IEEE. All rights reserved. This content is excluded from our Creative Commons 

particle filtering 
approximation (used for 
inference) 

FHMM = Factorial HMM 
(simpler model which 
does not modelnormal 
physiological dynamics) 
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Inference of physiological state 
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Inferred switch settings 
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TD= core temperature probe disconnection 
TR = recalibration 
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Outline of today’s	 lecture 

1. Recap of risk stratification 

2. Physiological time-series 
– Monitoring babies in	 neonatal ICUs 
– Detecting atrial fibrillation 
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Detecting atrial fibrillation 

AliveCore ECG	 
device 

ECG = electrocardiogram 
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Normal rhythm 

AF rhythm 

Other rhythm 

Noisy recording 

© Gari D. Clifford. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/ 

[Clifford,	 Liu,	 Moody,	 Mark. PhysioNetComputing in Cardiology Challenge2017] 27
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	Traditional approach 

ECG 
x(n) 

Linear 
Filtering 

Nonlinear 
Filtering 

Preprocessing Stage 

Peak 
Detection 

Logic 
Decision 

Decision Stage 

2. Common structure of the QRS detectors. 
© IEEE. All rights reserved. This content is excluded from our Creative Commons license. For more information, 
see https://ocw.mit.edu/help/faq-fair-use/ 
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Winning approach 

• Training data in 2017 Physionet challenge: ~8500 ECGs 
• Best algorithms use a combination of expert-derived 
features and machine learning 

© Teijeiro et al. All rights reserved. This content is excluded from our Creative Commons license. For more information, 
see https://ocw.mit.edu/help/faq-fair-use/ 
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Not enough data for deep learning? 
Wrong architectures? 

“However,	 the fact that a	 standard random 
forest with well chosen features performed as 
well	 as more complex approaches, indicates 
that	 perhaps a set	 of 8,528 training patterns 
was not enough to give the more complex 
approaches an advantage. With so many 
parameters and	 hyperparameters to tune, the 
search space can be enormous	 and significant 
overtraining was seen…” 

[Clifford et al. AF Classification from a Short Single Lead ECG Recording: the 
PhysioNet/Computing in Cardiology Challenge,	 Computing in Cardiology 2017] 30



	 	 	

	 	 	 	 	 	

	 	 	 	 	 	
	 	 	 	 	

	 	 	 	 	 	 	

 

Differences with previous work 

• Sensor is a Zio patch – conceivably	much less 
noisy: 

© iRhythm Technologies. All rights reserved. This content is 
excluded from our Creative Commons license. For more 
information, see https://ocw.mit.edu/help/faq-fair-use/ 

• ~90K ECG records annotated (from ~50K patients) 
• Identify 12	 heart arrhythmias, sinus rhythm and 
noise for a total of 14 output classes 

31
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Input Deep 
convolutional 

network 

• 1-D	 signal sampled at 200Hz, 
labeled at 1 sec intervals 

• 34	 layers 
• Shortcut 	connections (ala 
residual networks) with max-
pooling 

• Subsampled 	every 	other 	layer 
(28 in total) 

[Rajpurkaret al.,	arXiv:1707.01836,	2017;NatureMedicine ‘19] Output 32
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Summary 

• We are nearly always in realm of “not enough 
data” 

• Modeling and incorporating prior knowledge 
is critical	 to good performance 

• Design principles 
– Model the distribution of physiological dynamics 
– Derive features using existing clinical knowledge 

– Start from 	the 	simplest 	possible model 
– Share statistical strength across tasks 
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